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Abstract: Navigation lies at the core of social robotics, enabling robots to navigate and interact seam-
lessly in human environments. The primary focus of human-aware robot navigation is minimizing
discomfort among surrounding humans. Our review explores user studies, examining factors that
cause human discomfort, to perform the grounding of social robot navigation requirements and to
form a taxonomy of elementary necessities that should be implemented by comprehensive algorithms.
This survey also discusses human-aware navigation from an algorithmic perspective, reviewing the
perception and motion planning methods integral to social navigation. Additionally, the review
investigates different types of studies and tools facilitating the evaluation of social robot navigation
approaches, namely datasets, simulators, and benchmarks. Our survey also identifies the main
challenges of human-aware navigation, highlighting the essential future work perspectives. This
work stands out from other review papers, as it not only investigates the variety of methods for
implementing human awareness in robot control systems but also classifies the approaches according
to the grounded requirements regarded in their objectives.

Keywords: social robot navigation; human-aware navigation requirements; mobile robot motion
planning; social robot perception; quantitative evaluation; benchmarks; human behavior simulation

1. Introduction

The presence of robots in populated environments has become broadly discussed in
the literature since deployments of interactive museum tour guide robots—RHINO [1]
and MINERVA [2]—in the late 1990s. These field studies have provided many insights,
and since then, robot navigation among humans has become a vast field of study.

The field has a historical tradition of being multidisciplinary, with researchers from
robotics, artificial intelligence, engineering, biology, psychology, natural language process-
ing, cognitive sciences, and even philosophy collaborating, resulting in a diverse range
of outcomes [3,4]. Other than that, social navigation is closely linked to various research
topics, such as human trajectory prediction, agent and crowd simulation, and naturally,
to traditional robot navigation [5].

One of the primary objectives of robotics is to facilitate the seamless operation of
intelligent mobile robots in environments shared with humans [4].

In our work, a socially navigating robot is an autonomous machine designed to act
and interact with humans in shared environments, mitigating potential discomfort by
mimicking social behaviors and adhering to norms. Robot navigation requirements are
derived from user studies illustrating human preferences during an interaction, while the
robot’s decision-making autonomy relies on perception and planning capabilities.

The range of social robots’ applications is diverse. In the late 2000s, Satake et al. [6]
established a field study in a shopping mall where a robot recommended shops to people.
A long-term validation of a robot operating in a crowded cafeteria was conducted by
Trautman et al. [7]. Another extended deployment was accomplished by Biswas and

Sensors 2024, 24, 2794. https://doi.org/10.3390/s24092794 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092794
https://doi.org/10.3390/s24092794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8530-7623
https://orcid.org/0000-0001-6348-1129
https://orcid.org/0000-0003-4782-3816
https://doi.org/10.3390/s24092794
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092794?type=check_update&version=2


Sensors 2024, 24, 2794 2 of 61

Veloso [8], whose CoBots reached 1000 km of autonomous navigation. On the other
hand, Shiomi et al. [9] performed a short-term validation study of a robot operation in a
shopping mall. Recently, social robots are typically utilized for interaction in the context
of home assistance and healthcare [3] or deployed for delivery purposes, e.g., pizza, mail,
and packages [5].

Despite the recent advancements, mobile robots are still not prevalent in our homes
and offices. Mirsky et al. [4] state that a primary factor contributing to this limitation is that
achieving full autonomy remains feasible only in controlled environments and typically
relies on hard-coded rules or learning from relatively clean datasets.

Our review can be segmented into two perspectives: requirements and algorithmic. The
requirements perspective involves exploring various user studies to identify the rules for
social robots to adhere to. Our primary focus lies in examining factors that cause human
discomfort, as confirmed in real-world experiments involving human participants. In
addition to identifying these factors, we aim to extract methods for mitigating discomfort
to obtain implementable guidelines for robot control systems. Subsequently, the algorithmic
perspective categorizes existing research regarding scientific approaches and maps those
methods onto specified requirements taxonomy. In summary, our survey stands out by
offering an in-depth investigation of aspects often discussed less extensively, while still
following the latest developments in navigation.

The remainder of this section explains the scope of the reviewed topics and describes
the materials collection methodology. Section 2 reviews previous surveys regarding social
robot navigation, whereas Section 3 presents the state of the art from the requirements
perspective, discussing the conclusions of user studies. The following sections give an
algorithmic overview on perception (Section 4), motion planning (Section 5), and evalua-
tion (Section 6). The survey proposals explaining identified research gaps are presented
in Section 7, while the paper is summarized in Section 8.

1.1. Review Scope

The scope of the social robot navigation field is vast, and a comprehensive literature
review in every aspect is practically unfeasible. Although we had to limit the scope of
topics for a thorough examination, we understand the importance of concepts that could
not be covered in this study.

Our survey concentrates on deriving the social robot navigation requirements from
literature studies, and, based on that, discusses requirements-driven human-aware robot
motion planning and metrics related to the social acceptance of robots. However, this review
does not extensively explore the domains of, i.a., explicit communication or negotiation,
and the range of interactions investigated was also limited to align with the scope of
primary topics.

Effective decision making in socially aware navigation requires communication be-
tween robots and humans, particularly when the robot’s knowledge about the environment
is limited. Specifically, explicit communication involves the auditory domain, as well as
written instructions, which robots should interpret and respond to. Robots also need to
convey their intentions and decisions to humans, utilizing verbal and visual techniques
such as speech and gestures employing onboard actuators. The topic of explicit commu-
nication has been investigated to varying degrees in other review works [4,10,11]. Since
it is related to higher-level problem-solving, we decided not to categorize our literature
search according to this characteristic. In contrast, implicit communication is commonplace
in human–robot interaction studies and is more relevant to the investigated topics; hence,
it is widely discussed in our survey, as well as in [4,11,12].

Negotiation in social robot navigation acts as a form of dynamic information exchange.
This may involve collaborative decision-making processes, e.g., requesting permission
to pass. While the scope of the negotiations field extends way beyond human–robot
interaction, this concept has been briefly discussed in other social robotics surveys [11,13].
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On the other hand, what substantially affects the requirements and objectives of
perception and human-aware robot motion planning is the type of robot. Variations in
ground, aerial, or aquatic robots [11,14] significantly impact possible scenarios, hence
also the range of human–robot interactions. The taxonomy of our considerations does
not differentiate the robot types; instead, we focus primarily on ground-wheeled robots,
although some principles and algorithmic techniques may also apply to aerial robots. While
mobile manipulators may also fall into the category of ground-wheeled robots, their specific
problems of low-level motion control tasks are not investigated.

The physical (contact-rich) interaction between robots and humans is a crucial topic in
collaborative robotics and safety management. However, our navigation-focused review
examines other types of interactions, namely, unfocused and focused [13], neither of which
involve physical contact.

1.2. Materials Collection

The chosen methodology of selecting resources included in the survey does not strictly
adhere to the scoping strategy typically applied in systematic reviews. Specifically, at first,
we conducted a comprehensive literature analysis, drawing from review papers discussed
in Section 2. The literature from previous surveys has been confined according to our
primary topics and then further supplemented by some crucial works that did not appear
in other review papers and more recent citations.

To select newer materials for inclusion in the survey, we searched across IEEE Xplore,
ScienceDirect, SpringerLink, ACM Digital Library, and Google Scholar databases, as well
as included relevant preprints from ArXiv. The queries used for the search engines were
(‘social’ OR ‘human-aware’) AND ‘navigation’ AND ‘robot’, which allowed the gathering
of over 600 works from various sources. However, our methodology involved identifying
resources (papers, software modules, and datasets) based on their relevance to socially-
aware robot navigation and its evaluation methods. Therefore, instead of including the vast
amount of results from the databases, we selected the materials based on their appropriate-
ness to the primary topics of the survey. The bibliography was also extended by validation
of the cross-references between user studies which also led us to valuable materials. The
described selection strategy ensures a concise yet comprehensive review of advancements
in the field.

Notably, our survey is also not limited to specific publication years (e.g., [11]) as certain
findings, particularly social robot navigation requirements derived from user studies, retain
relevance over an extended period. Despite being a subject of research for over 20 years,
the field has seen a surge in publications in recent years, as presented in Figure 1.
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Figure 1. Number of publications from 2014 to 2024 included in the survey by year.

2. Related Work

In recent years, numerous surveys regarding social robot navigation have been pro-
posed [3–5,11–17]. However, the topic is so broad that each one investigates the problem
from different perspectives, e.g., evaluation, perception, and hardware.
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For example, Kruse et al. [15] discussed the advancements of human-aware navigation
for wheeled robots in assistive scenarios. They systematically reviewed the literature,
choosing the key features facilitating human-aware navigation as human comfort, robot
motions’ naturalness, and sociability. In addition to outlining the basic objectives of social
robot navigation, they also focused on spatial constraints that enhance the robot’s socia-
bility. They proposed that integrating them into a single control system mitigates human
discomfort. Moreover, they explored numerous methods of human trajectory prediction.

Alternatively, Rios-Martinez et al. [13] delved into sociological concepts regarding
the challenges of human-aware navigation. They discussed fundamental concepts related
to social conventions and mapped them onto robotics perspectives. In conclusion, they
posited that human management of space can be treated as a dynamic system whose
complexity extends well beyond proxemics, with contextual factors playing a paramount
role in detecting social situations.

In another review paper, Chik et al. [14] offered insights for service robot implemen-
tation, highlighting different motion planning system structures for robots operating in
populated environments. The discussed navigation frameworks are classified based on
their complexity and anticipative potential required for socially acceptable navigation.
The authors also provided brief descriptions of algorithms that may enhance social robot
navigation and compared them with the traditional methods. Their paper provides practical
guidelines on which framework to choose under different conditions.

In a separate study, Charalampous et al. [16] attempted to systematize the recent
literature based on the required levels of robot perception for navigating in a socially
acceptable manner. They focused on techniques that could allow robots to perceive and
interpret their surroundings on a high contextual level. Particularly, they explored methods
related to robot’s social awareness (semantic mapping being one of them), the accessibility
of datasets, and challenges that need to be confronted when robots operate and interact
with humans.

Möller et al. [3] reviewed socially-aware robot navigation, focusing on aspects of
computer vision. Namely, their classification of papers is based on the taxonomy of
human behavior analysis and modeling, human–robot interaction, active vision, and visual
robot navigation. They discussed, i.a., active vision and exploiting it to obtain more data
under uncertainty, as well as high-fidelity simulators and numerous datasets, e.g., for
human trajectory prediction. The authors pointed out the major research gaps as a lack
of formalized evaluation strategies or insufficient datasets and suggested using voice
interaction or gesture recognition more commonly to enrich the human–robot interactions.

A more recent survey by Mirsky et al. [4] concentrates on introducing a common lan-
guage that unifies the vocabulary used in the prior works and highlights the open problems
of social navigation. The main topic of the review is conflict avoidance; therefore, the scope
of examined papers is bound to works regarding strictly unfocused [13] interactions. As the
main challenge of social navigation, they specified standardization of evaluation metrics,
group understanding, and context-aware navigation.

Another survey was proposed by Gao and Huang [5], who examined the evaluation
techniques, scenarios, datasets, and metrics frequently employed in prior studies on socially
aware navigation. They analyzed the drawbacks of current evaluation protocols and
proposed opportunities for research enhancing the field of socially-aware robot navigation.
Specifically, they stated that there are no standard evaluation protocols to benchmark the
research progress, i.e., the field lacks unified datasets, scenarios, methods, and metrics. They
also denote the necessity of developing comprehensive instruments to gauge sociability
and higher-level social skills during navigational interactions.

Zhu and Zhang [18] discussed Deep Reinforcement Learning (DRL) and related frame-
works for analyzing robot navigation regarding typical application scenarios, i.e., local
obstacle avoidance, indoor navigation, multirobot navigation, and social navigation. In
turn, Medina Sánchez et al. [19] explored the different aspects of indoor social navigation
based on their experience with perception, mapping, human trajectory prediction, and plan-
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ning. Besides describing the state-of-the-art approaches, they experimented with existing
methods and investigated their performance in practice. Guillén-Ruiz et al. [20] discussed
recent papers regarding social robot navigation in a more specific context. They reviewed
methods for socially aware navigation and classified them according to the techniques
implemented in robots to handle interaction or cooperation with humans.

In another recent review, Mavrogiannis et al. [17] synthesized existing problems of
social robot navigation and established the core challenges of social robot navigation as
motion planning, behavior design, and evaluating the emerging behavior of a robot. Their
study aims to diagnose the fundamental limitations of common practices exploited in the
field and to provide constructive feedback and suggestions.

Furthermore, at the Social Navigation Symposium in 2022, Francis et al. [12] discussed
various generic guidelines for conducting social navigation studies and performing valu-
able evaluation of the experiments. The survey depicts the broadness of the research field
and the challenges of social navigation studies. The authors define social robot navigation
as respecting the principles of safety, comfort, legibility, politeness, understanding other
agents, and being socially competent, proactive, and responsive to context. Their guidelines
regard the evaluation of social navigation by the usage of metrics and the development of
simulators, scenarios, datasets, and benchmarks. A framework design for this purpose is
also presented.

The newest review by Singamaneni et al. [11] examines the field from four perspectives—robot
types, planning and decision making, situation awareness and assessment, and evalu-
ation and tools. The survey highlights the broadness of topics and methods involved
in social robot navigation. Among their proposals are suggestions for standardizing hu-
man actions in benchmarks and establishing unified communication protocols to convey
robot intentions.

In contrast to previous review articles, our survey aims to explicitly demonstrate how
the key concepts explored by researchers in robotics and social sciences can be transferred
into requirements for robot control systems [21] implementing robot navigation tasks. Our
review reaches user studies to gather insights and perform the grounding of social robot
navigation requirements. After identifying those core principles, perception and motion
planning methods are reviewed regarding the taxonomy of requirements Figure 2. The clas-
sification of the social robot navigation requirements established in this study enables the
identification of the gaps in motion planning algorithms, the drawbacks of state-of-the-art
evaluation methods, and the proposal of relevant future work perspectives for researchers
in the field. As researchers often try to implement different robot control strategies in an ad
hoc manner to mimic human behaviors, we believe that a proper grounding of fundamental
features will lead to further developments in the correct direction.

The summary of the state-of-the-art surveys is presented in Table 1, where the varying
foci on concepts from perception, through motion planning, to evaluation are visible among
different review papers.

Table 1. A classification of literature reviews discussing social robot navigation. Typical taxon-
omy concepts were selected as grouping criteria. The classification identifies the main concepts
investigated in each survey article according to the selected taxa.

Survey
Robot
Types Perception

Motion
Planning Evaluation

Nav. System
Architecture

Kruse et al.
[15]

wheeled human traj.
prediction

global cost functions,
pose selection,

global and local
planning algorithms

simulation,
user studies

allocation of
main concepts

Rios-M. et al.
[13] —

social cues
and signals

algorithms embedding
social conventions —

allocation of
main concepts
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Table 1. Cont.

Survey
Robot
Types Perception

Motion
Planning Evaluation

Nav. System
Architecture

Chik et al.
[14] wheeled —

global path planning
and local trajectory

planning algorithms
—

various
motion planning

architectures

Charalampous
et al. [16]

—

semantic mapping,
human trajectory

prediction,
contextual awareness

— benchmarks,
datasets

—

Möller et al.
[3]

—

active perception
and learning,

human behavior
prediction

applications of
activity recognition
for path planning,

trajectory modeling

benchmarks,
datasets,

simulation
—

Zhu
and Zhang

[18]
wheeled —

DRL-based
navigation
algorithms

—
navigation

frameworks
structures

Mirsky et al.
[4] wheeled —

navigation models
and algorithms

for conflict avoidance

simulation,
various studies —

Gao et al.
[5] — —

models for
assessment of
specific social
phenomena

questionnaires,
various studies,

scenarios, datasets,
simulation,

various metrics

—

Sánchez et al.
[19]

—

human detection,
semantic mapping,

human motion
prediction

predictive
and reactive
navigation
methods

datasets —

Mavrogiannis
et al. [17]

design
challenges

human
intention

prediction

extensive
study involving

various navigation
algorithms

metrics, datasets,
simulation,

crowd models,
demonstration,
various studies

—

Guillén-Ruiz
et al. [20] —

classification
of human motion

prediction
methods

agent motion models
and learning-based

methods,
multi-behavior

navigation

— —

Francis et al.
[12]

diversity
of hardware

platforms

predicting and
accommodating
human behavior

social navigation
principles analysis,
planning extensions

with contextual
awareness

methodologies
and guidelines,

metrics, datasets,
scenarios,

simulators,
benchmarks

API
for metrics

benchmarking

Singamaneni
et al. [11]

ground,
aerial,

aquatic

human intentions
and trajectory

prediction,
contextual
awareness

generation of
global and local

motion (planning,
force, learning),

identifying
social norms

metrics, datasets,
benchmarks,

studies,
simulators

—
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Table 1. Cont.

Survey
Robot
Types Perception

Motion
Planning Evaluation

Nav. System
Architecture

Ours ground,
wheeled

human detection
and tracking,

trajectory prediction,
contextual awareness

requirements-based
global path and
local trajectory

planning methods
with social
constraints

metrics, datasets,
benchmarks

and simulators
classification

—

Figure 2. A taxonomy of main concepts in social robot navigation. The principles for perception,
motion planning and evaluation are derived from the grounded requirements. Parts of the figure
have been generated with the Dall-E AI model.

3. Requirements of Socially Aware Navigation

Social robots were introduced to make human–robot interaction more natural and
intuitive [22]. Generic characteristics of social navigation are commonly recalled in review
works. For example, Kruse et al. [15] classify the main features as safety, comfort, nat-
uralness, and sociability. On the other hand, in [13], the authors indicate key factors as
distinguishing obstacles from persons, considering the comfort of humans—their prefer-
ences and their needs, not being afraid of people, and the legibility of motion intentions.
More recently, Mavrogiannis et al. [17] proposed a classification that relies on proxemics,
intentions, formations, and social spaces, ordered according to the social signal richness.
Furthermore, Francis et al. [12] stated that principles of social robot navigation include
safety, comfort, legibility, politeness, social competency, agent understanding, proactivity,
and contextual appropriateness.

While the aspects above schematically display the goals of social navigation, the au-
thors of the surveys do not attempt to extract the straightforward requirements to follow
in social robot navigation. Instead, these terms are loosely defined; hence, they might
refer to different means in different contexts or applications. As a consequence, it is tough
to determine how to effectively gauge whether the robot behaves in a socially compliant
manner. Our survey aims to reduce these abstract terms describing social norms. This is
contrary to other review works, where, although taxonomies are presented and articles are
classified into those groups, the fundamental concepts persist as vague definitions.

Thus, we perform the grounding of the requirements of social robot navigation. The
requirements must be known to properly design a socially-aware robot navigation system.
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Various techniques have been experimented with an assertive robot, revealing that using
knowledge from psychology leads to increased user trust [23]. Incorporating a study-driven
approach, we researched human–robot interaction user studies to determine how humans
perceive robots navigating around them and how robots should behave around humans
under certain controlled conditions. Such an approach allows for obtaining guidelines on
how the robot should behave in the presence of humans; hence, precise system requirements
can be defined for phenomena that were sufficiently investigated in the literature, while
other challenges are coarsely defined.

We separated the study-based grounding of social robot navigation requirements
from algorithmic approaches to resolving them. Requirements are obtained from the
results of user studies, whereas an algorithmic perspective is presented based on technical
papers from the robotics field. Precise requirements grant implementation guidelines and
straightforward evaluation of whether the robot behaves as expected.

3.1. Taxonomy of Requirements for Social Robot Navigation

Classical robot navigation emphasizes generating collision-free motions for a robot to
move to the goal pose as fast as possible. This requires environment sensing for obstacle de-
tection, efficient global pose estimation, and usually map building. Social robot navigation
addresses not only the necessities of classical navigation but also extends its capabilities to
accommodate social interaction.

The main objective of social navigation is to reduce the human discomfort of the navi-
gating robot. Our taxonomy of social robot navigation requirements (Figure 3) involves the
physical safety of humans (Req. 1), the perceived safety of humans (Req. 2), the naturalness
of robot motion (Req. 3), and robots’ compliance with social norms (Req. 4). Specifically,
the perceived safety of humans mostly relies on proxemics theory and the prevention of
scaring a human. In turn, the naturalness of the robot’s motion does not affect the safety
aspects of humans but regards the trustworthiness of the robot. Lastly, abiding by social
conventions focuses on actions and sequences that require rich contextual information to
mitigate human discomfort.

Our general taxonomy is designed to classify the essential concepts of social robot
navigation clearly and unambiguously into one of the investigated groups to create a
generic framework. We expect that the main characteristics selected for the taxonomy will
stay pertinent in the future, with the possibility of incorporating additional attributes.

In the remaining part of this section, the social robot navigation requirements are dis-
cussed, while the algorithmic concepts describing how these socially aware navigation re-
sponsibilities can be embedded into robot control systems are discussed in Sections 4 and 5.

Figure 3. General taxonomy of social robot navigation requirements. The pictures illustrate example
concepts of each taxon. The physical safety of humans is related to collision avoidance, whereas
the requirements for the perceived safety of humans involve, e.g., avoiding occlusion zones such as
corridor corners. Enhancing the naturalness of the robot’s motion links with the avoidance of in-place
rotations. Furthermore, compliance with social norms may be connected with certain accompanying
strategies. Parts of the figure have been generated with the Dall-E AI model.
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3.2. Physical Safety of Humans (Req. 1)

The physical safety of humans is closely related to the collision avoidance capabil-
ities of robots. Social robot navigation inherits this skill from the classical robot naviga-
tion requirements.

Francis et al. [12] denote physical safety as the first principle of social navigation that
intends to protect humans, other robots, and their environments. The physical safety of
humans during navigation is discussed in the newer literature [10,24] but has already been
addressed as a fundamental robotics challenge several decades ago [25].

Nonetheless, the physical safety of other robots or machines is also of great signifi-
cance [17,26–28].

For example, Guzzi et al. [29] conducted a study with multiple small-scale robots
relying only on local sensing and employing proactive planning integrated with the heuris-
tic pedestrian motion model [30]. In real-world experiments, in a crossing scenario, they
observed different frequencies of collisions depending on the sensors’ field of view and
safety margin; hence, the collision count was used as one of the metrics for assessing
the safety margin parameter. Evaluating time-to-collision (TTC) is a proactive method to
anticipate incoming collisions [31,32] that was also embedded in some benchmarks [33].

3.3. Perceived Safety of Humans (Req. 2)

The comfort of humans around robots is crucial; however, the robot’s behavior can
influence that, potentially causing annoyance or stress [12,15]. Human discomfort during
robot navigation often corresponds to a diminished perceived (or psychological) safety
of humans. Perceived safety is the factor that might lead to physical safety violations
(Section 3.2) if not addressed adequately beforehand. Stress-free and comfortable human–
robot interaction is a broad topic [10] influenced by numerous features (Figure 4), including
adherence to spatial distancing [13,34], performing natural movements [5], or preventing
scaring or surprising a human [15]. The remaining part of this section discusses them
in detail.

Req.  2: Perceived safety of humans

Req. 2 .1: Regarding the personal zones of individuals

Req. 2 .2: Avoiding crossing through human groups

Req. 2 .3: Passing speed during unfocused interact ion

Req. 2 .4 : Mot ion legibility during unfocused interact ion

Req. 2 .5: Approach direct ion for a focused interact ion
Req. 2 .5 .1: Individuals
Req. 2 .5 .2: Groups

Req. 2 .6 : Approach speed for a focused interact ion

Req. 2 .7: Occlusion zones avoidance

Figure 4. Taxonomy of social robot navigation requirements related to the perceived safety of humans.

3.3.1. Regarding the Personal Zones of Individuals (Req. 2.1)

Proxemics is the most prominent concept regarding social distancing rules [34–36].
Some fundamental studies connected to proxemics theory confirm that the psychological
comfort of humans is affected by interpersonal distancing [35,37,38]. Butler and Agah [39]
explored the influential factors of how humans perceive a service robot during unfocused
interactions. One of them was the distance factor, which induced feelings of discomfort
or stress in some configurations. A similar study was conducted by Althaus et al. [40],
who validated a navigation system that respects the personal spaces of humans in a real-
world study.



Sensors 2024, 24, 2794 10 of 61

Shapes of a personal zone impact the comfortable passing distances. Hall originally
specified four circular spaces [34], while the personal zone, reserved for friends, is usually
regarded as a no-go zone during unfocused human–robot interaction. Entering the personal
zone is counted as a violation of comfort and safety [9,13,41]. The classification of all
proxemic zones was described in detail in prior surveys, e.g., [13].

The initially suggested circular shape of the personal space [34] might not appropri-
ately capture the features of human perception and motion. Further empirical studies
suggested extending that to an egg shape [42], ellipses [43,44], asymmetrical shapes [45]
(prolonged on the nondominant side), or changing dynamically [46]. In [45], it is also
reported that the size of personal space does not change while circumventing a static
obstacle regardless of walking speed and that the personal space is asymmetrical. The
natural asymmetry of personal spaces is also reported in [47], where authors found out that
if the robot has to approach a human closely, it is preferred to not move behind a human,
so they can see the robot.

Numerous works conducted human-involving experiments to gather empirical data
and to model complex and realistic uses of space [48–52]. Participants of the study in [48]
rated distances between 1.2–2.4 m as the most comfortable for interaction situations.
Experiments by Huettenrauch et al. [53] confirmed that in different spatial configura-
tions, 73–85% of participants found Hall’s personal distance range (0.46–1.22 m) comfort-
able. Torta et al. [54], in their study involving human–robot interaction, examined the
length of comfort zones as specific values of 1.82 m for a sitting person and 1.73 m for a
standing person.

Pacchierotti et al. [49,50] examined discomfort as a function of, e.g., lateral distance
gap in a hallway scenario. The lateral gap was also examined by Yoda and Shiota [55] in
terms of the safety of passing a human by a robot in a hallway scenario. Three types of
encounters were anticipated as test cases for their control algorithm, including a standing,
a walking, and a running person. They approximated human passing characteristics from
real experiments, defining clear formulas to follow in a robot control system. The authors
found that the average distance between the passing humans depends on their relative
speed and varies from 0.57 to 0.76 m.

The authors of [51] found that the discomfort rates differ between intrusions and
extrusions from personal spaces, and distances of approximately 0.85–1.0 m are the most
comfortable for a focused interaction with a stranger. On the other hand, Neggers et al. [52]
conducted a study similar to [50] and compared their results. They obtained similar
outcome and reported that the same function, an inverted Gaussian linking distance and
comfort, can be used to fit the results’ data with only a small comfort amplitude shift
between [50] and [52]. The authors of [52] also attempted to model an intrusion into
personal space as a distance-dependent surface function.

However, there are also diverse exceptions to the mean shape of personal space.
For example, Takayama et al. [56] indicated that during the study, participants with prior
experience with pets or robots required less personal space near robots compared with
people who do not possess such experience. Furthermore, a study presented in [57]
endorses the concept that personal space is dynamic and depends on the situation. Velocity-
dependent personal space shapes were also considered appropriate in [58–60].

Since various studies, even though conducted differently, yield similar results, they
seem to approximate human impressions while interacting with robots and, as a conse-
quence, allow modeling of the real-world phenomena of social distancing. The conclusions
from the mentioned user studies give insights regarding the implementation of personal
space phenomena in robot control systems.

3.3.2. Avoiding Crossing through Human Groups (Req. 2.2)

Recent research revealed that pedestrians tend to travel in groups [61,62]. Human
groups create focused formations (F-formations) [63]—spatial arrangements that are in-
tended to regulate social participation and the protection of the interaction against external
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circumstances [13]. F-formations might be static—consisting of people standing together en-
gaged in a shared activity—or dynamic—consisting of people walking together—and might
have different shapes [13,63].

The necessity of avoiding crossing F-formations arises from the fact that they always
contain an O-space which is the innermost space shared by group members and reserved
for in-group interactions. The discomfort caused by a robot to a group might be assessed
as the robot’s intrusion into the O-space of the F-formation [64,65]. Results of numerous
studies confirm that humans involved in an F-formation keep more space around a group
than the mere addition of single personal spaces [66–68]; thus, individuals stay away
from social groups. Furthermore, research by Rehm et al. [69] found that participants
from high-contact cultures stand closer to a group of people compared with people from
low-contact cultures.

A general guideline for robots navigating through populated environments is to avoid
cutting through social groups [70], but if it is not possible, e.g., in a narrow corridor, they
should politely pass through the O-space [12,71].

3.3.3. Passing Speed during Unfocused Interaction (Req. 2.3)

Rios-Martinez et al. [13] define unfocused interactions as ‘interpersonal communica-
tions resulting solely by virtue of an individual being in another’s presence’. As already
highlighted in Section 3.3.1, excessive or insufficient passing speed proved significant in
terms of discomfort among humans involved in an unfocused interaction with a robot in
numerous experimental studies [39,49,50,60].

The most comprehensive study in that matter was recently proposed by Neggers et al. [60],
who assessed human discomfort with a robot passing or overtaking them at different
speeds at different distances. They found that higher speeds are generally less com-
fortable for humans when a robot moves at smaller distances. The authors claimed the
inverted Gaussians with variable parameters accurately approximate the experimental
results for all combinations of scenarios and speeds. The approximation of their find-
ings with a continuous multivariable function has already been implemented (https:
//github.com/rayvburn/social_nav_utils (accessed on 20 March 2024)) and can be used
for evaluating robot passing speed.

3.3.4. Motion Legibility during Unfocused Interaction (Req. 2.4)

Studies conducted by Pacchierotti et al. [50] examined a mutually dynamic situation
of passing each other. They assessed human discomfort as a function of the lateral distance
gap in a hallway scenario. What they found is that there was no significant impact from
the lateral gap size when a robot signaled its passing intentions early. This notion is often
referred to as motion legibility, which is an intent-expressive way of performing actions [72].
It can be increased by explicit signaling and also enriching behavior, so it can be used as a
cue to the robot intention [73,74].

Lichtenthäler et al. [75] found a significant correlation between the perceived safety
and legibility in their study. Gao and Huang [5] considered a flagship example of motion
legibility as a scenario where a robot quickly moves toward a person, adjusting its trajectory
just before an imminent collision. Despite avoiding direct physical contact, such behavior
is likely to produce notable discomfort by the robot heading direction [76] due to lack of
early signaling.

3.3.5. Approach Direction for a Focused Interaction (Req. 2.5)

Approaching direction to initiate a focused interaction is a broad field of social robot
navigation studies. Rios-Martinez et al. [13] describe focused interaction as ‘occurring
when individuals agree to sustain a single focus of cognitive and visual attention’. In most
experimental cases, focused interaction involves approaching to start a verbal commu-
nication or to hand over the transported goods. The taxonomy in this matter separates
approaching guidelines between individuals and F-formations.

https://github.com/rayvburn/social_nav_utils
https://github.com/rayvburn/social_nav_utils
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Individual Humans (Req. 2.5.1)

In studies conducted by Dautenhahn et al. [77] and Koay et al. [78], participants were
seated and asked to gauge their discomfort levels during the handover of objects by a
robot that approached from various directions. The subjects of the study preferred frontal
approaches over diagonal approaches from the left or right. The contradictory results were
found in a study by Butler and Agah [39], where standing participants preferred an indirect
approach direction.

Multiple studies depict that human preference is to be approached from the front and
within the human field of view [75,79–85]. Walters et al. [79] examined a robot’s behavior
of approaching a human for a fetch-and-carry task. The authors reported that seating
participants found the direct frontal approach uncomfortable. The general preference was
to be approached from either side, with a preference biased slightly to a rightward approach
by the robot. However, the study depicted that a frontal approach is considered acceptable
for standing humans in an open area. Another conclusion derived from the study is that
humans prefer to be approached from within their field of view; hence approaching from
behind should be avoided.

Torta et al. [81] conducted a user study considering different robot approach direc-
tions with the final pose at the boundary of a personal space. Similarly, they found that
experiment subjects (seated) assessed frontal approach directions (up to ±35◦) as comfort-
able, while they perceived farthermost (±70◦) as uncomfortable. Comparable outcomes
ensued from the study in [80]. Unlike the results of the user study performed by Dauten-
hahn et al. [77], in [81], no significant difference was found when the robot approached
from the right side or the left side.

Furthermore, Koay et al. [82] researched robot approach distances and directions to a
seated user for a handover task. The results show that the preferred approach direction is
from either side at a distance of about 0.5 m from the subjects. An interesting fact is that
this distance lies within an intimate space [34], but it was preferred because it prevented
humans from having to reach out farther with their arms or standing up to pick up the
goods from the robot’s tray.

Human Groups (Req. 2.5.2)

Approaching groups of humans requires slightly different strategies. Ball et al. [84]
investigated the comfort levels of seated pairs of people engaged in a shared task when
approached by a robot from eight directions. Participants rated robot approach behavior
for three spatial configurations of seats. Approaches from common (to all subjects involved)
‘front’ directions were found to be more comfortable (group’s average) than from a shared
rear direction. When seated pairs were in a spatial configuration that did not exhibit
the common ‘front’ or ‘rear’ direction, no significant statistical differences were found.
However, another finding of the study is that the presence and location of another person
influence the comfort levels of individuals within the group.

Joosse et al. [85] explored the optimal approach of an engagement-seeking robot
towards groups from three distinct countries, employing Hall’s proxemics model [34].
Their findings indicate that the most suitable approach distance seems to be approximately
0.8–1.0 m from the center of the group.

Karreman et al. [83] investigated techniques for a robot to approach pairs of individuals.
Their findings revealed a preference among people for frontal approaches (regardless of
side), with a dislike for being approached from behind. They also noted that environmental
factors appeared to influence the robot’s approach behavior.

3.3.6. Approach Speed for a Focused Interaction (Req. 2.6)

Robot speeds are one of the factors impacting discomfort when approaching a human.
Since the literature regarding approaching behavior is rich, there are also guidelines to
follow in social robot navigation.
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Butler and Agah [39] assessed the navigation of a mobile base around a stationary
human using various trajectories and equipment resembling the human body. They dis-
covered that speeds ranging from approximately 0.25 to 0.4 m/s were most comfortable,
while speeds exceeding 1 m/s were uncomfortable. They also claimed that there might be
a speed between 0.4 and 1.0 m/s that produces the least discomfort.

Sardar et al. [86] conducted a user study in which a robot approached a standing
individual engaged in another activity. Experiments revealed notable distinctions in
acceptance of invading the participant’s personal space by a robot and a human. In their
study, only two speeds were evaluated, namely 0.4 and 1.0 m/s, while the robot’s faster
speeds were more trustworthy (opposite to human confederates).

In a more recent study, Rossi et al. [87] evaluated speeds of 0.2, 0.6, and 1.0 m/s that
affected the robot’s stopping distance while approaching. They found different human
preferences for stopping distance depending on the activity currently executed by humans.
Sitting participants favored shorter distances while walking subjects longer ones.

3.3.7. Occlusion Zones Avoidance (Req. 2.7)

Occlusion zones are related to areas not reached by the robot’s sensory equipment.
Despite the robot’s most recent assumptions suggesting that these areas were previously
unoccupied, such estimates may be inaccurate. Consequently, robots should avoid travers-
ing near blind corners, as they may fail to detect individuals behind them, and vice versa.
By going around the corner with a wider turn, the robot can explore the occluded space
earlier, making it possible to react to humans sooner [15]. Proactivity in that matter prevents
surprise or panic and generally positively impacts comfort and physical safety.

User studies generally confirm this issue, showing that humans tend to shorten their
paths [88,89] to minimize energy expenditure. Taking shortcuts in public spaces increases
the risk of encounters around blind corners.

Francis et al. [12] suggested that a robot entering a blind corner should communicate
intentions explicitly with voice or flashing lights. However, this seems slightly unnatural,
as even humans avoid shouting in corridors. Enabling audio or flashing lights might also
be annoying for surrounding workers in shopping aisles.

3.4. Naturalness of the Robot Motion (Req. 3)

The naturalness of a robot’s motion can be referred to as emerging robot behaviors
that are not perceived as odd. This is often related to the avoidance of erratic movements
and oscillations Figure 5. Keeping a smooth velocity profile also produces an impression of
trust and legibility among observing humans [75].

Req.  3: Naturalness of the robot 's mot ion

Req. 3 .1: Avoiding errat ic mot ions

Req. 3 .1 .1: Velocity smoothness
Req. 3 .1 .2: Oscillat ions
Req. 3 .1 .3: In-place rotat ions
Req. 3 .1 .4 : Backward mot ions

Req. 3 .2: Modulat ing gaze direct ion

Figure 5. Taxonomy of social robot navigation requirements related to the naturalness of the
robot’s motion.

3.4.1. Avoiding Erratic Motions (Req. 3.1)

Erratic motions involve sudden changes in velocity, making it difficult to anticipate the
next actions. This term is often used to describe the behavior of objects exhibiting chaotic
movement patterns that make the robot look confused.

Erratic motions are often related to the smoothness of a robot’s velocity profile
(Req. 3.1.1). Natural motions favor movements with minimum jerk [90], with mostly
stable linear velocity and the angular velocity of zero, i.e., adjusting orientation only when
necessary [5,15].
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In contrast to smooth velocities, oscillating motions (Req. 3.1.2) involve alternating
forward and backward motions, where the robot effectively does not make any progress.
They may be present in some navigation approaches that rely solely on Artificial Potential
Field [91] or Social Force Model [43].

Additionally, the in-place rotations (Req. 3.1.3) of a robot appear unnatural for human
viewers; hence, it is preferred to avoid trajectories where a turning is performed on one
spot [90,92]. Also, significant backward movements (Req. 3.1.4) should be avoided, as
individuals rarely move in reverse in public areas. Such actions can pose collision risks,
particularly for mobile bases lacking range sensors at the back.

3.4.2. Modulating Gaze Direction (Req. 3.2)

A broad area of research regarding motion naturalness corresponds to modulating the
robot gaze direction. Humanoid robots are typically equipped with a ‘head’, inside which
a camera is located (RGB or RGB-D), e.g., Nao, TIAGo, Pepper, Care-O-bot. Pan and tilt
motions of the head joints can be used to modulate gaze direction.

Gaze direction is considered one of the social signals (cues) and a specific type of
nonverbal communication between a robot and surrounding humans [4]. Among humans,
it is closely related to their perception captured by the notion of Information Process Space [13].
Gaze is a general concept in which measurable aspects can be evaluated, such as fixation
count and length [93], as well as gaze–movement angle [94]. Both provide valuable insights
into human trajectory or behavior prediction [4].

Unfocused Interaction

In a study by Kitazawa and Fujiyama [95], the authors investigated gaze patterns in a
collision avoidance scenario with multiple pedestrians moving along a corridor. Results of
the experiment show that humans pay significantly more attention to the ground surface,
which they explain as a focus on detecting potential dynamic hazards than fixating on
surrounding obstacles. In an experiment conducted by Hayashi et al. [96], they noticed that
participants were more willing to speak to the robot when it modulated its gaze direction.
Kuno et al. [97] also concluded that robot head movement encourages interaction with
museum visitors.

Fiore et al. [98] analyzed human interpretations of social cues in hallway navigation.
They designed a study to examine different proxemics and gaze cues implemented by
rotating the robot sensors. The results depict that the robot’s gaze behavior was not
found to be significant, contrary to the robot’s proxemics behavior that affected participant
impressions about the robot Section 3.3.1. Similarly, a study by May et al. [99] showed
an understanding of robot intentions while conveyed using different cues. It turned out
that the robot was understood better when a mechanical signal was used compared with
using the gaze direction cue. Also, Lynch et al. [100] conducted a study employing a virtual
environment where virtual agents established a mutual gaze with real participants during
path-crossing encounters in a virtual hallway. Subjects of the study found the gaze factor to
not be important for inferring about the paths of the virtual agents.

Different strategies of gaze modulation were studied by Khambhaita et al. [101]. Their
research indicates that the robot’s head behavior of looking at the planned path resulted
in more accurate anticipation of the robot’s motion by humans compared with when the
head was fixed. The authors also found that the robot operating with the head behavior of
alternately looking at the path and glancing at surrounding humans gave the highest social
presence measures among the subjects. Similarly, Lu et al. [102] discussed a strategy of a
robot looking at the detected human followed by looking ahead in 5-second cycles.

Focused Interaction

Research has shown that gaze modulation of the robot’s focused interactions should
be treated differently than unfocused ones. Breazeal et al. [103] explored the impressions
of humans participating in an experiment with a Kismet robot capable of conveying
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intentionality through facial expressions and behavior. They identified the necessity of
gaze direction control for regulating conversation rate, as the robot directs its gaze to a
locus of attention.

In another study, Mutlu et al. [104] implemented a robot gaze behavior based on
previous studies [105,106] and their observations that people use gaze cues to establish and
maintain their conversational partner’s roles as well as their own. The gaze behavior strat-
egy produced turn-yielding signals only for conversation addressees. In their experiment,
they found that using only the gaze cues, the robot manipulated who participated in and
attended to a conversation.

3.5. Compliance with Social Norms (Req. 4)

Navigating humans adhere to diverse social norms influenced by cultural, interac-
tional, environmental, and individual factors such as gender and age. Therefore, the robot’s
compliance with social conventions is also a multifaceted concept (Figure 6), in contrast
to low-level motion conventions, such as approach velocity. The aforementioned factors
shape high-level social conventions involving navigation-based interactions like queuing,
elevator decorum, yielding way to others, and adhering to right-of-way protocols. Robots
considered sociable abide by social conventions. Despite the existence of customary rou-
tines, they are often challenging to model precisely due to their abstract nature, as seen in
the discussion by Barchard et al. [107].

Req. 4 : Compliance with social norms

Req. 4 .1: Follow the accompanying strategy
Req. 4 .1 .1: Guiding
Req. 4 .1 .2: Following
Req. 4 .1 .3: Side-by-side

Req. 4 .2: Avoiding blocking the affordance spaces

Req. 4 .3: Avoiding crossing the act ivity spaces

Req. 4 .4 : Passing on the dom inant  side

Req. 4 .5: Yielding a way to a human at  a crossing

Req. 4 .6 : Standing in line

Req. 4 .7: Obeying elevator et iquet te

Figure 6. Taxonomy of social robot navigation requirements related to the robot’s compliance with
social norms.

The authors of surveys [5,15] exemplify that even if the robot’s movements may appear
natural and unobtrusive (Req. 3), it can violate typical social conventions. For instance,
entering a crowded elevator without allowing occupants to exit first breaches common
expectations, thereby potentially causing discomfort. Also, in different user studies, it
is reported that human discomfort can be caused due to violations of social norms even
if the rules of perceived safety of humans are properly adhered to in the robot naviga-
tion [108,109].

There are no predetermined sets of high-level social conventions, making compliance
a dynamic and context-dependent aspect of robotic behavior [5] that requires a diverse
level of contextual awareness.

The most common and meaningful social conventions examined in the literature are
illustrated below. The complementary discussion attempts to clarify how they should be
addressed in robot control systems.

3.5.1. Follow the Accompanying Strategy (Req. 4.1)

Strategies of executing the task of accompanying humans by the robot are dictated by
the social conventions of how humans navigate in relation to other pedestrians. Customary
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human behaviors entail how robots should adjust their movements based on the relative po-
sition of the accompanying human (or humans), ensuring smooth and natural interactions.

Tracking Humans from the Front (Req. 4.1.1)

Numerous studies reviewed the relative pose that the robot should maintain while
tracking a human from the front. For example, Jung et al. [110] performed a study to
evaluate how often humans look back at the robot that tracks the subject from behind. They
found that participants often looked back as they were curious about the robot, whether
it bumped into them or tracked them well. The authors concluded that tracking from
the front might be more comfortable and designed a robot control strategy that involves
moving 1 m ahead of the tracked human, whose local movement goal is inferred by the
robot online.

On the other hand, Young et al. [111] compared various relative poses for a robot led on
a leash by a participant. The results reveal that having the robot move in front of the person
was the most comfortable approach for joint motion. In another study, Carton et al. [112]
proposed a framework for analyzing human trajectories. Their studies led to the conclusion
that humans plan their navigation trajectories similarly whether they are walking past a
robot or another human.

Person Following (Req. 4.1.2)

Gockley et al. [113] evaluated methods of avoiding rear-end collisions of a robot
following a person. The first approach focuses on direction-following, where the robot
follows the heading of a person, whereas the second method, path-following, relies on
imitating the exact path that a person takes. The participants of the real-world experiments
rated the direction-following robot’s behavior as substantially more human-like. How-
ever, the participants rated that the robot stayed too far away (1.2 ± 0.1 m) from them
while moving.

Following an individual in populated environments is challenging as crowd behavior
often manifests as flows of social groups, with individuals typically following the flow [61].
Studies show that joining a flow with a similar heading direction is more socially acceptable,
resulting in fewer disturbances to surrounding pedestrians [114]. Collision avoidance
techniques for following one person through a populated environment are discussed
in [115,116].

Side by Side (Req. 4.1.3)

The tendency for people to walk side by side when walking together was discussed
by Kahn et al. [117]. In situations with only two individuals walking, they typically adopt
a side-by-side formation, while in crowded conditions or with three or more individuals,
more complex formations such as ‘V’ shapes are observed [118]. Spatial preferences of
humans when being followed by a robot were reviewed in [119]. In the majority of studies,
the robot’s relative position to the person typically remains constant, with any adjustments
being made primarily in response to environmental factors.

Saiki et al. [120] discussed how robots can serve walking people. In their experiments,
people trajectories were recorded to develop a histogram of relative distances. The conclu-
sion is that people’s average distance while walking alongside each other is 0.75 m.

Karunarathne et al. [121] designed a spatial model for side-by-side accompaniment
without explicit communication about the goal of a human. During their study, they found
that the distance maintained in a robot–human pair (1.25 m) was larger than that of the
human pair on average (0.815 m).

3.5.2. Avoiding Blocking the Affordance Spaces (Req. 4.2)

The concept of affordance space relates to the potential activities that the environment
offers to agents [122]. Affordance spaces could be mapped as free regions or banned
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regions in a function of time [123]. They have no specific shape [13] as they depend on
specific actions.

Affordance spaces are specific to the robot environment and can be exemplified by the
area near a painting in a gallery or menu stands in restaurants. In general, an affordance
space can be crossed without causing disturbance to a human (unlike activity spaces in
Section 3.5.3), but blocking an affordance space could be socially not accepted [13]. Also,
for robots with a limited field of view (FOV), it is essential to utilize a predefined map of
affordance spaces.

Raubal and Moratz [124] discussed a robot architecture incorporating a functional
model for affordance-based agents. The crucial concept is to consider the information about
locations of affordance spaces when selecting a coarsely defined (region-based) navigation
goal or a goal on a topological map. The notion of affordance spaces was also discussed in
the context of learning them online [125], as well as in gaining knowledge from the analysis
of human trajectories [126].

3.5.3. Avoiding Crossing the Activity Spaces (Req. 4.3)

The activity space is an affordance space linked to an ongoing action performed
by an agent—a human or another robot [13]. An activity space can be exemplified by
the area between an observer and a painting in a gallery. Once the visitor initiates this
space, the robot is obliged not to cross it [122]. Additionally, the robot’s perception has to
dynamically infer whether a certain agent has initiated an activity space, e.g., by observing
an object [125]. Furthermore, the activity space should be conditionally constrained; for
instance, it should be less restrictive for a shorter robot compared with a taller one that
might fully occlude the painting when crossing through an activity space.

3.5.4. Passing on the Dominant Side (Req. 4.4)

Bitgood and Dukes [89] discussed that people tend to proactively move to the right
half portion of a hallway or a narrow passage, which is tied to cultural traffic rules. Multiple
existing social robot navigation approaches already implemented strategies to follow the
right side of the corridor or to favor passing humans on the right [59,73,116,127]. However,
as Bitgood and Dukes suggest, this might not be a strict rule to follow in crowded spaces,
as some people follow the other side as they have an incoming left-turn destination [89].
This is supported by the study conducted by Neggers et al. [60], who also examined the
effect of the passing side and found that participants reported equal comfort levels for both
sides. Nevertheless, Moussaïd et al. [128] conducted a set of controlled experiments and
observed pedestrians’ preference to perform evasive maneuvers to the right while passing
each other.

3.5.5. Yielding the Way to a Human at Crossings (Req. 4.5)

Moller et al. [3] posed the problem of who goes first at an impasse as one of the social
conventions that are ‘less well-defined’. As stated in a survey by Mirsky et al. [4], the term
‘social navigation’ usually refers to a human-centric perspective; therefore, the robot is
often obliged to yield the way to a human at a crossing.

The user study performed by Lichtenthäler et al. [75] showed that in the crossing
scenario, the participants favored the navigation method in which the robot stopped to
let a person pass. Yielding the way to a human based on the predicted motion was also
investigated in [65].

3.5.6. Standing in Line (Req. 4.6)

Standing in line while forming a queue is one of the most common collective behaviors
of humans. Nakauchi and Simmons [129] modeled how people stand in line by first
collecting empirical data on the matter. Further, they utilized these data to model a range of
behaviors for a robot tasked to get into a queue, wait, and advance in the queue alongside
other individuals awaiting service.
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3.5.7. Obeying Elevator Etiquette (Req. 4.7)

‘Elevator etiquette’ refers to the customary rules of humans entering and exiting a
bounded space through a doorway, specifically letting people leave an elevator before
attempting to enter. These rules are generalizable to numerous closed areas like rooms
and corridors.

Gallo et al. [130] proposed the machine-like approach for the design of robot behavior
policies that effectively accomplish tasks in an indoor elevator-sharing scenario without
being disruptive. Alternatively, Lin et al. [109] discussed the social appropriateness of lining
up for an elevator in the context of deploying a mobile remote presence. Elevator-related
conventions were tackled in a robotic competition—“Take the Elevator Challenge” [131].

3.6. Discussion

We acknowledge that the proposed set of primitive requirements is subject to extension
as the social navigation studies advance and new issues or additional cases are found [12].
Not only have some requirements mentioned above not been sufficiently studied, but there
are also many other human conventions that have not been considered at all in user
studies with robots; hence, there are no clear guidelines on how they can be tackled
properly in social robot navigation. As a consequence, the comprehensive method for
assessing compliance with social norms remains unresolved, in contrast to the agreement
on criteria for evaluating the physical and perceived safety, as well as most cases covered
by naturalness aspects.

An example phenomenon that was not targeted by user studies to the extent that
allows establishing specific principles is facial expressions. Petrak et al. [71] discussed a
side note of their study that enhanced robot facial expressions and gestures could make the
behavior easier to anticipate for the experiment participants. Kruse et al. [15] pointed out
additional navigation conventions, such as giving priority to elderly people at doorways,
asking for permission to pass, and excusing oneself when one has to traverse a personal
zone to reach a goal. Furthermore, Gao and Huang [5] indicated observing right-of-
way at four-way intersections as another navigation-based interaction. On the other
hand, despite that overtaking on the nondominant side has been implemented in some
navigation methods [59,132], there are no clear guidelines that such behavior is common in
environments other than narrow passages.

Nevertheless, implementing all requirements in a single robot control system is an
enormous challenge, while integrating all constraints and norms requires rich contextual
awareness of the robot.

4. Perception

Robot perception plays a substantial role in safe navigation and expands the intelli-
gence of a robot. Social robots must differentiate obstacles from humans to interact in a
discomfort-mitigating manner.

In robotics, various types of exteroreceptors [21] are utilized to perceive the environ-
ment. Tactile sensors provide feedback about physical contact, enabling robots to detect and
respond to touch [40,49,50,133,134]. They are crucial for tasks requiring object recognition
that other sensor types cannot capture. Sonar sensors utilize sound waves to detect the
presence, distance, and velocity of objects, allowing robots to navigate and avoid obstacles
in dynamic environments [39,40,135–137]. Laser range finders use laser beams to measure
distances accurately, aiding in mapping and localization tasks [49,138–143]. RGB cameras
capture images in visible light, enabling robots to recognize objects, navigate environments,
and interpret visual cues [27,40,144]. Finally, RGB-D cameras, equipped with depth sensors,
provide both color and depth information, enhancing object detection and enabling 3D
mapping [140,145–147]. These sensor types play essential roles in robotics research and
development, enabling robots to perceive and interact with their surroundings effectively.

The remainder of this section follows the taxonomy illustrated in Figure 7.
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Figure 7. A taxonomy of perception for social robot navigation.

4.1. Environment Representation

Besides detecting obstacles and tracking humans, robot perception is usually employed
to collect subsequent observations of the surroundings to create an environment model,
among which the most popular are dense, sparse, and dual representations.

A dense representation constitutes a discretized map of the robot environment. Classi-
cal maps contain all types of obstacles embedded into the environment model without a
semantic distinction. The most common planar map types are occupancy grids [148] and
costmaps [149], while octomaps [150] represent occupancies in 3D space. The pioneering
dense model is an occupancy grid [148] that represents the environment as a binary grid
(graph) where each cell is either occupied or free, and all occupied cells are treated as equal
obstacles. Therefore, costmaps were proposed to extend the classical occupancy grids.
Costmaps introduce intermediate states (between free and occupied) of a cell [149] and
constitute a 2D traversability grid in which cells are given a cost of traversal reflecting the
difficulty of navigating the respective area of the environment [151]. This allows robots to
plan paths that optimize not just for avoiding collisions but also for factors like proxemics.
The dense representation of an environment is often solely used in classical robot navigation
approaches [138,150,152].

Sparse environment representations typically refer to representations where only
certain key features or landmarks are represented explicitly, with the rest of the space
left unstructured or minimally represented. Sparse representation usually provides a
concise description of the objects detected in the environment, constituting their semantic
information with geometric attributes [28,153–155]. This method of storing environment
objects also allows, e.g., applying linear algebra formulas to easily predict objects’ motion.

Dual environment representations, combining dense and sparse ones, are commonly
used in social robot navigation [156–159]. While obstacle-filled costmaps are calculated,
robot perception modules simultaneously detect and track humans in the environment.
They provide sparse data about each human, e.g., a pose and velocity, or even spatial
relationships [140,160]. Such information allows for dynamic modeling of personal spaces
of individuals (Req. 2.1) and O-spaces of F-formations (Req. 2.2), which can later be em-
bedded onto layered costmaps [161]. Layered costmaps extend the notion of traditional
costmaps to facilitate separate representations of different contextual cues as spatial con-
straints in the robot environment. The resultant costmap with enriched information is
flattened for motion planning; therefore, classical algorithms can still be used.
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4.2. Human Detection and Tracking

Social robot navigation encompasses the awareness of humans surrounding the robot,
as they must be treated differently from typical obstacles. The awareness arises from
detecting and tracking people by the robot perception system [115] as well as exhibiting
behavior that mitigates the discomfort of nearby humans. Various methods for human
detection and tracking have been proposed in the literature [140,162–167].

Arras et al. [162] proposed a method utilizing a supervised learning technique for
creating a classifier for people detection. Specifically, AdaBoost was applied to train a
classifier from simple features of groups of neighboring beams corresponding to legs in
the LiDAR’s range data. Similarly, Bozorgi et al. [167] focused on LiDAR data filtering to
obtain robust human tracking in cluttered and populated environments. They integrated
Hall’s proxemics model [34] with the global nearest neighbor to improve the accuracy of
the scan-to-track data association of leg detection. Results of their experiments show that
their method outperformed the state-of-the-art detector from [163].

In contrast, Linder et al. [140] proposed a multimodal (LiDAR and RGB-D) people-
tracking framework for mobile platforms in crowded environments. Their pipeline com-
prises different detection methods, multisensor fusion, tracking, and filtering. Triebel et al. [160]
extended the multihypothesis tracker from [168] to detect F-formation arrangements. Both
works were integrated and implemented in the SPENCER robot [140,160].

Redmon et al. [164] framed the object detection problem as a regression problem to
spatially separated bounding boxes and associated class probabilities. They proposed a
generic framework for detecting objects of various classes on 2D images. Alternatively,
Cao et al. [166] proposed an Open-Pose system for human skeleton pose estimation from
RGB images. In another work, Juel et al. [169] presented a multiobject tracking system that
can be adapted to work with any detector and utilize streams from multiple cameras. They
implemented a procedure of projecting RGB-D-based detections to the robot’s base frame
that are later transformed to the global frame using a localization algorithm.

Theodoridou et al. [144] used TinySSD [165] for human detection in their robot with
limited computational resources. TinySSD is a lightweight single-shot detection deep
convolutional neural network for real-time object detection, which only finds people in the
images; hence, the authors of [144] had to perform image and range-based data matching
in their system.

In real-world studies, robot sensors are used to detect and track humans. The survey
by Möller et al. [3] discusses, i.a., the active perception idea. The authors denoted that
active vision systems can influence the input by controlling the camera. As an extension of
active perception, they depict active learning [170], which also influences the input data
but during the training process. This enables the agent to intelligently choose what data
points to exploit next.

To the best of our knowledge, currently, the most comprehensive human perception
stack is SPENCER [140,160], which is available as the open-source software (https://github.
com/spencer-project/spencer_people_tracking (accessed on 20 March 2024)) compatible
with the Robot Operating System (ROS) [171,172].

4.3. Human Trajectory Prediction

In social navigation, classical planning methods, e.g., Artificial Potential Field (APF) [91]
or DWA [135] often exhibit limited efficacy as pedestrians are treated merely as uncoopera-
tive obstacles. This limitation is exemplified by the freezing robot problem [173], where a
mobile robot may become immobilized in a narrow corridor when confronted with a crowd
of people unless it can anticipate the collective collision avoidance actions [174]. Therefore,
predicting human trajectories is one of the fundamental concepts in social robot navigation,
in particular in unfocused human–robot interactions, where explicit communication be-
tween agents is not present. Understanding how agents move can reduce the potential for
conflicts, i.e., sudden encounters in which humans and robots might collide (Req. 1) [4,175].

https://github.com/spencer-project/spencer_people_tracking
https://github.com/spencer-project/spencer_people_tracking


Sensors 2024, 24, 2794 21 of 61

Another particularly important aspect is that humans frequently undergo lengthy occlusion
events; hence, their motion prediction prevents possible unexpected encounters.

In the social robot navigation literature, the prevailing method is the Inverse Rein-
forcement Learning (IRL) [176], which is based on the Markov Decision Process (MDP) [177].
The IRL identifies reward functions based on the observed behavior, enabling robots to
learn from human demonstrations. It can be classified as an offline inference and learning
method [4]. Henry et al. [178] used IRL to learn human motion patterns in simulation to
use them later for socially aware motion planning. Rhinehart et al. [179] extended IRL for
the task of continuously learning human behavior models with first-person-view camera
images. Their Darko algorithm jointly discovers states, transitions, goals, and the reward
function of the underlying MDP model. In another work, Vasquez et al. [180] conducted
experiments to compare the performance of different IRL approaches, namely, Max-margin
IRL [181] and Maximum Entropy IRL [182], which were later applied for robot navigation in
a densely populated environment. Also, Kretzschmar et al. [183] used Maximum Entropy
IRL to deduce the parameters of the human motion model that imitates the learned behav-
iors. IRL seeks to extract the latent reward or cost function from expert demonstrations by
considering the underlying MDP. It learns from entire trajectories, and its computational
expense arises from running RL in an inner loop [184]. Another approach was proposed by
Goldhammer et al. [185], who used an Artificial Neural Network (ANN) with the multilayer
perceptron architecture to learn usual human motion patterns. A different method was
presented by Gao et al. [186], who trained a Reinforced Encoder–Decoder network to predict
possible activities.

Alternatively, Long Short-Term Memory (LSTM) networks are one of the sequential
methods that learn conditional models over time and recursively apply learned transition
functions for inference [187]. Unlike standard feed-forward neural networks, also known
as recurrent neural networks, these networks include feedback connections. Following the
work by Alahi et al. [188], who presented a human trajectory forecasting model based on
LSTM networks, they have become widely popular for this purpose. For example, Furnari
and Farinella [189] utilized LSTM to predict future human actions in a domestic setting.
Chen et al. [190] also created an LSTM-based model predicting socially aware trajectories
learned from a dataset to later integrate this into a robot motion planning scheme. Recurrent
Neural Networks (RNN) were also applied for sequence learning, e.g., by Vemula et al. [191]
who proposed the Social Attention trajectory prediction model that captures the relative
importance of each person when navigating in the crowd, irrespective of their proximity.
Another work by Farha et al. [192] relies on training a Convolutional Neural Network (CNN)
and a RNN to learn future sequences. They proved their method to be suited for long-term
predictions of video sequences.

Another effective data-based method for learning from demonstrations is Generative
Adversarial Imitation Learning (GAIL), applied by, e.g., Tai et al. [184] to learn continuous
actions and desired force toward the target. Huang et al. [193] proposed a model-based
interactive imitation framework combining the advantages of GAIL, interactive RL, and
model-based RL.

On the other hand, Kanda et al. [194] used the Support Vector Machine (SVM) to classify
2 s recordings of human trajectories in a shopping mall into four behavior classes: fast
walking, idle walking, wandering, and stopping. The classification relies on features of
trajectory shapes and velocity. Coarse classification enables forecasting human trajecto-
ries [6]. Similarly, Xiao et al. [195] first pretrained the SVM to group activity classes, then
predicted the trajectories based on those classes, and finally evaluated the system in a
lab environment.

Alternatively, the Social Force Model (SFM) [43] with its numerous modifications [156,158,196],
is also a popular method for human trajectory prediction; however, it requires knowledge
about environmental cues to infer the possible goals of humans. Luber et al. [197] combined
SFM with a tracker based on the Kalman filter to produce a more realistic prediction
model of human motion under the constant velocity assumption. Recently, multiple
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approaches integrating SFM into neural network schemes were proposed. For example,
Yue et al. [198] integrated SFM and a deep neural network in their Neural Social Physics
model with learnable parameters. Gil and Sanfeliu [199] presented Social Force Generative
Adversarial Network (SoFGAN) that uses a GAN and SFM to generate different plausible
people trajectories reducing collisions in a scene.

Numerous works across various application domains depend on kinematic models for
their simplicity and satisfactory performance, particularly in scenarios with minimal motion
uncertainty and short prediction horizons. Among others, Elnagar [200] proposed a method
predicting future poses of dynamic obstacles using a Kalman filter under the assumption
of using a constant acceleration model. Similarly, Lin et al. [201] proposed a forecasting
strategy that employs a bimodal extended Kalman filter to capture the dual nature of
pedestrian behavior—either moving or remaining stationary. Also, Kim et al. [202] used a
combination of ensemble Kalman filters and a maximum-likelihood estimation algorithm
for human trajectory prediction.

In applications where performance is crucial, the constant velocity model, assuming
piecewise constant velocity with white noise acceleration, can be applied. Despite its
simplicity, it is commonly chosen as an ad hoc method for motion prediction in numerous
approaches [139,203–208] having lightweight and straightforward implementation and
yielding satisfactory results with high-frequency updates. Recently, Schöller et al. [209] dis-
cussed that the constant velocity model might outperform state-of-the-art neural methods
in some scenarios.

Diverse methods were also evaluated for usage in human trajectory prediction, for
example, belief distribution maps [210] that consider the obstacle situation in the robot’s
environment, multigoal Interacting Gaussian Processes (mgIGP) [211] that can reason multiple
goals of a human for cooperative navigation in dense crowds, or the Human Motion Behavior
Model (HMBM) [212], allowing a robot to perform human-like decisions in various scenarios.
Another method was proposed by Ferrer and Sanfeliu [213], who presented a geometric-
based long-term Bayesian Human Motion Intentionality Predictor using a naive Bayes classifier
that only requires training to obtain the set of salient destinations that configure a scene.

Our survey discusses the most common methods used in robotic applications, but vari-
ous other methods for human trajectory prediction have evolved over the years.
Rudenko et al. [187] presented a thorough review of the state-of-the-art human motion
prediction methods, where they also discussed approaches that account for map informa-
tion or environmental cues for predictions. An appropriate forecasting method has to be
selected for a specific application based on multiple criteria, e.g., computational resources,
prediction horizon, and detection uncertainty.

4.4. Contextual Awareness

A robot is perceived as intelligent if it utilizes the contextual information in its impera-
tive [16,214]. The proper socially aware activity of a robot performing a single task might
differ depending on the situation defined by a contextual arrangement. It is connected to
adjusting the robot’s behavior, knowing what environment it is in (gallery or shopping
mall), what task it performs (transporting a glass full of hot tea or packed goods), whom
it interacts with (young person or elderly), and what social norms are expected in the
environment (may differ between cultures).

Francis et al. [12], in their survey, identified the following forms of context: cul-
tural context [26,34,85,215–217], environmental context, individuals diversity, task context,
and interpersonal context, but their literature review in this area is narrow. The notion of
context is usually regarded in the deliberative layer of the robot’s planning and embedded
as spatial or spatiotemporal constraints in the motion planning [17,218,219].

4.4.1. Environmental Context

The environmental context is constituted by various characteristics of the robot’s
surroundings. This information is particularly important for robots that act in different
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types of rooms, e.g., corridors and libraries of the university. While the robot might be
sociable and lively in corridors, it is not necessarily appropriate to distract students in the
library, where the robot should move slowly and be quiet. Therefore, researchers investigate
different environmental concepts to embed them into robot navigation schemes.

Banisetty et al. [220] proposed a model-based context classifier integrated with a
high-level decision-making system for socially aware navigation. Their CNN model distin-
guishes between different environmental contexts such as an art gallery, hallway, vending
machine, and others. Additionally, based on the LiDAR observations and using the SVM,
they classified social contexts, namely people forming a queue and F-formations. In contin-
uation of this article, Salek Shahrezaie et al. [221] introduced classification and detection
information into a knowledge base they queried to extract applicable social rules associated
with the context at hand. This approach has been further extended in [142] for using
environmental context, object information, and more realistic interaction rules for complex
social spaces. On the other hand, Jia et al. [222] proposed a deep-learning-based method
for detecting hazardous objects in the environment of an autonomous cleaning robot to
maintain safe distances from them on the motion planning level. Recognizing human
activity spaces is a part of environmental context awareness, as presented in the work by
Vega et al. [223], who exploited the detection of specific objects for this purpose.

A leading approach to enable the robot’s contextual awareness is semantic map-
ping [224–226]. For example, Zhang et al. [227] used an object semantic grid map along
with a topological map for the automatic selection of roughly defined navigation goals in
a multiroom scenario. Alternatively, Núñez et al. [228] proposed a navigation paradigm
where the semantic knowledge of the robot’s surroundings and different social rules are
used in conjunction with the geometric representation of the environment’s semantic solu-
tions. Their approach aims to integrate semantic knowledge and geometrical information.
A promising method for the interactive building of semantic maps for robot navigation is
illustrated in [229].

4.4.2. Interpersonal Context

Interpersonal cues are mainly related to social relationships between tracked humans
in the robot environment. This knowledge can be embedded in control systems to enhance
robot navigation skills. For example, Li et al. [230] proposed a dual-glance CNN-based
model for visual recognition of social relationships. The first glance fixates on the person of
interest, and the second glance deploys an attention mechanism to exploit contextual cues.
Lu et al. [161] proposed an approach for context-sensitive navigation, mainly focusing on
human-aware robot navigation and embedded spatial constraints into environment models
in the form of costmaps.

The algorithm by Luber and Arras [168] was extended in [160] for detecting and
learning sociospatial relations, which are used for creating a social network graph to track
groups of humans. Patompak et al. [231] developed a Reinforcement Learning method of
estimating a social interaction model for assisting the navigation algorithm regarding
social relations between humans in the robot’s environment model. Similarly, Okal and
Arras [232] employed Bayesian Inverse Reinforcement Learning for learning the cost function
of traversing in the area with a group of humans.

Haarslev et al. [233] introduced contextual information into robot motion planning,
namely F-formation spatial constraints in the costmaps used for planning. The F-formation
arrangement is inferred from participants’ speed, line of sight, and potential focus points.
Similarly, Schwörer et al. [234] detected people and their interactions to create spatial
constraints in the environment model used for motion planning.

4.4.3. Diversity Context

Diversity-related contexts facilitate leveraging human diversity in social robot naviga-
tion. Researchers presented multiple studies regarding gender [235–237], age [235,236,238]
personality [136,239], and diverse human groups representations [240]. All these traits
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affect how people interact with and perceive robots. Furthermore, Bera et al. [26] attempted
to classify the personality of each pedestrian in the crowd to differentiate the sizes of
personal spaces of individuals. Subsequently, the emotional state of the pedestrians was
also inferred and embedded for socially aware navigation [27,241,242].

4.4.4. Task Context

A robot’s behavior differs based on a task to perform. If the robot is delegated to
execute a task of a high priority, e.g., urgent transportation in a hospital, it will interact with
humans only in an unfocused manner committing to collision avoidance and respecting per-
sonal spaces. However, if the robot’s task is to start sociably interacting with customers in a
shopping mall to present products to them, it has to mildly start focused interactions with
pedestrians. Therefore, the objectives of robot navigation differ between tasks, affecting the
socially correct behavior scheme that should be followed.

Popular tasks delegated to social and assistive robots are transportation [79], guid-
ing [160,243], or accompanying [157,244]. For example, accompanying objectives differ
even between the tasks of attending individuals [244,245] and groups [157,246] or even be-
tween different strategies for accompanying individuals (Section 3.5.1). Similarly, a guiding
robot, e.g., proposed in [243], mainly focuses on leader–follower tasks, but once it finishes
the guided tour, it may drop the constraints specific to the guiding behavior (speed, etc.)
and switch to socially aware collision avoidance and back to the reception area.

A significant challenge lies in integrating the contradictory objectives of treating hu-
mans as social obstacles during tasks requiring only unfocused interactions and regarding
them as interaction partners when needed. As a result, methods introducing human aware-
ness and social acceptance must be carefully selected to avoid interfering with contradictory
modes of operation, as some constraints may need to be disabled in focused interaction
mode while enabled in unfocused interaction mode [23].

5. Motion Planning

Robots using socially aware navigation planners are perceived to be more socially
intelligent than those using traditional navigation planners as studied in [247]. This section
discusses various navigation approaches and methods of incorporating social awareness
into robot control systems.

The motion planning module is crucial for safely guiding the robot through dynamic
environments. Motion planning for mobile robots is understood as a pose control scheme
aimed at moving the robot from its initial pose to the target pose while considering the
kinematic and dynamic (kinodynamic) constraints of the mobile base.

From the perspective of motion planning, requirements for social awareness presented
in Section 3 might entail the necessity of specific enhancements compared with classical
robot navigation. Namely, those can be classified into three specific groups. Firstly, modi-
fications of the intermediate trajectory to the fixed goal. This might involve adjustments
originating from respecting personal spaces (Req. 2.1), O-spaces of F-formations (Req. 2.2),
and modulating speed (Req. 2.3) to mitigate the discomfort of surrounding humans. Sec-
ondly, the extended selection of the final poses for navigation tasks with coarsely defined
goals. In particular, selecting such a pose that, e.g., does not block any affordance space
(Req. 4.2), minimizes the discomfort of the approach to a human (Req. 2.5.1), or provides
joining a queue in a socially compliant manner (Req. 4.6). Thirdly, dynamically inferring
and following virtual goals in real time depending on the poses of cooperating humans,
which enables efficient execution of accompanying tasks (Req. 4.1).

The predominant motion planning architecture for mobile robots relies on hierarchical
planning with two asynchronously running modules, specifically, a global path planner
and a local trajectory planner [138,248]. Global path planning involves finding a feasible
path from a start configuration to a goal configuration while avoiding environmental
obstacles. Algorithms generating global paths typically operate in a configuration space
and consider the entire environment [249]. In contrast, local trajectory planning aims to
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generate trajectories for the robot to follow within a short time horizon that navigate the
robot safely and efficiently through the environment while reacting to dynamic obstacles
and perturbations. Algorithms producing local trajectories typically operate in the robot’s
control space or velocity space and consider immediate sensor feedback and environmental
information [138,152]. Usually, local trajectory planners operate at a higher frequency than
global path planners to adjust the robot’s motion in real time, accounting for dynamic
changes in the environment and ensuring safe and efficient navigation.

Our taxonomy of the algorithmic perspective of social robot navigation follows the
hierarchical motion planning scheme, differentiating approaches for global path planning
and local trajectory planning Figure 8.
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Figure 8. A taxonomy of motion planning for social robot navigation.

Numerous surveys regarding social robot navigation thoroughly discussed motion
planning [13–15]. However, our review aims not only to investigate the variety of methods
of implementing human awareness in robot control systems but also to classify those
approaches according to the requirements they fulfill. The classification of requirements
regarded in objectives of different navigation algorithms is presented in Section 5.3.

5.1. Global Path Planning

In the context of global path planning for social navigation for surface robots, various
methodologies are employed for the research. Recently, multiple surveys regarding path
planning for mobile robots have been proposed [250–254]. State-of-the-art techniques can
be classified into distinct groups. These include graph-based methods, potential field
methods, roadmap methods, and sampling-based methods. Each class of approaches offers
unique advantages and challenges, contributing to the broader landscape of mobile robot
path planning.

Although in classical path-planning metaheuristic methods like genetic algorithms or
particle swarm optimization are commonly discussed [255], to the best of our knowledge,
they were not applied for human-aware navigation.

5.1.1. Graph-Based Methods

Graph-based methods for path finding fall into the category of approximate cell
decomposition approach in which cells of predefined shape (usually rectangles) do not
exactly cover the free space (in contrast to exact cell decomposition), but the cell connectivity
in a graph is encoded [256].
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Algorithms

The earliest graph (or grid) search methods in the context of computer science and
algorithmic development can be traced back to the 1950s. One significant development
was Dijkstra’s algorithm [257], which laid the foundation for many subsequent graph
search and pathfinding algorithms. This algorithm was primarily focused on finding the
shortest path in a graph. Later, Hart et al. [258] presented the A∗ algorithm, which builds
upon Dijkstra’s algorithm by incorporating heuristic information to guide the search more
efficiently, making it particularly useful for pathfinding in large graphs. The heuristic
utilizes the distance between the current processing node and the goal node on the solution
space. Globally shortest paths are obtained using both heuristic estimates and actual
costs in a weighted graph. Other variants of the A∗ planning algorithm include D∗ [259],
Focused D∗ [260], LPA∗ [261], D∗ Lite [262], E∗ [263], Field D∗ [151], and Theta∗ [264]. A brief
description of each variant is depicted below.

Graph-based planners usually require replanning if the underlying environment
model changes. This drawback is addressed by the D∗ [259], which is an incremental
search algorithm for finding the shortest paths designated particularly for graphs that may
dynamically change once the search begins as it possesses the procedure for updating paths
if changes occur. Focused D∗ [260] adapts the D∗ to prioritize the exploration of areas closer
to the goal. Lifelong Planning A∗ (LPA∗) [261] is an incremental heuristic search algorithm
that continuously improves its estimates of the shortest path while adapting to changes
in the environment, providing efficient planning in dynamic environments. D∗ Lite [262]
is a simplified version of the D∗ algorithm, focusing on efficient replanning for real-time
performance in static or partially unknown environments. The wavefront expansion
procedure (known as NF1 in [256]) is a simple global planner that expands the search to all
adjacent nodes until the start node and goal node are covered. It was employed in [212] for
path planning in human-populated environments. Another method is E∗ [263] algorithm
capable of dynamic replanning and user-configurable path cost interpolation. It calculates
a navigation function as a sampling of an underlying smooth goal distance that takes into
account a continuous notion of risk that can be controlled in a fine-grained manner.

The authors of Field D∗ [151] addressed the problem of using discrete state transitions
that constrain an agent’s motion to a narrow set of possible headings, which often occurs in
classical grid-based path planners. Instead, they proposed the linear interpolation approach
during planning to produce paths with a continuous range of headings. Alternatively,
the Theta∗ [264] method propagates information along grid edges (to achieve a short
runtime) but without constraining the paths to the grid edges. Instead, any-angle paths
are found by performing line-of-sight checks between nodes. When a direct line of sight
is feasible between two adjacent nodes without intersecting obstacles, Theta∗ considers
the straight-line path, reducing the number of nodes expanded, compared with A∗. Also,
Theta∗ retains the optimality guarantees of A∗ while producing smoother, more natural
paths, especially in environments with narrow passages or obstacles.

Notably, Dijkstra’s algorithm does not account for the robot’s kinodynamic constraints,
which may generate paths not admissible to robots with, e.g., Ackermann kinematics.
However, Dolgov et al. [265] addressed this issue in their Hybrid A∗ algorithm that extends
the traditional A∗ to handle continuous state spaces by discretizing them into a grid. It
incorporates vehicle kinematic constraints, such as maximum velocity and steering angle,
to generate feasible paths for vehicles navigating through complex environments. Recently,
Macenski et al. [249] presented a search-based planning framework with multiple algorithm
implementations, including the Cost-Aware Hybrid-A* planner that provides feasible paths
using a Dubins or Reeds–Shepp motion model constrained by a minimum turning radius
for Ackermann vehicles.

Human-Aware Constraints

The classical path-finding algorithms focus on calculating the shortest, collision-free
path and do not explicitly regard humans in the environment; hence, they also do not
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consider social constraints. However, in graph-based methods, the planning procedure
is separated from the definition of planning constraints incorporated into the environ-
ment representation [206]. Hence, researchers started to modify the environment models,
e.g., costmaps, to embed human-aware constraints into the motion planning scheme while
employing classical path-finding algorithms. Most approaches that extend environment
representations focus on introducing spatial or spatiotemporal soft constraints representing
proxemics [266] or social conventions [59,161].

For example, Sisbot et al. [266] presented a Human Aware Motion Planner (HAMP)
that exploits algorithms for reasoning on humans’ positions, fields of view, and postures.
They integrated different social constraints into their highly configurable planning scheme,
including Gaussian-modeled personal spaces or hidden zones behind obstacles (visibility
constraints). Kirby et al. [59] proposed a Constraint-Optimizing Method for Person-Acceptable
NavigatION (COMPANION) framework in which, at the global path-planning level, multi-
ple human social conventions, such as personal spaces and tending to one side of hallways,
are represented as constraints on the robot’s navigation.

Lu et al. [73] presented a costmap-based system capable of creating more efficient
corridor navigation behaviors by manipulating existing navigation algorithms and intro-
ducing social cues. They extended robot environment models with socially aware spatial
constraints to navigate in a more human-friendly manner. Kollmitz et al. [206] presented
a planning-based approach that uses predicted human trajectories and a social cost func-
tion to plan collision-free paths taking human comfort into account. They employed
search-based, time-dependent path planning that accounts for the kinematic and dynamic
constraints of a robot. The authors also exploited the layered costmap architecture [161]
to create multiple layers related to human proxemics according to their prediction model.
Okal et al. [232] proposed a method that uses IRL to learn features of a populated envi-
ronment to model socially normative behaviors [180]. Once the reward function for a
navigation task is obtained, it is used to define spatial costs of social normativeness that
can be injected into a costmap used by a motion planner (either global or local). Some
works also embedded dynamically recalculated personal zones into costmaps to account
for dynamics of individual humans [59,244,267,268] or groups [269].

5.1.2. Potential Field Methods

Purely graph-based planners have limitations originating from their discontinuous
representation of configuration space. On the other hand, potential field methods offer
smoother path generation and can be directly related to sensor data, yet they suffer from
the presence of local minima [263]. Path planning utilizing a potential field creates a
gradient across the robot’s map that directs the robot to the goal position from multiple
prior positions [256].

One of the pioneering works that introduced the concept of Artificial Potential Field
(APF) for obstacle avoidance and navigation in robotics is [91]. The potential field methods
treat the robot as a point in the configuration space under the influence of an APF. The goal,
acting as a minimum in this space, exerts an attractive force on the robot, while obstacles
act as repulsive forces. The superposition of all forces is applied to the robot. Such an
APF smoothly guides the robot toward the goal while simultaneously avoiding known
obstacles, just as a ball would roll downhill [270].

Later, Borenstein and Koren [271] developed a Virtual Force Field method that relies
on two basic concepts: certainty grids for obstacle representation and potential fields for
navigation. Their method enables continuous motion of the robot without stopping in front
of obstacles with a speed of 0.78 m/s. However, the approach was abandoned due to the
method’s instability and inability to pass through narrow passages [270]. The extended
potential field method has been proposed by Khatib and Chatila [272] with two additions to
the basic potential field, in particular, the rotation potential field and the task potential field.
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More recently, Iizuka et al. [273] proposed a modified APF approach resistant to the
local minimum issue in multiobstacle environments, while Weerakoon et al. [274] presented
a deadlock-free APF-based path-planning algorithm. Similarly, Azzabi and Nouri [275]
developed an approach that addresses the common issues of the original APF, namely
local minima and the goal being nonreachable with obstacles nearby. Szczepanski [276]
also proposed a path-planning method for mobile robots that uses the attractive potential
for goal reaching as the original APF, but the repulsive potential is replaced by a general
obstacle potential, equal to repulsive potential, vortex potential, or their superposition.

5.1.3. Roadmap Methods

Roadmap strategies capture the connectivity of the robot’s unobstructed space through
a network of 1D curves or lines, denoted as roadmaps. Subsequently, the roadmap serves
as a network of path segments for planning robot movement. Consequently, path planning
is reduced to connecting the robot’s initial and goal positions to the road network, followed
by identifying a sequence of routes from the initial robot position to its destination [270].
The most common approaches falling into the roadmap-based category are visibility graphs
and Voronoi diagrams.

The visibility graph method is one of the earliest path-planning methods [256]. For
a polygonal configuration space, the graph consists of edges joining all pairs of vertices
that can see each other (including both the initial and goal positions as vertices as well).
The unobstructed straight lines (roads) joining those vertices are the shortest distances
between them, guaranteeing optimality in terms of the length of the solution path. The main
caveat of the visibility graph is that the solution paths tend to move the robot as close as
possible to obstacles on the way to the goal [270]. In contrast, the Voronoi diagram is an
approach that maximizes the distance between the robot and obstacles in the map [270].

Our research regarding the applications of classical roadmap methods shows that they
are rarely used in social robot navigation as they only consider binary environment models
(obstacle or free space); hence, human awareness cannot be properly tackled. However,
Voronoi diagrams might be used as reference path-planning approaches [204,277–279] for
capturing the skeleton of the environment along with human-aware trajectory planners as
in [132].

5.1.4. Sampling-Based Methods

The main idea of sampling-based motion planning is to avoid the explicit construction
of obstacle regions but instead conduct a search that probes the configuration space with a
sampling scheme [280]. The most prevalent methods falling into the category of sampling-
based path planners are the Probabilistic Roadmap (PRM) [281] and the Rapidly exploring
Random Trees (RRT) [282], both being probabilistically complete [280].

Algorithms

PRM [281] constructs a roadmap, a graph representation of the configuration space,
by sampling random points and connecting them with collision-free paths. It focuses on
building a network of feasible paths between different regions of the configuration space
and is effective for multiquery scenarios or environments with complex obstacles.

RRT [282] builds a tree structure by iteratively selecting random points in the config-
uration space and extending the tree towards those points. It explores the configuration
space rapidly and is particularly effective for high-dimensional spaces. Different vari-
ants of RRT have been developed, including RRT-Connect [283], RRT∗ [284] or dual-tree
version—DT-RRT [285].

Both PRM and RRT have different characteristics. PRM requires a two-phase process:
first, constructing the roadmap offline and then querying the roadmap online to find a
path between a start and goal configuration. In contrast, RRT performs exploration and
path planning simultaneously, gradually growing towards the goal configuration during
the search process. PRM is a well-suited method for scenarios where the environment is
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relatively static and the planner has sufficient computational resources to construct the
roadmap offline, while RRT is often favored for real-time or dynamic environments, as it
can adaptively explore the space and find feasible paths in a run-time. A notable feature of
sampling-based methods is that these planners can regard the kinodynamic limits of the
robot to generate feasible and safe motion plans in continuous state and action spaces.

Human-Aware Constraints

Some works focus on including constraints related to social conventions in sampling-
based path-planning schemes. For example, Svenstrup et al. [286] modified the original
RRT for navigation in human environments assuming access to full state information.
Their modifications include adding the potential model designed for moving humans,
so the customized RRT planner plans with a potential field representation of the world.
Similarly, Rios-Martinez et al. [287] proposed Risk-RRT for global path planning. Their
algorithm includes the knowledge of the personal spaces of pedestrians and the possible
interactions between the F-formation’s participants. Risk-RRT penalizes the robot’s cross-
ing through personal spaces and O-spaces of F-formations by assigning additional costs
to those areas. Furthermore, Shrestha et al. [288] used RRT for global path planning in
the environment with a stationary human. Vega et al. [223] attempted to integrate prox-
emics theory with their path planner incorporating PRM [289] and RRT [282] methods
by defining personal spaces and activity spaces as forbidden areas for robot navigation.
Alternatively, Pérez-Higueras et al. [290] developed a cost function for the RRT-based path
planner employing Inverse Reinforcement Learning from demonstrations.

5.2. Local Trajectory Planning

The most common architecture for robot motion planning separates global path plan-
ning and local trajectory planning [138,248]. This separation of concerns allows for modular
and flexible robotic systems, where different strategies can be applied at each level of ab-
straction to address specific requirements.

Local trajectory planners generate trajectories for the robot to follow within a short
time horizon. Short time horizons allow operating with a higher frequency to instantly
react to environmental changes and possible encounters. Trajectory planners operate in
the robot’s control space or velocity space and regard not only spatial aspects of motion
planning but also temporal ones. In the following part of this survey, various trajectory
planning methods and approaches to incorporating human awareness into robot behavior
are reviewed.

5.2.1. Sampling-Based Methods

Besides global path planning Section 5.1.4, sampling-based methods can also be applied
to local trajectory planning. An extended RRT with a notion of time included—spatiotemporal
RRT—was proposed by Sakahara et al. [204]. Their method integrates ideas of the RRT and
the Voronoi diagram. Although motion prediction of dynamic objects is regarded, they
do not explicitly capture social conventions. Nishitani et al. [205] extended this approach,
presenting a human-centered X–Y–T space motion planning method. The authors included
human personal space and directional area as well as the robot’s dynamic constraints in
the planning scheme.

Pérez-Higueras et al. pointed out in [291] the future work perspective of using RRT as
a local trajectory planner due to real-time capability, but their further work leaned toward
learning-based approaches.

5.2.2. Fuzzy Inference Methods

Fuzzy inference systems (FIS) form another well-established paradigm for control
systems, specifically useful to model imprecise or non-numerical information and decisions.
FIS are applied for traditional robot navigation [292–296] and social robot navigation
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tasks [297–300]. They can also be integrated with other approaches, e.g., Q-learning [301] or
Reinforcement Learning [302].

An example of the FIS method adapted for human-aware robot navigation is the
work by Palm et al. [297], who derived fuzzy control rules for the robot’s actions based
on expected human movements relative to the robot. They investigated the movement of
humans in a shared space with a robot to determine lane preference and agent classification
for collision avoidance. Another method was proposed by Obo and Yasuda [298], who
developed a framework for robot navigation in crowds employing multiobjective behavior
coordination for collision avoidance. Rifqi et al. [299] used FIS to dynamically change
parameters of the SFM, which has been applied for controlling the movement of a healthcare
robot. Rules that they designed switch the robot’s motion behavior based on its distance
to human proxemics zones. Recently, Sampathkumar et al. [300] proposed a framework
integrating an Artificial Potential Field and FIS for navigation that prioritizes safety and
human comfort.

5.2.3. Force-Based Methods

Force-based approaches model the motion of individuals (humans or robots) in the
environment considering the forces acting on them. These include a force attracting the
agent to the goal and forces arising from interactions with other agents and environment
objects such as obstacles. Typically, they are purely reactive methods that decide the next
movement based on the environment arrangement at hand, i.e., obstacles and human
locations. The resultant force can be directly transformed into a velocity command for a
robot. The predominant methodologies within this category are Elastic Bands [303] and
Social Force Model [43].

Elastic Bands [303] is a method that aims to close the gap between global path planning
and reactive control, as it performs local path deformation based on internal and external
forces. Internal forces contract the path, favoring the shortest path to the goal, while
external forces repel the path from obstacles. The authors of the algorithm proposed a
reference implementation based on bubbles that represent discrete path points and free
space. Later, this method was extended by Brock et al. [304] mainly for motion generation
in manipulation tasks performed in human environments. More recently, a socially aware
specialization focusing on improving motion legibility of the Elastic Bands local trajectory
planner has been developed for the SPENCER project [160]. The notion of human awareness
has also been implemented into the Elastic Bands approach by Vega et al. [223].

On the other hand, Social Force Model (SFM) [43] has been one of the prevalent meth-
ods for crowd behavior simulation [305,306], human trajectory prediction (Section 4.3),
and human-like motion generation in robotics. It constitutes a model inspired by fluid
dynamics that illustrates an agent’s motion using a set of attractive and repulsive forces. Its
flexible formulation allows for capturing additional models of social phenomena to obtain
more realistic motion behaviors. Therefore, the original approach has undergone multiple
extensions and over the years numerous successful real-world robotic applications have
emerged [9,156–158,245,307,308].

Researchers expanded the basic SFM with explicit collision prediction [196,309], mak-
ing the behavior more proactive and anticipatory. Kivrak et al. [158] also introduced
collision prediction into SFM-based model which they integrated with a robot operating
in an unknown environment with no a priori map. Similarly, Shiomi et al. [9] evaluated
SFM with collision prediction [196] in a real-world shopping mall. Collective motion
conventions were also integrated into the model formulation [310], as well as group for-
mations [61,311,312]. Some works also focused on improving the realism of generated
trajectories [313].

Truong and Ngo [307] proposed a proactive social motion model for safe and socially
aware navigation in crowded environments. Their formulation takes into account the
socio-spatiotemporal characteristics of humans, including human body pose, field of view,
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hand poses, and social interactions, which consist of human–object interaction and human
group interaction.

Furthermore, Ferrer et al. [308] presented another model that extends the original for-
mulation to effectively accompany a person. They implemented human behavior prediction
to estimate the destination of the person the robot is walking with. Additionally, the authors
exploited the parameterization of the SFM and applied a method of interactively learning
the parameters of the model using multimodal human feedback.

Moreover, Repiso et al. presented studies regarding the robot accompanying single
humans [245] and human groups [157]. In [245], they implemented three stages of focused
interaction between the robot and a human: accompanying, approaching, and positioning.
They inferred the human’s final destination (among all destinations marked in the envi-
ronment beforehand) and predicted the human motion with the SFM. The SFM was also
employed for the robot’s local trajectory planning, and spatial cost functions were used for
trajectory scoring. In the following work, Repiso et al. [157] proposed an extended method
that allows the robot to break the ideal side-by-side formation to avoid other people and
obstacles, implementing the human-aware robot navigation strategy for accompanying
groups of multiple humans.

Alternatively, Ferrer and Sanfeliu [156] developed a SFM-based Anticipative Kinody-
namic Planning method for unfocused interactions between a robot and humans. They
implemented a scalarised multiobjective cost function to choose the best trajectory amid the
generated ones. On the other hand, We et al. [314] proposed a pedestrian’s heterogeneity-
based social force model that captures the physiology and psychology attributes of pedes-
trians introducing physique and mentality coefficients into the SFM. Recently, SFM has
also been involved in approaches integrating machine learning techniques with motion
models [199,315].

5.2.4. Velocity Obstacles Methods

The Velocity Obstacle (VO) [316] concept is a foundation for a broad class of proactive
methods for a robot’s local navigation. VO methods are based on a persistent effort to keep
a robot collision-free, requiring only: a radius, a position, and a speed of each robot [317].
They generate avoidance maneuvers by selecting the robot velocities outside the collision
cone, which consists of velocities that in the future would result in close encounters with
obstacles moving at known velocities. A practical application of VO was introduced
by Lin et al. [318]. They adapted the concept by assuming that each agent is a decision-
making entity capable of selecting the appropriate velocity that responds to the other agents’
movements and replanning its path. Moreover, an extension of VO, called Reciprocal Velocity
Obstacle (RVO), was developed by van den Berg et al. [319]. They exploited the fact that
humans in the environment cooperate [320] and the approach guarantees to generate safe
and oscillation-free motions under an assumption that all dynamic agents make a similar
collision-avoidance reasoning [14]. Furthermore, a related method called Optimal Reciprocal
Collision Avoidance (ORCA) [321] does not require implicit communication between agents
and optimizes global objectives when finding collision-free velocities.

VO-based methods are rarely enhanced with socially aware concepts. Martinez-
Baselga et al. [143] presented a Strategy-based Dynamic Object Velocity Space trajectory planner
that explicitly regards the presence of dynamic obstacles but does not take any social
conventions into account. Similarly, Zhang et al. [139] proposed a local trajectory planning
scheme using ORCA that includes uncertainties of states of surrounding humans when
selecting collision-free velocities.

5.2.5. Optimization-Based Methods

Another class of approaches for human-aware trajectory planning formulates the
problem as an optimization task, which relies on finding control inputs that optimize
(minimize or maximize) an objective function while satisfying kinodynamic and collision-
free motion constraints. These hard constraints, inherited from classical robot navigation,
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restrict control inputs to those feasible for the specific mobile base at a given time and ensure
the absence of collisions within the prediction horizon. The presence of collisions with
the surrounding objects is assessed using the environment model and forward simulation
of applying the computed controls. In contrast, soft constraints are embedded in the
optimized objective function that takes into account, e.g., intrusions into the personal
spaces of humans.

Most state-of-the-art methods planning optimal socially aware local trajectories extend
the classical robot navigation algorithms, namely Dynamic Window Approach (DWA) [135]
and Timed Elastic Bands (TEB) [153].

DWA-Based Methods

The DWA is one of the most common algorithms for collision avoidance. The main
characteristic of the approach is that commands, controlling the translational and rotational
velocities of the robot, are searched directly in the space of velocities. The search space is
reduced to velocity pairs fulfilling kinodynamic constraints. Typically, for each velocity
pair, the effect of applying those controls to the robot is simulated over a short time horizon,
e.g., 1.5–3.0 s, which produces multiple circular trajectories. The optimal trajectory is the one
maximizing the objective function consisting of three weighted components. In particular,
the components evaluate the progress toward the goal, the distance to the closest obstacle,
and the forward velocity of the robot. Numerous modifications of DWA have been proposed,
as the objective function is expandable [322,323]. However, the method does not explicitly
capture the dynamics of the obstacles taking into account only their current position.

Another method, Trajectory Rollout [152] is similar to DWA but exhibits one essential
difference—in each forward simulation step, a set of feasible velocity pairs is updated
as the kinematic constraints are recalculated according to the current velocity and dy-
namic constraints.

Constraints related to social conventions are usually embedded in the environment rep-
resentation used by trajectory planners [210] or by extending the objective function [212,324].
For example, Weinrich et al. [210] applied the E∗ algorithm as a global path planner along
with an extended DWA method as a local trajectory planner. They extended DWA with an
additional objective rating that considers spatiotemporal occupation probabilities of the
tracked humans. In particular, they assigned personal spaces to humans using Gaussian
Mixtures. The method provided successful collision avoidance by the robot in a passing
scenario of a narrow hallway. A similar extension of DWA was proposed in [325].

Seder et al. [324] and Oli et al. [212] proposed navigation approaches that employed a
modified DWA for human-aware local trajectory planning. They introduced human aware-
ness by modifying the objective component related to clearance from obstacles, in particular,
including predicted poses of tracked humans as future obstacle positions. The difference
between these methods is that in [324] the authors assumed human motion predictions
driven by the constant velocity model, while in [212] the SFM has been implemented. Also,
the method from [324] used Focused D∗ as a global path planner, whereas in [212], the
NF1 [256] was integrated.

TEB-Based Methods

The TEB is a traditional local trajectory planner that laid a foundation for multiple
methods that enhanced this approach to capture human-awareness constraints [159,207,326].
The basic TEB deforms local trajectories according to the locations of obstacles in the
environment, but, in contrast to Elastic Bands, with temporal information. Instead of forces
from Elastic Bands, TEB uses an optimization objective to follow the global path regarding
kinodynamic constraints, forming the optimization problem of nonlinear least squares.

Human-aware specialization of TEB, named HaTEB, was proposed by Khambhaita and
Alami [207]. They extended the original optimization constraints with safety (minimum
safety distance), time to collision, and directional constraints, including the predicted
human trajectories in the problem formulation. Singamaneni et al. [159,208] developed the
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CoHAN planner—the HaTEB extension that handles large numbers of people and focuses
on motion legibility improvements. The CoHAN has different tunable planning modes that
can handle various indoor and crowded scenarios. Recently, Hoang et al. [326] presented
GTEB model that extends TEB taking into account the robot’s current state, robot dynamics,
dynamic social zones [267], regular obstacles, and potential approaching poses to generate
the socially optimal robot trajectory.

Other Methods

Alternatively to DWA- and TEB-based methods, Forer et al. [327] proposed the Pareto
Concavity Elimination Transformation (PaCcET) local trajectory planner. It aims to capture
the nonlinear human navigation behavior, scoring trajectories with multiple objectives.
The first relies on path distance, goal distance, heading difference, and distance to obstacles,
while the second is based on the interpersonal distance between the robot and humans.
Later, Banisetty et al. [220] extended PaCcET with social awareness objectives, specifically,
maintaining appropriate distances to F-formations (groups) and distance to a scenario-
dependent social goal.

In contrast, the authors of [328] proposed a planner that aims to exaggerate motions to
increase intent expressiveness over passing sides for legible robot navigation [72]. They
implemented a decision-making strategy, constructing the Social Momentum objective that
takes pairwise momentum between robot and human into consideration. Another method
was presented by Mehta et al. [329] who applied MultiPolicy Decision Making to navigate
in dynamic environments with different policies, namely, Go-Solo, Follow-other, and Stop.
The values of utility functions, which compromise between the distance traveled to the
goal and the disturbance to surrounding agents caused by the robot, are predicted through
forward simulation.

Optimal control techniques have also been employed to maintain the formation in-
tegrity [330,331]. For instance, in [330], formation control in a leader-follower arrangement
was discussed. The authors developed a method that, under mild assumptions, guarantees
the stabilization of the formation to the desired shape and scale. Similarly, an optimal con-
trol algorithm, but for sustaining formations of various structures, was proposed in [331].
On the other hand, Truc et al. [332] developed a 3D reactive planner for human-aware

drone navigation in populated environments that is based on a stochastic optimization of
discomfort caused by the drone’s proximity to pedestrians and the visibility of the drone.

5.2.6. Learning-Based Methods

In recent years, rapid growth in the machine learning field has been observed, and nu-
merous planning approaches have evolved to capture the intricacies of human behaviors
and transfer them into robot control strategies. The broadest attention in robot control
applications gained Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL).
Specialized surveys on the applications of RL methods for robot navigation [333] and
particularly on social robot navigation have already been published [334].

Inverse Reinforcement Learning

A distinctively useful method for learning from demonstration is Inverse Reinforcement
Learning (IRL) [181], as it allows to model the factors that motivate people’s actions instead
of the actions themselves [180]. Example applications of IRL methods for human motion
prediction were already presented in Section 4.3, but they might also be used for control
purposes. For example, Kim and Pineau [335] learned a cost function involving social
cues from features extracted from the RGB-D camera. Their IRL module uses a set of
demonstration trajectories to learn the reference behavior when faced with different state
features. Their approach is implemented as a trajectory planner with IRL-based cost
function operating along with a global path planner. Similarly, Kuderer et al. [336] also
use IRL with human demonstrations, but they extract features from the human trajectories
and then use entropy maximization to determine the robot’s behavior during navigation
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in human environments. Pérez-Higueras et al. [291] also used IRL to transfer human
motion behavior to a mobile robot. They evaluated different Markov Decision Process models
and compared them with the baseline implementation of a global path planner and local
trajectory planner without social costs. More recently, Karnan et al. [337] collected a large-
scale dataset of socially compliant navigation demonstrations. They used it to perform
behavior cloning [338] for a global path planner and local trajectory planner agents that
aimed to mimic human navigation behaviors. The authors also performed an evaluation
study for the learned approach, comparing it with a baseline ROS implementation.

Reinforcement Learning

In contrast to IRL, the RL is used when the reward function is known or can be easily
defined, and the goal is to find the best policy for achieving cumulative rewards. Recent
works present the DRL as a framework to model complex interactions and cooperation,
e.g., in social robot navigation.

In a study by Olivier et al. [320], the authors found that walking people mutually adjust
their trajectories to avoid collision. This concept was exploited by Silva and Fraichard [339],
whose approach relies on sharing motion effort between a robot and a human to avoid
collisions. They learned a robot behavior using the RL to solve the reciprocal collision
avoidance problem during simulated trials.

Li et al. [174] presented a Role Playing Learning formulated under a RL framework for
purely local navigation of a robot accompanying a pedestrian. In their approach, the robot
takes into account the motion of its companion to maintain a sense of affinity when they
are traveling together towards a certain goal. A navigation policy is trained by Trust Region
Policy Optimization with the use of features extracted from a LiDAR along with the goal as
an input to output continuous velocity commands for navigation.

A series of works by Chen et al. [340,341] developed Collision Avoidance with Deep
Reinforcement Learning (CADRL) approaches. Specifically, in a Socially Aware CADRL (SA-
CADRL) [341], they designed a hand-crafted reward function that incorporates the social
convention of passing side and enables a robot to move at human walking speed in a
real-world populated environment. Everett et al. [154] proposed a GPU/CPU Asynchronous
Advantage Actor-Critic CADRL (GA3C-CADRL) strategy that employs LSTM to use ob-
servations of arbitrary number or surrounding agents, while previous methods had this
size fixed. A distinctive characteristic is that their algorithm learns collision avoidance
among various types of dynamic agents without assuming they follow any particular
behavior rules.

Jin et al. [342] presented another DRL method but for mapless collision-avoidance
navigation where humans are detected using LiDAR scans. The reward function regards
ego-safety, assessed from the robot’s perspective, and social safety, which evaluates the
impact of the robot’s actions on nearby humans. The ego-safety zone maintains 0.4 m of
separation between the robot and other objects, while social safety aims to prevent intru-
sions into approximated human personal space. Liang et al. [146] developed a RL-based
collision-avoidance algorithm, named CrowdSteer, for navigation in crowded environments.
The authors trained the algorithm using Proximal Policy Optimization (PPO) in high-fidelity
simulation and deployed the approach on two differential drive robots.

Chen et al. [343] discussed extending pairwise interactions between the robot and indi-
vidual humans to a robot interacting with a crowd. The authors developed Socially Attentive
Reinforcement Learning (SARL) that jointly models human–robot as well as human–human
interactions in an attention-based DRL framework by learning the collective importance
of neighboring humans with respect to their future states. Their work was further en-
hanced by Li et al. [344] who addressed the problems of learned policies being limited to
certain distances associated with the training procedure and the simplified environment
representation that neglects obstacles different from humans. In their SARL∗ method, they
introduced a dynamic local goal-setting mechanism and a map-based safe action space.
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Guldenring et al. [345] proposed another DRL-based system to train neural network
policies for local trajectory planning explicitly taking nearby humans into consideration.
The approach uses Proximal Policy Optimization (PPO) as the main learning method while
DRL agents are trained in randomized virtual 2D environments interacting with humans in
an unfocused manner for plain collision avoidance.

Recently, Xie and Dames [147] proposed DRL policy for robot navigation through
obstacle-filled and populated areas that intend to be generalizable to new environments.
In particular, the DRL-VO reward function contains a novel term based on VO (Section 5.2.4)
to guide the robot to actively avoid pedestrians and move toward its goal. In turn,
Qin et al. [346] introduced a socially aware robot mapless navigation algorithm employing
RL to learn strategies that conform to social customs and obey specific traffic rules.

Miscellaneous Approaches

Besides the aforementioned methods, learning-based applications include employing
Hidden Markov Model (HMM) in a higher hierarchy system to learn choosing between the
RL-based collision avoidance and target pursuing [347].

On the other hand, Tai et al. [184] attempted to apply Generative Adversarial Imitation
Learning (GAIL) strategy to navigate in populated dynamic environments in a socially
compliant manner via only raw depth inputs from RGB-D camera. Their approach learns
continuous actions and desired force toward the target and outperformed pure behavior
cloning policy regarding safety and efficiency.

In the approach by Lu et al. [348], the crowd’s density is dynamically quantified
and incorporated into a reward function deciding the robot’s distance from pedestrians.
The authors extended the DRL-based work from [343] so the best action is inferred from a
reward function that regards the uncomfortable distance between the robot and a human.
Alternatively, a system proposed by Yao et al. [114] incorporates a Generative Adversarial
Network to track and follow social groups.

5.3. Discussion

A summary of discussed navigation methods according to the requirements they im-
plement is presented in Table 2. The approaches listed in most cases employ the hierarchical
structure in the motion planning system composed of a global path planner and a local
trajectory planner. However, not all works explicitly reveal the planning algorithms used;
thus, we do not show the details in that matter.

Each reviewed navigation method is classified based on the objectives addressed in
the approach. However, the consequence of this methodology is that behavior cloning or
imitation learning Section 5.2.6 are excluded from this classification, as without investigat-
ing the dataset, it is not clear which features were captured; hence, which requirements
were targeted. On the other hand, VO-based methods (Section 5.2.4), which proactively
adjust motion direction to avoid collisions, are always denoted as respecting motion legibility
(Req. 2.4) (Section 3.3.4).

The requirements group most covered is by far the physical safety (Req. 1) inherited by
social robot navigation from traditional navigation. It regards collision avoidance; hence,
even approaches that do not explicitly regard humans in the environment (but rather
moving obstacles) fall into this category. The most popular objective among social robot
navigation algorithms is respecting personal spaces. However, in most methods, they are
modeled as a circular shape, while many studies revealed their asymmetry (Section 3.3.1).
In contrast, motion naturalness and, importantly, social conventions aspects, are less frequently
discussed. The latter are rarely considered, since in research robots are usually designated
for specific tasks, which influences a fragmentary approach to design and implementation.
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Table 2. Classification of robot navigation methods implementing the requirements from the pre-
sented taxonomy.

Physical Safety

[6,9,29,40,49,54,55,59,65,73,74,80,81,92,96,101,110,111,114–116,120,121,123,125,126,129,131,132,
134,135,137–139,141,143–147,153–160,174,180,202,204–208,210–212,220,223,227,229,232–234,243–
246,248,266–269,274,276,285–287,290,298–300,307,308,315,317,321,323,324,326–332,336,339,341–
346,348–352]

Perceived Safety

Personal spaces
[9,29,49,54,59,65,73,74,80,81,101,120,123,125,129,131,132,134,137,141,143–
147,156–160,174,205–207,210,212,220,223,232–234,244–246,266–
269,286,287,290,299,300,307,315,317,326,327,329,342–346,348,349,352,353]

O-spaces
of F-formations [40,65,114,145,157,160,220,223,232–234,246,267–269,287,307,317,352,353]

Passing speed [49,55,96,137,141,145,159,180,208,332]

Motion legibility [55,74,101,139,141,147,159,160,180,202,206–208,317,321,328,336,346,350]

Approach direction [6,40,54,80,81,92,157,229,244–246,267,269,286,307,326,332,352]

Approach speed [40,54,81,92,157,245,246]

Occlusion zones [132,141,266]

Motion Naturalness

Velocity
smoothness [29,59,125,135,147,156]

Oscillations [143,146]

In-place rotations —

Backward
movements —

Gaze modulation [73,96,101]

Social Conventions

Accompanying [40,110,111,114–116,120,121,126,132,157,174,229,243–246,308,329–331]

Affordance spaces [123,125,223,227,267,268,307,352]

Activity spaces [123,125,223,267,268,307,352]

Passing side [49,59,73,132,137,221,336,341]

Yielding way —

Standing in line [125,129,220]

Elevator etiquette —

6. Evaluation

Evaluating social robot navigation systems is essential for gathering insights on com-
fort among users and optimizing their performance in real-world environments. This
section discusses different evaluation methods, classifies types of studies conducted to
explore or verify designed navigation algorithms, and identifies tools facilitating efficient
assessment, namely datasets, simulators, and benchmarks Figure 9.
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Figure 9. A taxonomy of evaluation for social robot navigation.

6.1. Methods

In general, evaluation methods encompass qualitative and quantitative approaches.
Qualitative methods often involve subjective assessments, such as questionnaires con-
ducted during user studies, which gauge users’ preferences and comfort levels while
interacting with the robot (e.g., [9,40,87]). These subjective evaluations provide valuable
insights into the social acceptability of robot navigation.

On the other hand, quantitative methods utilize objective metrics formulated
mathematically to assess various aspects of robot performance and social awareness
(e.g., [131,323,329,335,350]). These metrics enable precise assessment and, thus, evidence-
based comparison of different navigation algorithms. Researchers employing a combination
of qualitative and quantitative evaluation methods [85,131,328] can comprehensively gauge
both the performance and suitability of human-aware navigation systems in meeting the
expectations of users.

In recent work, Biswas et al. [33] stated that an ideal method of evaluating social robot
navigation is a large-scale, costly, and time-consuming qualitative user study. However, due
to the indicated drawbacks, automated methods that provide a quantitative approximation
of facts are required. Quantitative assessment methods are particularly useful for learning-
based approaches, where the reward of action must be numeric. Similarly, the authors of
planners that employ heuristics or optimize a single criterion benefit from benchmarking
their methods against various strategies. Since automated quantitative methods produce
invariable indicators of the algorithm’s performance, they are particularly relevant for us-
age, e.g., during the new algorithm development stage. Nevertheless, grounding the social
robot navigation requirements and approximating the social phenomena as quantitative
metrics would be impossible without user studies yielding qualitative results.

6.2. Studies

Social robotics experiments often involve user studies to gather subjective human
impressions about the robot’s behavior, which is crucial for social robot navigation as they
provide valuable insights that can be directly transferred onto navigation system require-
ments Section 3. Experiments conducted for collecting such data can be differentiated
between controlled and exploratory.

Controlled studies provide the possibility to conduct tests under configurable condi-
tions. Hence, researchers can control variables and conditions to isolate specific factors,
e.g., robot speed [60], passing distances [49], and observe their effects. This, in turn, allows
for gathering more precise measures of robot behavior when operating with different navi-
gation algorithms. This type of study might include both questionnaires and laboratory
studies. In contrast, exploratory studies are conducted in natural conditions with minimum
or no preparation. They might take the form of, e.g., a case study [354] to gain insights
or field studies [1,2] connected with observing and gathering data (qualitative and/or
quantitative) regarding a robot deployed in the target environment. The principles of
human–robot interaction studies design were identified by Bartneck et al. in [355].
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Controlled studies facilitate the systematic evaluation of the robot’s human awareness
across different motion planning algorithms. However, direct comparison necessitates
adherence to two crucial rules. Firstly, environmental conditions must be reproducible
in subsequent trials. Secondly, a specific baseline motion planning setup (e.g., relying on
classical navigation objectives), against which the examined navigation system will be
compared, must remain unchanged in the following trials. In the literature, customized
navigation approaches are contrasted against other algorithms [208] or a teleoperated
agent [157], depending on the study design and goals.

Controlled laboratory studies intend to simplify complex interactions into prescribed
scenarios of agents’ movements under constant environmental conditions, so the number
of varying factors in subsequent trials is limited. Gao and Huang [5] identified standard sce-
narios investigated in social robot navigation works that include passing [60,320,356], cross-
ing [71,206], overtaking [60,312,341], approaching [267,326,352], accompanying [119,157,245],
or combined.

6.3. Tools

Multiple tools facilitate the evaluation of social robot navigation approaches. They
are particularly useful for performing preliminary tests before arranging real-world experi-
ments, which may pose a significant organizational effort [6,9,77,89].

6.3.1. Datasets

The datasets can be employed to train models for human trajectory prediction and
learning robot movements in populated environments. They are irreplaceable for neural
approaches that optimize policy learning from data [269,322,348].

The pioneering datasets in the field are ETH [357] and UCY [358], suitable for tracking
and prediction. They provide pedestrian trajectories from a top-view, fixed, outdoor-
located camera. Later, Rudenko et al. [359] developed THÖR indoor dataset with human
trajectory and eye gaze data with accurate ground truth information. The data were
collected using motion capture hardware with 3D LiDAR recordings and a mobile robot
in the scene. Another dataset, named SCAND, was proposed by Karnan et al. [337] and
contains indoor and outdoor data from multiple sensors of a mobile robot teleoperated in a
socially compliant manner.

Alternatively, SocNav1 [360] and SocNav2 [349] datasets were designed to learn and
benchmark functions estimating social conventions in robot navigation by using human
feedback in simulated environments. Wang et al. [361] developed TBD dataset containing
human-verified labels, a combination of top-down and egocentric views, and naturalistic
human behavior in the presence of a mobile capturing system moving in a socially accept-
able way. Another dataset was used as a part of the CrowdBot project and is applicable
for crowd detection and tracking, as well as learning navigation in populated, dynamic
environments [362].

Recently, new datasets have emerged, for example, SiT [363], which contains indoor
and outdoor recordings collected while the robot navigated in a crowded environment,
capturing dense human–robot interactive dynamic scenarios with annotated pedestrian
information. Nguyen et al. [364] developed MuSoHu dataset gathering recordings of
sensors placed on human participants walking in human-occupied spaces; thus, interactions
between robots and humans have not been captured. Hirose et al. [134] presented HuRoN
dataset collected with multimodal sensory data from a robot operating with an autonomous
policy interacting with humans in real-world scenes.

The publications relying on some of these datasets were identified in [5] and partially
in [17], while in [3] the authors separated datasets for activity recognition, human pose
estimation, and trajectory prediction.
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6.3.2. Simulators

In recent years, simulation experiments have been more often chosen due to the
growth of the field of RL [147,154,174,341,345] and other data-driven approaches [184].
Simulators are particularly useful tools for the systematic evaluation of social robot nav-
igation algorithms as they can provide identical initial conditions of experiments in the
following trials, which is not always possible in user studies. Simulators also facilitate
the agile development of algorithms and provide flexibility, which datasets often lack.
Furthermore, as opposed to real-world tests, in terms of time and resources, they are easily
reconfigurable and cost-effective in repeating trials.

Numerous simulation ecosystems have been developed for robotics [365]. The majority
is directly applicable to social robotics as they provide movable human-like postures,
and several are suitable for rich human–robot interaction. The main characteristics of
state-of-the-art approaches for conducting virtual social robot navigation experiments
are presented in Table 3, whereas Table 4 illustrates their methods for simulating human
motion behaviors.

The comparison in Table 3 includes 2D and 3D simulators, as well as frameworks
that have ROS integration (the most popular robotic framework), are actively maintained,
and are open-source. Architectures of software for human simulation can be distinguished
on standalone simulators and frameworks. The latter are usually designed for controlling
simulated humans and they abstract from a specific simulator; therefore, interfacing com-
ponents are necessary for integration. The proposed classification regards the fidelity of the
replication of virtual robots, i.e., whether dynamic intricacies (friction, etc.) are included
or only the ideal kinematic model is considered. Additionally, the comparison identifies
the variety of tasks that can be performed by simulated humans and the methods for
controlling humans. The capability of setting dynamic goals for virtual humans is crucial
for rich human–robot interactions, which usually require an orchestrator. For example,
handover tasks can be simulated only with the synchronization of human and robot activi-
ties. Specifically, the human receives an object after the robot approaches them (which in
high-fidelity simulation always takes varying amounts of time); hence, the reception must
be triggered at different timestamps.

On the other hand, Table 4 presents the characteristics of the virtual humans’ navi-
gation in each simulation ecosystem. The comparison points out the algorithms used for
motion planning and whether the motion of each agent can be configured differently. The
classification also includes information on whether the simulation ecosystem allows the
formation-like motion of virtual humans, which is restricted by the capabilities of motion
planning algorithms available.

Notably, more advanced simulators facilitate transferring the algorithms from virtual
to real-world hardware. All listed simulators except flatland (https://github.com/avidbots/
flatland (accessed on 20 March 2024)) [345] provide the kinodynamic fidelity of robots,
whereas the exactness of frameworks depends on the simulators they are integrated with.
Simplified, lightweight simulators with the possibility to simulate dynamic agents, such
as SocialGym 2.0, are well-suited for learning applications requiring multiple repetitions,
whereas high-fidelity simulators, like Gazebo (Ignition) or iGibson, target the rich interaction
scenarios. Nevertheless, transferring navigation methods from the simulation into real-
world experiments is essential to demonstrate that developed algorithmic approaches work
not only in simulated setups but are also reliable and prospective for wider applications.

https://github.com/avidbots/flatland
https://github.com/avidbots/flatland
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Table 3. Classification of robotic simulation systems with capabilities for replicating human motion
behavior. Abbreviations used in the table: MG stands for moving to a goal, PG—performing gestures,
FO—following an object, ST—sitting, CO—conversating, JG—joining groups, and MO—moving to
an object.

Approach
Software

Architecture
Robot

Fidelity

Human
Task

Variety

Human Control

Scripted
Scenarios

Dynamic
Goals Teleop

Webots [366] standalone kinodynamic MG X — —

Gazebo [367]
(Ignition) standalone kinodynamic MG, PG X — —

PedsimROS [140]
framework

(Gazebo
interface)

— MG X — —

flatland standalone kinematic MG — X —

HuBeRo [368]
framework

(Gazebo
interface)

—
MG, PG, FO,
ST, CO, MO X X X

SEAN 2.0 [369] Unity kinodynamic MG, JG X X X

Crowdbot [370] Unity kinodynamic MG X — —

iGibson 2.0 [371] standalone kinodynamic MG X — —

InHUS [372]
framework

(Stage/Morse
interfaces)

— MG X X X

IMHuS [373]
framework

(Gazebo
interface)

— MG X X —

SocialGym 2.0 [374]
framework

(UTMRS interface) kinodynamic MG X X —

HuNavSim [375]
framework

(Gazebo
interface)

— MG X X —

Table 4. Classification of robotic simulation systems from the perspective of methods to replicate
human motion behavior.

Approach
Human
Motion

Planning

Human
Motion

Diversity

Human
Groups

Webots [366] naive trajectory following configurable speed
in a scripted trajectory —

Gazebo [367]
(Ignition)

APF-like configurable weights of potentials —

PedsimROS [140] SFM configurable motion model’s
properties and group assignment X

flatland any ROS plugin
for motion planning

possible individual parameters
for each planning agent —

HuBeRo [368] any ROS plugin
for motion planning

possible individual parameters
for each planning agent —

SEAN 2.0 [369] Unity’s built-in path planner
with SFM

configurable behaviors (randomized,
handcrafted or graph-based control

of pedestrians), variable posture
X
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Table 4. Cont.

Approach

Human
Motion

Planning

Human
Motion

Diversity
Human
Groups

Crowdbot [370] DWA, RVO, SFM configurable speed
in a scripted trajectory —

iGibson 2.0 [371] A∗ with ORCA configurable object radius
of ORCA —

InHUS [372] any ROS plugin
for motion planning

possible individual parameters
for each planning agent —

IMHuS [373] any ROS plugin
for motion planning

possible individual parameters
for each planning agent —

SocialGym 2.0 [374] SFM configurable motion model’s
properties and group assignment —

HuNavSim [375] APF-like/SFM
configurable behaviors (regular,
impassive, surprised, curious,

scared, threatening)
X

6.3.3. Benchmarks

Due to a growing set of navigation algorithms available, the importance of quantitative
evaluation has increased. Lately, various automated quantitative assessment systems, called
benchmarks, have been developed to ease the evaluation of traditional and social robot
navigation. The appropriate benchmark design requires the knowledge of the requirements
for robot navigation system Section 3, concurrently from the classical and human-aware
points of view [76].

Several works have recently proposed benchmarking frameworks for evaluating
robot motion planning algorithms from the classical navigation perspective [376–385],
i.e., without considering human awareness constraints. These works mainly focus on
performance metrics like navigation success rate, path length, or time required to reach the
goal. Benchmarks for socially-aware robot navigation are the minority, but there are several
works in that matter [33,369,386]. In some cases, simulators are coupled with internally
calculated metrics for assessing navigation [369,374].

The primary features of state-of-the-art approaches for benchmarking robot naviga-
tion are presented in Table 5. The comparison includes only actively maintained and
open-source benchmarks. The classification of methods focuses on the variety of metrics
implemented (following the requirements taxonomy from Section 3), as well as determining
suitable test environments (simulation/real world) and a set of analysis tools provided,
e.g., for results presentation.

Table 5. A classification of state-of-the-art methods for quantitative evaluation of robot navigation
requirements. The number of ticks (X) reflects the number of metrics implemented in each benchmark.
Abbreviations used: S stands for simulation environments, R—real-world environments, and S/R
reflects simulation and real-world environments.

Name

Metrics
Suitable

Env.
Analysis

Tools
Classical

Navigation
Performance

Physical
Safety

Perceived
Safety

Motion
Naturalness

Social
Norms

iGibson
Benchmark [387] X — X — — S –

MRPB [382] XXXX X — X — S/R –

BenchMR [376]
XXXXX

X X — X — S
scenario rendering,

metrics plots
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Table 5. Cont.

Name

Metrics
Suitable

Env.
Analysis

Tools
Classical

Navigation
Performance

Physical
Safety

Perceived
Safety

Motion
Naturalness

Social
Norms

CrowdBot
Benchmark [370] XX XX — XXXX — S

scenario rendering,
metrics plots

SocNavBench [33]
XXXXX
XXXXX XX XX XX — S

scenario rendering,
metrics plots

Arena-Bench [383]
XXXXX
XXX X — XXX — S

scenario rendering,
metrics plots

SEAN 2.0 [369]
XXXXX
XXX X XX X — S –

InHuS [372] X XX X — — S/R
scenario and metrics

rendering

Tafnakaji
et al. [385] XXXXX — — X — S/R scenario rendering

SRPB [76]
XXXXX

X XXXX

XXXXX
XXXXX
XXXXX

X

XXXXX — S/R

scenario rendering,
metrics plots,

exporting results
to a LATEX table

or a spreadsheet

HuNavSim [375]
XXXXX
XXX XXXX XXXX XX — S —

Quantitative metrics are the inherent parts of benchmark systems as they aim to
implement objective criteria approximating subjective assessments. Therefore, the quantita-
tive metrics should reflect mathematical formulas of requirements discussed in Section 3.
Metrics covering most of the perceived safety principles for social robot navigation are
developed in the SRPB (https://github.com/rayvburn/srpb (accessed on 20 March 2024))
benchmark, where human-awareness indicators also account for people tracking uncer-
tainty, facilitating the evaluation with the robot’s onboard perception [76]. Besides the
listed benchmark systems, several complementary indicators for assessing the perceived
safety of humans in the context of social robot navigation also appear in [388]. The survey
by Gao and Hoang [5] discusses in detail metrics presented in the literature.

7. Discussion

Although the literature regarding social robot navigation is vast, there are still issues
of great significance that are fundamental for providing comprehensive social intelligence
to robots. Major challenges and future work perspectives are identified in the remainder of
this section.

7.1. In-Depth User Studies Exploring Human Preferences and Norm Protocols

The years 2000–2015 were very productive in user studies investigating social con-
ventions and human preferences during interaction with robots [6,39,40,84,137]. Recently,
we have observed much fewer exploratory and confirmatory studies [355], whereas, ac-
cording to our extensive literature review, there are still some areas that could benefit from
deeper investigation of how to obey complex norms and under what conditions Section 3.5.
Also, multiple studies are contradictory regarding gaze modulation of robots Section 3.4.2.
Continued research should provide valuable insights for understanding the robot’s social
behavior requirements, as with the rapid growth of machine learning techniques, the an-
alytical modeling of social phenomena receives less attention, being repressed by more
accessible data-driven approaches.

https://github.com/rayvburn/srpb
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7.2. Implementing Complex Social Conventions in Robot Navigation Systems

The classification of requirements’ fulfilment in various navigation approaches pre-
sented in Table 2 illustrates that social conventions are rarely addressed across algorithms
and are rather implemented in a fragmentary manner. Among the specified in our tax-
onomy, the commonly neglected social norms include, e.g., standing in line or obeying
elevator etiquette. We argue that the phenomenon of fewer works regarding social norm
implementations is closely related to the necessity of including rich contextual information
in robot navigation systems to behave in a socially acceptable way, which applies to the
examples provided.

Multiple works discussed in Sections 4.4 and 5 tackle contextual awareness fragmen-
tarily, adhering only to specific rules to follow in a given context [131,220–222]. Notably,
the literature review shows that many state-of-the-art Deep Reinforcement Learning methods
implement rather a collision avoidance with dynamic objects than human-aware navigation,
as the reward functions are formulated to consider only the separation distance between
agents [134,146,174,342–345] imitating circular personal spaces, regardless of other social
conventions and contextual cues.

A robot’s intelligence is often regarded as utilizing contextual information in its
imperative [16,214]. Therefore, we argue that implementing complex social conventions in
robot navigation systems requires integrating motion planning with knowledge bases [389],
which could be updated by perception modules extracting environmental features in real
time. However, including information from knowledge bases directly in existing motion
planning approaches is impractical; hence, an additional component could be added to
the standardized robot motion planning architecture consisting of a global path planner
and a local trajectory planner. The role of the new social activity planner component would
be to analyze environmental information and, based on the implemented social protocols,
periodically generate new goal poses according to the task context Section 4.4.4. In this
setup, the new component coordinates task execution in a socially acceptable manner, while
the global path planner and the local trajectory planner handle motion planning concerning
requirements related to the physical and perceived safety of humans, as well as to the
robot’s motion naturalness. Additionally, the social activity planner component could be
integrated with the robot’s head controller to properly modulate gaze direction during
task execution.

An alternative method of integrating contextual richness directly into DRL-based
end-to-end algorithms poses a possible challenge to capturing numerous intricacies of
social robot navigation in a single control policy that might negatively affect the general-
ization capabilities of such approaches. Recently, a tendency to integrate learning-based
approaches with classical algorithms evolved, e.g., [147,155,315,322], which might mitigate
the identified drawback.

The concepts presented in [220,390] can be valuable insights for enhancing cognitive
architectures that allow inferring environment objects’ relations once various facts about the
environment, task, and humans are injected into the knowledge base. Works attempting to
design context-aware social robot navigation integrated with a cognitive system are [228],
where they used the CORTEX architecture [218], as well as [225,391]. Recently, the au-
thors of [131] used socially aware navigation as one of the robot skills within a cognitive
architecture, utilizing elements of environmental, interpersonal, and diversity contexts.

7.3. Context-Aware Framework for Modulating Motion Planning Objectives

Social robots are commonly deployed for tasks in complex environments. That requires
rich contextual awareness, as the robots’ navigation objectives might vary according to a
situation at hand Section 4.4.1. Enriched contextual awareness, discussed in Section 7.2,
must be coordinated with a robot’s motion planning scheme to obtain human-aware
behaviors and compliance with social conventions.
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To achieve comprehensive human-aware robot navigation, which is a multiobjective
problem, it is crucial not to treat social aspects as hard constraints. For instance, if a person
is lying down due to fainting, the robot should be capable of approaching closely to check
their condition, even if it means violating proxemics rules. Therefore, finding the relation
between the navigation objectives and the contexts at hand could lead to obtaining more
socially acceptable motions and enhance the perceived intelligence of a robot. This proposal
aligns with one of the suggestions from [12].

Technically, the relation between contexts and navigation objectives can be reduced to a
function that weighs the components of a multiobjective cost function designed to optimize
human-aware navigation. Such a function could be embedded into the configurable context-
aware orchestrating framework, which we indicate as a relevant future work perspective.
Preliminary work in this matter has been conducted in [390], where the authors defined a
mapping from the task-level knowledge to the motion-level knowledge to help enhance
motion planning. Specifically, they identified variables that might be used in such an
orchestrating framework and help dynamically weight the trajectory planning parameters.
Nevertheless, finding the desired relation requires extensive user studies and creates
perspectives for applying machine learning techniques, as manual tuning will probably be
infeasible due to the complexity of the problem.

7.4. Context-Aware Benchmarks for Evaluating Nonprimitive Social Interactions

Benchmarks should also be aware of the contextual richness of the social robot navi-
gation, as this would ease the assessment and deliver more accurate results. Contextual
awareness of benchmarks is nontrivial to handle and infer from, while desired, similarly as
in online navigation Section 7.3.

To exemplify the impact of environmental contexts, benchmark systems should only
penalise the robot for traversing affordance spaces if they are actively exploited by humans,
i.e., only if activity spaces were initiated. This, in turn, requires integrating multiple
data during evaluation. The preliminary concept addressing the topic is implemented in
SEAN 2.0 simulator [369], which detects different social situations, but this information
is not considered in metrics evaluation. In contrast, SRPB benchmark [76] regards the
interpersonal context penalizing a robot for crossing through O-spaces of F-formations
(human groups) while not considering environmental cues in metrics.

7.5. Design of Absolute Social Metrics for Social Robot Navigation Benchmarking

An essential need in quantitative benchmarking of social robot navigation is the
design of absolute metrics, i.e., comparable between diverse scenarios. Most existing
metrics do not sufficiently capture the generalizability of evaluated algorithms across
diverse contexts [33,328,369,374,386]. This highlights the necessity of creating universal
metrics that go beyond the specific context of individual scenarios. Standardized metrics
applicable across various scenarios and study environments can enhance the reproducibility
and transferability of findings.

8. Summary

In this paper, we grounded social robot navigation requirements based on the reviewed
user studies regarding unfocused and focused human–robot interactions, which highlighted
objectives on how robots should behave in populated environments. The human-aware
robot navigation requirements are organized into our taxonomy consisting of requirements
for ensuring the physical and perceived safety of humans, as well as the requirements
assuring the robot’s motion naturalness and the robot’s compliance with the social norms.
This classification is the basis for the analysis of algorithmic topics.

Our study examines the key methods for addressing the fundamental challenges
of social robot perception, namely the detection and tracking of humans in the robot’s
environment. Diverse environment representations utilized in different motion planning
approaches were also discussed, as well as various methods for human trajectory prediction
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which is crucial in real robots equipped with sensors with a limited field of view. The survey
also highlights the topic of contextual awareness and how it was tackled in state-of-the-art
navigation approaches.

The major part of our review encompasses various methods employed for robot
motion planning that take into account constraints arising from the presence of surrounding
humans. Approaches present in the literature were classified into global path planning
and local trajectory planning algorithms according to the common hierarchical structure
of motion planning systems. Both global path planners and local trajectory planners were
organized into groups sharing common algorithmic characteristics. Besides a thorough
description of various navigation methods, these approaches are classified according to the
established requirements taxonomy, based on the objectives addressed.

This survey also explores the methods for evaluating social robot navigation as well
as study types and tools relevant to the agile development of navigation techniques. The
tools for the assessment were discussed distinguishing datasets, simulators, and bench-
marks. An extensive comparison of actively maintained simulators for social robotics
was proposed. Moreover, benchmarks suitable for quantitative evaluation of social robot
navigation were classified utilizing the proposed requirements taxonomy, according to the
implemented metrics.

Our study examined state-of-the-art in the social robot navigation field and proposed
several major topics for future work with a context-aware framework for modulating
navigation objectives being the most promising. As a consequence of the rapidly growing
field of social robot navigation, further integration of socially aware mobile robots in daily
lives is expected. This cross-sectional review contributes to the broader understanding of
social robot navigation fundamentals that lie on the border of robotics and social sciences.
Our survey sheds light on social aspects that have not been adequately addressed in
technical and social science papers.

Author Contributions: Conceptualization, J.K. and W.S.; methodology, J.K.; investigation, J.K. and
W.S.; writing—original draft preparation, J.K.; writing—review and editing, J.K., W.S., and E.N.-S.;
visualization, J.K.; supervision, W.S. and E.N.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Burgard, W.; Cremers, A.B.; Fox, D.; Hähnel, D.; Lakemeyer, G.; Schulz, D.; Steiner, W.; Thrun, S. The interactive museum

tour-guide robot. In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications
of Artificial Intelligence, Madison, WI, USA, 26–30 July 1998; AAAI ’98/IAAI ’98, pp. 11–18.

2. Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A.; Dellaert, F.; Fox, D.; Hahnel, D.; Rosenberg, C.; Roy, N.; Schulte, J.; et al.
MINERVA: A second-generation museum tour-guide robot. In Proceedings of the 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 3, pp. 1999–2005. [CrossRef]

3. Möller, R.; Furnari, A.; Battiato, S.; Härmä, A.; Farinella, G.M. A survey on human-aware robot navigation. Robot. Auton. Syst.
2021, 145, 103837. [CrossRef]

4. Mirsky, R.; Xiao, X.; Hart, J.; Stone, P. Conflict Avoidance in Social Navigation—A Survey. J. Hum.-Robot Interact. 2024, 13, 1–36.
[CrossRef]

5. Gao, Y.; Huang, C.M. Evaluation of Socially-Aware Robot Navigation. Front. Robot. AI 2022, 8, 721317. [CrossRef] [PubMed]
6. Satake, S.; Kanda, T.; Glas, D.F.; Imai, M.; Ishiguro, H.; Hagita, N. How to approach humans? strategies for social robots to initiate

interaction. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, CA, USA, 9–13
March 2009; HRI ’09, pp. 109–116. [CrossRef]

http://doi.org/10.1109/ROBOT.1999.770401
http://dx.doi.org/10.1016/j.robot.2021.103837
http://dx.doi.org/10.1145/3647983
http://dx.doi.org/10.3389/frobt.2021.721317
http://www.ncbi.nlm.nih.gov/pubmed/35096978
http://dx.doi.org/10.1145/1514095.1514117


Sensors 2024, 24, 2794 46 of 61

7. Trautman, P.; Ma, J.; Murray, R.M.; Krause, A. Robot navigation in dense human crowds: Statistical models and experimental
studies of human-robot cooperation. Int. J. Robot. Res. 2015, 34, 335–356. [CrossRef]

8. Biswas, J.; Veloso, M. The 1,000-km Challenge: Insights and Quantitative and Qualitative Results. IEEE Intell. Syst. 2016, 31, 86–96.
[CrossRef]

9. Shiomi, M.; Zanlungo, F.; Hayashi, K.; Kanda, T. Towards a Socially Acceptable Collision Avoidance for a Mobile Robot
Navigating Among Pedestrians Using a Pedestrian Model. Int. J. Soc. Robot. 2014, 6, 443–455. [CrossRef]

10. Lasota, P.A.; Fong, T.; Shah, J.A. A Survey of Methods for Safe Human-Robot Interaction. Found. Trends® Robot. 2017, 5, 261–349.
[CrossRef]

11. Singamaneni, P.T.; Bachiller-Burgos, P.; Manso, L.J.; Garrell, A.; Sanfeliu, A.; Spalanzani, A.; Alami, R. A survey on socially aware
robot navigation: Taxonomy and future challenges. Int. J. Robot. Res. 2024 . [CrossRef]

12. Francis, A.; Pérez-d’Arpino, C.; Li, C.; Xia, F.; Alahi, A.; Bera, A.; Biswas, A.; Biswas, J.; Chandra, R.; Lewis Chiang, H.T.; et al.
Principles and Guidelines for Evaluating Social Robot Navigation Algorithms. arXiv 2023, arXiv:2306.16740

13. Rios-Martinez, J.; Spalanzani, A.; Laugier, C. From Proxemics Theory to Socially-Aware Navigation: A Survey. Int. J. Soc. Robot.
2015, 7, 137–153. [CrossRef]

14. Chik, S.F.; Yeong, C.F.; Su, E.L.M.; Lim, T.Y.; Subramaniam, Y.; Chin, P.J.H. A Review of Social-Aware Navigation Frameworks for
Service Robot in Dynamic Human Environments. J. Telecommun. Electron. Comput. Eng. 2016, 8, 41–50.

15. Kruse, T.; Pandey, A.K.; Alami, R.; Kirsch, A. Human-Aware Robot Navigation: A Survey. Robot. Auton. Syst. 2013, 61, 1726–1743.
[CrossRef]

16. Charalampous, K.; Kostavelis, I.; Gasteratos, A. Recent trends in social aware robot navigation: A survey. Robot. Auton. Syst.
2017, 93, 85–104. [CrossRef]

17. Mavrogiannis, C.; Baldini, F.; Wang, A.; Zhao, D.; Trautman, P.; Steinfeld, A.; Oh, J. Core Challenges of Social Robot Navigation:
A Survey. J. Hum.-Robot Interact. 2023, 12, 1–39. [CrossRef]

18. Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691.
[CrossRef]

19. Medina Sánchez, C.; Zella, M.; Capitán, J.; Marrón, P.J. From Perception to Navigation in Environments with Persons: An Indoor
Evaluation of the State of the Art. Sensors 2022, 22, 1191. [CrossRef] [PubMed]

20. Guillén-Ruiz, S.; Bandera, J.P.; Hidalgo-Paniagua, A.; Bandera, A. Evolution of Socially-Aware Robot Navigation. Electronics
2023, 12, 1570. [CrossRef]
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