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Abstract: The biomechanical-model-based approach with a contact model offers advantages in
estimating ground reaction forces (GRFs) and ground reaction moments (GRMs), as it does not rely
on the need for training data and gait assumptions. However, this approach faces the challenge of long
computational times due to the inclusion of optimization processes. To address this challenge, the
present study developed a new optical motion capture (OMC)-based method to estimate GRFs, GRMs,
and joint torques without prolonged computational times. The proposed approach performs the
estimation process by distributing external forces, as determined by a multibody model, between the
left and right feet based on foot deformations, thereby predicting the GRFs and GRMs without relying
on optimization techniques. In this study, prediction accuracies during level walking were confirmed
by comparing a general analysis using a force plate with the estimation results. The comparison
revealed excellent or strong correlations between the prediction and the measurements for all GRFs,
GRMs, and lower-limb-joint torques. The proposed method, which provides practical estimation with
low computational cost, facilitates efficient biomechanical analysis and rapid feedback of analysis
results, contributing to its increased applicability in clinical settings.

Keywords: biomechanical analysis; motion analysis; inverse kinematics; inverse dynamics; musculoskeletal
model; contact model

1. Introduction

In the fields of rehabilitation and sport, analyzing ground reaction forces (GRFs) and
ground reaction moments (GRMs) offers advantages in assessing the risk of musculoskeletal
disorders and evaluating physical performance [1,2]. To address the challenges associated
with the complexity of recording GRFs and GRMs, previous studies have developed
simplified measurement techniques that do not require a force plate. One such technique
involves wearable systems for recording GRFs and GRMs, such as pressure insoles or
instrumented force shoes [3]. These systems offer advantages in recording GRFs and GRMs
with fewer limitations on measurement location. However, concerns remain regarding
their low durability and the impact of the weight and height of the wearable instruments
on the motion of participants.

Another technique for measuring GRFs involves a prediction approach using kine-
matic data recorded by optical motion capture (OMC) or inertial measurement units
(IMUs) [3,4]. The OMC-based method contributes to high accuracy in GRF estimation
because it predicts GRFs based on the body-segment positions obtained with high preci-
sion by OMC which correctly records three-dimensional positions. While the IMU-based
method faces challenges in accurately estimating GRFs from kinematics data, as IMUs can-
not directly record body-segment positions, they have the advantage of fewer limitations
on measurement location. Researchers choose measurement systems based on the accu-
racy and applicability required for their estimation system, as well as the computational
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approach. Many GRF estimation techniques include two computational approaches: the
statistical-model-based method or the biomechanical-model-based method. The statistical-
model-based approach enables the prediction of GRFs and GRMs with high accuracy,
relying on statistical algorithms such as machine learning [5–10]. Recently, a GRF estima-
tion method combining electromyography measurements and machine learning has also
been proposed [11], and the statistical-model-based approach is rapidly developing as
an estimation technique. However, this method has a disadvantage in its application to
situations where obtaining sufficient training data is challenging, thus limiting the range of
movements that can be analyzed.

The biomechanical-model-based approach enables the estimation of GRFs and GRMs
using multibody dynamics calculations [3,4]. Although this method has the potential to be
applied in various movements, it faces limitations in making accurate predictions during
the double-support phase due to the closed-loop structure between humans and the ground.
To address this challenge, several studies have proposed computational techniques within
the biomechanical-model-based approach. While artificial neural networks and smooth
transition assumptions have been employed as accurate estimation methods [12,13], they
lack applicability due to the need for training data and gait assumptions. In contrast, some
studies have proposed computational techniques that incorporate a contact model in which
the contact state between the foot and the ground is represented by a mathematical model,
such as a spring-damper model [14,15]. Since this method calculates GRFs and GRMs from
the measured contact state between the foot and the ground, it does not require any training
data or gait assumptions, making it applicable to activities other than walking [16,17].

Previously, we developed the contact-model-based approach for predicting GRFs,
GRMs, and joint torques [18]. This method employs multibody dynamics calculations
based on kinematic data for GRF prediction without requiring training data or making gait
assumptions, thus providing advantages in terms of versatility and applicability. However,
our study faced a limitation of significant computational cost due to the optimization
technique to tune the parameters necessary for estimating GRFs and GRMs. Similarly,
other studies using the contact-model-based approach also rely on optimization processes
to tune parameters such as the coefficients of the spring-damper model [14–17]. While
alternative methods exist for estimating GRFs and GRMs using different computational
techniques [19,20], these methods also incorporate optimization techniques for GRF pre-
diction. Therefore, a prediction method focused on reducing computational time could
significantly contribute to the clinical applications of GRF estimation, such as improving the
efficiency of the biomechanical analysis and rapidly presenting analysis results to medical
staff and patients.

This study developed a new prediction method for GRFs, GRMs, and joint torques
with low computational cost by focusing on deformations of the foot alignment. Previous
studies have reported that the foot arch and soft tissues contribute to foot deformations
under load, reaching magnitudes of millimeters or centimeters under the load of the
human body mass [21,22]. Based on this fact, we hypothesized that foot deformations
can be recorded with OMC, which correctly obtains three-dimensional positions, and
that the load condition of the foot can be predicted from the recorded foot deformations.
Furthermore, if the load condition can be estimated from foot deformations, GRFs and
GRMs during the double support phase can be predicted without optimization techniques
by distributing external forces calculated by the biomechanical model according to the
load condition. Therefore, this study developed a new OMC-based prediction method
for GRFs, GRMs, and joint torques using a hybrid approach of a multibody-dynamics
model and foot deformations and evaluated the estimation accuracy and its advantages for
biomechanical analysis.
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2. Materials and Methods
2.1. Participants

The study participants were 18 volunteers (10 males, 8 females; mean age: 23.3 ±
2.5 years; mean height: 1.67 ± 0.10 m; mean weight: 55.2 ± 7.46 kg) with no history of
musculoskeletal disorders. Approval for the study was obtained from the Ethics Committee
of Tokyo Metropolitan University. Prior to the experiment, all participants received both
verbal and written explanations regarding the study’s content, and they provided written
informed consent.

2.2. Conditions

As the initial step in developing the prediction method, this study evaluated the
accuracy of estimation during level walking with bare feet, a fundamental human motion.
The experiment included three walking speeds: normal, fast, and slow. The normal speed
was adjusted to each participant’s preferred walking pace, while the fast and slow speeds
were approximately +20% and −20% of the normal walking speed, respectively. Before the
experiment, participants were familiarized with each walking speed.

2.3. Measurements

The three-dimensional coordinates, denoted as x for the anterior−posterior axis, y for
the vertical axis, and z for the medio−lateral axis, of markers attached to the whole body
were measured using an OMC system (OptiTrack Flex3; Natural Point Inc., Corvallis, OR,
USA). A total of 49 reflective markers were placed on various body locations based on the
marker set of the Gait 2392 musculoskeletal model in OpenSim [23–26]. The marker data
were digitally filtered (low-pass filter, Butterworth fourth-order type, −3 dB at 6 Hz) and
were sampled at 100 Hz.

To validate the OMC results, the GRF and GRM were measured using a force plate (TF-
4060-D; Tec Gihan Co. Ltd., Kyoto, Japan). The force data were digitally filtered (low-pass
filter, Butterworth fourth-order type, −3 dB at 18 Hz) and were sampled at 1000 Hz.

2.4. Data Analysis
2.4.1. Kinematics

At the beginning of the prediction procedure, the kinematics of each joint, segment,
and contact point were computed based on the three-dimensional coordinates of markers
recorded by the OMC system. The joint and segment kinematics were calculated using the
Gait 2392 musculoskeletal model in OpenSim [23–26]. This model consists of 12 segments,
including the torso, pelvis, femurs, tibias, taluses, calcanei, and toes, and had 23 degrees of
freedom (DOFs). The segment reference frame and joint coordinate system were defined
based on previous studies in the lower extremity [23], plantar knee [24], and low back
model [25]. The hip and back joints had three DOFs expressed in Euler angles with
the sequence Z (flexion−extension) X (abduction−adduction) Y (rotation). The knee,
ankle, subtalar, and metatarsophalangeal joints each had one DOF in flexion−extension
or dorsiflexion−plantarflexion. The pelvis had six DOFs for global coordinates, which
included three translational DOFs and three rotational DOFs expressed in Euler angles with
the sequence Z (flexion−extension) X (abduction−adduction) Y (rotation). The inverse
kinematics using the model in OpenSim computed the joint kinematics vector q ∈ R23,
which includes the joint angles of all joints, and the segment kinematics vectors rx ∈ R12,
ry ∈ R12, and rz ∈ R12, which include the translational position of the center of mass (COM)
of all segments [27].

To compute GRFs and GRMs based on foot deformations, a total of 20 contact points
(10 per foot) were positioned on the calcaneus and toe segments, as shown in Figure 1. The
segmentations of the calcaneus and toe was defined based on the Gait 2392 musculoskeletal
model in OpenSim [23]. The horizontal locations of the contact points were derived from
the marker positions based on the marker set of the Gait 2392 musculoskeletal model in
OpenSim. The vertical locations of the contact points were set to have an offset of 30 mm
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toward the ground during static standing, using the OMC data of the static standing
calibration with weight on the heel side. Subsequently, the contact point computation
yielded translational positions of the contact points on the foot, represented by px ∈ R20,
py ∈ R20, and pz ∈ R20.
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Figure 1. Locations of the contact points. The cross marks represent the contact points, and the circle
symbols represent the reflective markers used in the optical motion capture. A total of 20 contact
points, 10 per foot, were placed in the calcaneus and toe segments. The horizontal locations of the
contact points were derived from the marker positions based on the marker set of the musculoskeletal
model employed in this study, and the vertical locations of the contact points were set to have an
offset of 30 mm toward the ground during static standing. Unit: mm.

2.4.2. Ground Reaction Forces and Moments

Before computing GRFs and GRMs, the total external forces acting on the human
body were calculated using the translational equations of motion. The external forces Fext_x,
Fext_y, and Fext_z were expressed as follows:

Fext_x = ∑12
s=1 ms ..

rs
x, (1)

Fext_y = ∑12
s=1 ms

(..
rs

y − g
)

, (2)

Fext_z = ∑12
s=1 ms ..

rs
z, (3)

where rs
x, rs

y, and rs
z represent the anterior, vertical, and medial position of the COM of the

sth segment, which are components of rx, ry, and rz, respectively; ms is the mass of the sth
segment as defined in the previous study [25]; and g is gravitational acceleration.

Because the external forces, calculated from the equation of motion, represent the total
forces applied to the human body, it is necessary to allocate these forces to each foot to
calculate the GRFs and GRMs. The present study determined the amount of sinkage to
the ground at the ith contact-point position hi based on the contact-point positions, and
the total external force was distributed to each contact point based on the ratio of hi to
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the overall sinkage. The vertical GRF FGR_y, frontal GRM MGR_x, and sagittal GRM MGR_z
applied to one foot were computed as follows:

hi =

{
pi

y − pcrit if pi
y < pcrit and

.
pi

y < vcrit

0 otherwise
, (4)

FGR_y = ∑10
i=1

hi

∑20
k=1 hk

Fext_y, (5)

MGR_x = −∑10
i=1

hi

∑20
k=1 hk

pi
zFext_y, (6)

MGR_z = ∑10
i=1

hi

∑20
k=1 hk

pi
xFext_y, (7)

where pi
x, pi

y, and pi
z represent the anterior, vertical, and medial position of the ith contact

point, which are components of px, py, and pz, respectively, and pcrit and vcrit are the
critical position and velocity of the contact point, respectively, which were set to pcrit = 0
and vcrit = 0.05, as determined empirically. In this study, the ground height was set to
pi

y = 0. The origin of the horizontal directions pi
x and pi

z was positioned at the ankle joint,
as measured by OMC (the midpoint of the markers of the lateral and medial malleolus).

During the single-support phase, the anterior GRF FGR_x and medial GRF FGR_z
applied to one foot were determined using the horizontal external forces calculated from
the equation of motion, as follows:

FGR_x = Fext_x, (8)

FGR_z = Fext_z. (9)

During the double support phase, the anterior and medial GRFs were calculated using
a different method compared to the single-support phase. Previous studies have reported
that the GRF vector intersects a point located above the COM of the system, referred to
as the virtual pivot point (VPP), in a dynamic system such as a human in motion [28].
Accordingly, the present study computed the horizontal GRF based on the assumption that
the GRF vector intersects the VPP of the human body. First, three-dimensional positions of
the center of pressure (COP) of the GRF, which is the starting point of the GRF vector, are
calculated by the vertical GRF and the GRM around the horizontal axis, as follows:

pCOP_x = MGR_z/FGR_y, (10)

pCOP_y = 0, (11)

pCOP_z = −MGR_x/FGR_y, (12)

where the vertical position of the COP was set to the ground height, that is, pCOP_y = 0.
Then, if the GRF vector is assumed to intersect the VPP, the GRF can be expressed as a
vector connecting the COP and the VPP multiplied by a real number. Consequently, the
anterior GRF FGR_x and medial GRF FGR_z during the double support phase are calculated
using the real number α, as follows:

α = FGR_y/
(
rVPP_y − pCOP_y

)
, (13)

FGR_x = α(rVPP_x − pCOP_x), (14)

FGR_z = α(rVPP_z − pCOP_z), (15)

where rVPP_x, rVPP_y, and rVPP_z represent the anterior, vertical, and medial positions of the
VPP of the entire body, respectively. The VPP position was defined as 37.5 mm upward
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along the axis direction represented in the trunk segment coordinate system from the COM
of the whole body, after a previous experimental study [28]. The whole-body COM was
determined from the segment kinematics vectors rx, ry, and rz. Subsequently, the transverse
GRM MGR_y was computed using the horizontal GRFs and the COP of the GRF, as follows:

MGR_y = pCOP_zFGR_x − pCOP_xFGR_z. (16)

The computational flow of GRFs and GRMs is summarized as follows. First, the
positions of the COM of each segment and the contact points on the foot segment are
derived from the OMC data. Based on these COM kinematics, the equation of motion
determines the external forces acting on the human body. Through the foot deformation
approach, these external forces are distributed by the positional relationship between the
contact point and the ground, obtaining the vertical GRF, sagittal GRM, and frontal GRM.
Following this computation, the anterior GRF and medial GRF, and COPs are calculated
using different approaches for the single-support phase and double support phase. Finally,
the transverse GRM is derived from the computed GRFs and COPs.

2.4.3. Joint Torques

Joint torques were determined through inverse dynamics analysis using the estimated
GRFs and GRMs. The joint torque vector τ ∈ R23 was computed as follows:

τ = I
..
q + Γ

(
q,

.
q, FGR_x, FGR_y, FGR_z, MGR_x, MGR_y, MGR_z

)
, (17)

where I ∈ R23×23 represents the inertia matrix as defined in the previous study [25], and
Γ ∈ R23 is a vector consisting of Coriolis, centrifugal, gravitational, and external forces.
The inverse dynamics analysis was conducted with the Gait 2392 musculoskeletal model in
OpenSim [27], which is the same model used in the inverse kinematics analysis.

2.5. Accuracy and Sensitivity Analysis

To evaluate the prediction accuracy, the predicted GRFs and GRMs were compared
with the force-plate data. The predicted joint torques were compared with an inverse
dynamics solution using the Gait 2392 musculoskeletal model in OpenSim with the input
measurement data [27]. The agreement between the prediction and measurement was eval-
uated using Pearson’s correlation coefficient (ρ), which was classified as follows: ρ ≤ 0.35
for weak, 0.35 < ρ ≤ 0.67 for moderate, 0.67 < ρ ≤ 0.9 for strong, and 0.9 < ρ for excellent
correlation [29]. In addition, we computed the root-mean-square error (RMSE) and rela-
tive RMSE (rRMSE), which normalized the RMSE by the average peak-to-peak amplitude
for the two solutions [13]. All statistical analyses were performed using MATLAB 9.9
(MathWorks, Inc., Natick, MA, USA).

In the proposed method, which relies on foot deformation, the measurement error of
the contact point may have a significant impact on the estimation accuracy. Therefore, a
sensitivity analysis was conducted to investigate the influence of the measurement error of
the contact point on prediction accuracy. To simulate data with measurement errors, white
noise was added to all contact-point positions, px, py, and pz, using the rand function in
MATLAB. This study compared the RMSE and rRMSE of the GRFs and GRMs under three
conditions with maximum white noise amplitudes of 1, 10, and 100 mm.

3. Results

The GRF and GRM curves throughout a gait cycle during normal-speed walking are
shown in Figure 2. At all three experimental walking speeds, excellent or strong correlations
were observed for all GRFs and GRMs. A comparison of the estimation accuracies in GRFs
and GRMs with those of previous studies is presented in Table 1.
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upward direction as positive, and ground reaction moments (GRMs) in the (d) frontal plane around
the anterior axis, (e) sagittal plane around the lateral axis, and (f) transverse plane around the vertical
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standard deviation of the predictions, respectively, while the gray shading represents the average
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correlation coefficient (ρ), the root-mean-square error (RMSE), and the relative RMSE (rRMSE). The
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Table 1. Comparison of root-mean-square errors (RMSEs) and relative RMSEs (rRMSEs) in ground
reaction forces (GRFs) and moments (GRMs) during normal-speed walking with results of previous
studies [12,13,16]. The average and standard deviation (SD) for all participants N are displayed, with
magnitudes normalized to the body mass of participants.

Method Artificial Neural
Network [12]

Smooth Transition
Assumption [13]

Optimization
Approach [16]

Foot Deformation
Approach (This Study)

Participants N = 5 N = 3 N = 9 N = 18

RMSE
(SD)

(N/kg or
N·m/kg)

rRMSE
(SD)
(%)

RMSE
(SD)

(N/kg or
N·m/kg)

rRMSE
(SD)
(%)

RMSE
(SD)

(N/kg or
N·m/kg)

rRMSE
(SD)
(%)

RMSE
(SD)

(N/kg or
N·m/kg)

rRMSE
(SD)
(%)

Anterior GRF 0.154
(0.057) 7.3 (0.8) 0.473

(0.068) 10.9 (0.8) 0.38 (0.07) 9.3 (2.0) 0.427
(0.135) 11.4 (3.9)

Medial GRF 0.040
(0.022) 10.9 (1.8) 0.191

(0.034) 20.0 (2.7) 0.17 (0.04) 14.9 (3.4) 0.164
(0.029) 17.0 (3.6)

Vertical GRF 0.649
(0.182) 5.8 (1.0) 0.710

(0.190) 5.6 (1.5) 0.74 (0.13) 6.6 (1.1) 1.422
(0.678) 11.6 (5.4)

Frontal GRM 0.052
(0.029) 22.8 (4.9) 0.148

(0.013) 32.5 (4.3) 0.11 (0.02) 22.9 (5.9) 0.066
(0.028) 19.5 (7.1)

Sagittal GRM 0.081
(0.045) 9.9 (1.9) 0.199

(0.106) 12.2 (4.8) 0.18 (0.05) 12.4 (3.5) 0.211
(0.080) 13.9 (7.9)

Transverse GRM 0.032
(0.018) 25.5 (4.5) 0.039

(0.015) 26.2 (9.4) 0.22 (0.06) 40.6 (11.3) 0.018
(0.007) 13.5 (5.4)



Sensors 2024, 24, 2792 8 of 13

The joint torque curves throughout a gait cycle during normal-speed walking are
shown in Figure 3. At all three experimental walking speeds, excellent or strong correlations
were observed for all joint torques. A comparison of estimation accuracies in joint torques
with those of previous studies is presented in Table 2.
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Figure 3. Joint torques in the frontal plane at the (a) hip, (b) knee, and (c) ankle with abduc-
tion/eversion torque as positive; in the transverse plane at the (d) hip, (e) knee, and (f) ankle with
external rotation torque as positive; and in the sagittal plane at the (g) hip, (h) knee, and (i) ankle with
flexion/dorsiflexion torque as positive. All joint torques are expressed in the proximal coordinate
system during normal-speed walking. The solid and dashed curves represent the average and
standard deviation of the predictions, respectively, while the gray shading represents the average
and standard deviation of the measurements. The upper right text of each graph shows Pearson’s
correlation coefficient (ρ), the root-mean-square error (RMSE), and the relative RMSE (rRMSE). The
magnitudes of the curves are normalized to the body mass of participants.

The RMSEs and rRMSEs of the GRFs and GRMs with white noise in contact-point
position data during normal-speed walking are presented in Table 3. The sensitivity
analysis confirms that the estimation accuracies of GRFs and GRMs tended to deteriorate
as the amplitude of the white noise increased.

The computational time from OMC data input to GRFs and GRMs output was approx-
imately 4 s for one trial (CPU: Intel Core i7-10700 with 4.0 GHz of average speed; memory:
32 GB; software: MATLAB 9.9 and OpenSim 4.1; OS: Windows 11 Home).

The results of the statistical analysis for each speed are summarized in Table S1. The
time-series data for each speed are included in Dataset S1.
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Table 2. Comparison of root-mean-square errors (RMSEs) and relative RMSEs (rRMSEs) in joint
torques during normal-speed walking with results of previous studies [12,13]. The average and
standard deviation (SD) for all participants N are displayed, with magnitudes normalized to the body
mass of participants.

Method Artificial Neural
Network [12]

Smooth Transition
Assumption [13]

Foot Deformation Approach
(This Study)

Participants N = 5 N = 3 N = 18

RMSE (SD)
(N·m/kg)

rRMSE (SD)
(%)

RMSE (SD)
(N·m/kg)

rRMSE (SD)
(%)

RMSE (SD)
(N·m/kg)

rRMSE (SD)
(%)

Hip
Frontal 0.052 (0.006) 5.1 (0.9) 0.106 (0.008) 9.9 (0.9) 0.168 (0.046) 14.5 (3.4)
Transverse 0.029 (0.040) 12.0 (1.0) 0.051 (0.006) 15.0 (1.2) 0.032 (0.007) 11.3 (2.6)
Sagittal 0.056 (0.041) 9.7 (2.0) 0.469 (0.067) 20.9 (2.1) 0.307 (0.095) 15.0 (2.5)

Knee
Frontal 0.033 (0.019) 6.4 (1.6) 0.100 (0.017) 15.3 (2.8) 0.054 (0.023) 16.3 (6.4)
Transverse 0.043 (0.036) 13.8 (2.7) 0.042 (0.012) 25.4 (5.1) 0.040 (0.016) 18.4 (7.0)
Sagittal 0.020 (0.007) 8.1 (1.8) 0.307 (0.056) 18.7 (2.9) 0.187 (0.053) 18.3 (3.7)

Ankle
Frontal 0.053 (0.028) 22.7 (5.0) 0.134 (0.012) 35.8 (4.6) 0.039 (0.016) 22.1 (7.2)
Transverse 0.033 (0.022) 25.0 (4.4) 0.039 (0.015) 26.1 (9.3) 0.053 (0.024) 17.9 (6.9)
Sagittal 0.091 (0.052) 10.5 (4.8) 0.190 (0.112) 9.7 (4.8) 0.186 (0.096) 10.8 (8.5)

Table 3. Root-mean-square errors (RMSEs) and relative RMSEs (rRMSEs) of ground reaction forces
(GRFs) and moments (GRMs) with three levels of white noise in the contact-point position data
during normal-speed walking. The average and standard deviation (SD) for all participants are
displayed, with magnitudes normalized to the body mass of participants.

Noise Level ±1 mm ±10 mm ±100 mm

RMSE (SD)
(N/kg or
N·m/kg)

rRMSE (SD)
(%)

RMSE (SD)
(N/kg or
N·m/kg)

rRMSE (SD)
(%)

RMSE (SD)
(N/kg or
N·m/kg)

rRMSE (SD)
(%)

Anterior GRF 0.426 (0.134) 11.4 (3.9) 0.432 (0.138) 11.6 (4.1) 0.739 (0.098) 24.1 (2.1)
Medial GRF 0.165 (0.029) 17.1 (3.6) 0.178 (0.029) 18.3 (4.3) 0.213 (0.045) 22.7 (3.5)
Vertical GRF 1.414 (0.678) 11.5 (5.4) 1.384 (0.680) 11.2 (5.4) 3.587 (0.397) 31.6 (4.1)
Frontal GRM 0.068 (0.029) 19.7 (7.4) 0.105 (0.036) 27.3 (10.8) 0.397 (0.085) 46.6 (9.3)
Sagittal GRM 0.213 (0.080) 14.0 (7.8) 0.245 (0.075) 15.6 (7.2) 0.420 (0.105) 25.8 (6.2)

Transverse GRM 0.019 (0.007) 13.7 (5.5) 0.026 (0.009) 16.9 (6.3) 0.036 (0.009) 19.5 (4.0)

4. Discussion

The proposed method demonstrated estimation accuracy comparable to that of previ-
ous studies, as shown in Tables 1 and 2 [12,13,16]. Thus, the proposed approach, which does
not rely on optimization techniques, succeeded in achieving these estimation accuracies for
GRFs, GRMs, and joint torques at a low computational cost of a few seconds. In previous
studies that employed optimization techniques for prediction, the computational time
was relatively long because the parameters for computing the estimated values had to be
determined through exploratory calculations [18]. Although the computational time de-
pends on various factors, it is assumed that optimization approaches requiring exploratory
calculations involve a computational cost at least in the order of several minutes. Therefore,
the proposed method offers advantages over conventional methods, such as rapid feedback
of the analysis results, thereby contributing to the clinical application of these kinetic factor
estimation methods.

Another feature of the proposed method is its potential applicability as a GRF estima-
tion technique for various activities. In previous studies, the smooth transition assumption
approach has been applied to GRF estimation only during walking [13,30]. Although the ar-
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tificial neural network approach can be extended to GRF estimation for activities other than
walking [31], its applicability might be constrained in situations where sufficient training
data cannot be obtained. In contrast, because the present method operates independently
of statistical models or walking assumptions, it has the potential to be applied to GRF
estimation across a wide range of activities, such as sports, daily activities, and orthopedic
or prosthetic conditions.

Here, we provide a detailed description of the prediction accuracy of the proposed
method. Although previous studies estimated GRFs during the single-support phase using
an approach relying on the equation of motion as used in our study, GRFs during the
double support phase were calculated using complex computational techniques, such
as a statistical model, walking assumptions, and optimization [12–20]. In contrast, our
proposed estimation method calculated GRFs using only the external force derived from
the equation of motion and the amount of sinkage at the contact point. Consequently, the
prediction results of this study were more susceptible to the influence of measurement
errors compared to conventional approaches. Hence, the simplicity of the computational
method employed in this study had a detrimental impact by producing a lower prediction
accuracy for the GRFs.

Previous studies estimated the GRMs using the equation of motion and some com-
putational techniques, similar to their GRF prediction [12–20]. However, the estimated
GRMs based on the rotational equation of motion could include modeling errors related
to the mass, moment of inertia, and COM of each body segment. These errors potentially
degrade the estimation accuracy compared to the GRF prediction based on the translational
equation of motion, which only incorporates modeling errors of the mass of each body
segment. On the contrary, the proposed estimation method computed the GRMs using the
estimated GRFs and the position of the contact point, thereby eliminating the modeling
errors associated with the moment of inertia and COM of each body segment from the
GRM prediction. Consequently, the accuracy of GRM estimation for the entire gait cycle
was improved compared to previous studies.

The proposed method provided estimation accuracies in joint torques comparable
to those of the estimation method based on the smooth transition assumption [13]. In
addition, a previous study has reported that the optimization approach provides joint
torque prediction accuracy levels similar to those of the smooth transition assumption [16].
Therefore, while the proposed method does not achieve an estimation accuracy com-
parable to the artificial neural network approach, which provides superior estimation
accuracy compared to other methods, the present study demonstrates a practical accuracy
of the proposed approach comparable to that of the smooth transition assumption and the
optimization approach.

While the GRF prediction was not significantly affected by white noise up to 10 mm,
the GRM prediction showed a deterioration in accuracy at 10 mm of white noise. In the
proposed prediction method, noise in the contact-point positions influenced the distribution
of the external force computed by the equation of motion, but not for the magnitude of the
external force. Therefore, the noise in the contact-point positions had less impact on the
GRFs, which are calculated as the sum of the forces acting on the contact points of each
foot. In contrast, the distribution of the external force at each contact point had a significant
effect on the COP, leading to a deterioration in estimation accuracy for the GRMs. Based on
the results of the sensitivity analysis, it is expected that the estimation accuracy of GRMs
will decline if the proposed method is applied to IMU-based prediction, which has fewer
limitations for measurement locations and lower measurement accuracy than that of the
OMC-based approach. Nevertheless, the present method has the potential for application
in IMU-based methods with practical accuracy because the estimation accuracy with white
noise at 10 mm was not greatly different from the estimation accuracy in some previous
studies, as shown in Table 3 [13,16].

Several limitations of this study are noted. Although the present study developed
the GRF estimation method to address the location limitations of force plates, the pro-
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posed method can only be applied in situations where an OMC system can be installed.
While the location limitations of the present method can potentially be relieved by em-
ploying IMUs instead of an OMC system, a critical challenge remains in determining the
position of the foot contact points when using IMUs, as IMUs cannot directly measure
three-dimensional coordinates.

In the present study, the experiment was conducted with participants in bare feet to
accurately capture foot deformations. Consequently, this study cannot ensure prediction
accuracy under conditions other than bare feet, such as when shoes are worn. To extend the
applicability of the method to various motions in the future, the accuracy of this method
should be confirmed under conditions other than bare feet.

This study estimated GRFs and GRMs for movement on level ground by assuming the
critical position pcrit shown in Equation (4) to be constant. While the prediction accuracy
needs confirmation, the proposed method may be applicable beyond level ground to
situations where the critical position pcrit can be formulated, such as when the ground has a
constant slope. However, it is challenging to apply this method to a rough walking surface
with irregularities in the ground.

The estimation accuracy in this study was confirmed only for healthy young adults
walking at three different speeds. Although the proposed method is expected to be applica-
ble to various activities other than walking, further accuracy verification is necessary to
apply the proposed method to those activities.

5. Conclusions

The proposed OMC-based method successfully estimated GRFs, GRMs, and joint
torques with practical estimation accuracy while maintaining low computational costs.
This achievement can be attributed to the reduction in biomechanical modeling errors in
GRF prediction, which was realized through the foot-deformation approach. The proposed
method, characterized by its low computational time without optimization techniques,
is expected to enable clinical applications of GRF estimation. Furthermore, the proposed
method has the potential for application to GRF estimation for various activities, as it
operates independently of walking assumptions or training data. It is also applicable
to IMU-based approaches, as it performs predictions under the influence of 10 mm of
white noise.
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