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Abstract: This study introduces a fault diagnosis algorithm based on particle filtering for open-
cycle liquid-propellant rocket engines (LPREs). The algorithm serves as a model-based method
for the startup process, accounting for more than 30% of engine failures. Similar to the previous
fault detection and diagnosis (FDD) algorithm for the startup process, the algorithm in this study is
composed of a nonlinear filter to generate residuals, a residual analysis, and a multiple-model (MM)
approach to detect and diagnose faults from the residuals. In contrast to the previous study, this study
makes use of the modified cumulative sum (CUSUM) algorithm, widely used in change-detection
monitoring, and a particle filter (PF), which is theoretically the most accurate nonlinear filter. The
algorithm is confirmed numerically using the CUSUM and MM methods. Subsequently, the FDD
algorithm is compared with an algorithm from a previous study using a Monte Carlo simulation.
Through a comparative analysis of algorithmic performance, this study demonstrates that the current
PF-based FDD algorithm outperforms the algorithm based on other nonlinear filters.

Keywords: fault detection and diagnosis; particle filter; CUSUM algorithm; multiple-model method;
liquid-propellant rocket engine; startup process

1. Introduction

Liquid-propellant rocket engines (LPREs) are mostly utilized for space launch vehicles
(SLVs) or reusable launch vehicles (RLVs) for New Space because of their higher specific
impulse and the accurate control capability required for precise injection into orbit [1–5].
However, given the complexity of LPREs and their multitude of components, achieving
high reliability necessitates employing condition-based maintenance techniques. These
include non-destructive inspection (NDI), fault detection and diagnosis (FDD), and strate-
gies for prognosis and health management (PHM) based on sensor measurements obtained
from the engines [6–26]. In terms of the FDD of LPREs, researchers have actively studied
two distinguishing methods: data-driven and model-based methods. Due to the insuffi-
ciency of LPRE fault scenarios during actual firing tests, model-based methods are widely
studied. Typically, these methods are based on the fault characteristics that are derived
from a mathematical model with artificially inserted faults [14,15]. In the same context,
this study focuses on developing a new FDD methodology using measurement data with
these motivations and requirements.

In the case of LPRE operational failures, Refs. [27,28] show that a significant proportion
(exceeding 30%) of engine failures occur in the startup process due to various factors:
leakage and blockage in the propellant pipeline, combustion instabilities caused by the
water hammer in the priming process, inappropriate initial setting and opening times of
each valve, etc. Most of these failures were immediately catastrophic, so the failures caused
not only mission failure but also damage to both materials and individuals. To resolve
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these problems, in a previous study, Cha et al. [21] applied the extended Kalman filter
(EKF) and unscented Kalman filter (UKF) as a model-based method to develop an FDD
algorithm that could physically analyze fault conditions in the startup process of an LPRE.
However, the usage of the two nonlinear Kalman filters has some limitations, namely, false
alarms due to linearization, global approximation, and the assumption errors of the PDF of
the fault condition [29,30] in the residual generation and fault detection processes with the
Neyman–Pearson (NP) theory [31]. Therefore, in order to overcome these limitations of the
previous study, this study proposes a new FDD algorithm employing a particle filter (PF)
and a modified cumulative sum (CUSUM) algorithm, as shown in Figure 1. In the figure,
the process of the FDD algorithm is delineated: the current study (depicted within solid
boxes) and the previous study [21] (represented by dashed boxes).

Figure 1. The structure of the FDD algorithm.

To validate the performance of the proposed FDD algorithm, we employed two fault
scenarios, a turbopump efficiency deficiency and pipeline blockage, which are common
sources of LPRE failures [27]. The dynamic response data were acquired by applying fault
scenarios to the mathematical model of the LPRE described in Ref. [15]. Then, we designed
the filters, generated residuals, and detected and diagnosed each fault with the CUSUM
algorithm and multiple-model (MM) method using the residuals. For each process of the
FDD algorithm, a Monte Carlo simulation was conducted to compare the performance of
each FDD algorithm. This work analyzed and compared the FDD algorithms quantitatively
and qualitatively under random noise conditions. Through this work, we demonstrate that
the FDD algorithm with the PF and CUSUM algorithm has superior performance compared
to those in the previous study.

In this study, we selected an open-cycle LPRE as a base model to study, and a brief
introduction is presented in Section 2. Section 3 explains the PF to generate residuals, which
are the basis of decision-making in the FDD algorithm, and Section 4 describes the FDD
algorithm, which is composed of a modified CUSUM algorithm to detect a fault and the
MM method to diagnose the fault using the residuals. Then, Section 5 compares the results
of the newly proposed FDD algorithm with those of the previous study using the EKF/UKF.
Finally, in Section 6, the concluding remarks and limitations of this study are discussed.

2. Dynamics of LPREs
2.1. Dynamic Simulation of LPREs

Using the MATLAB/Simulink environment, we constructed an open-cycle LPRE
simulation program for dynamic simulation [32] for the open-cycle LPRE employed in
this study, as shown in Figure 2. The mathematical model is described in more detail in
Appendix A.
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Figure 2. A schematic of a liquid-propellant rocket engine [32].

The open-cycle LPRE is analyzed differently depending on whether the operating
valves are in a steady state or transient state [33]. During the startup process, one of the
transient states, four main valves (Nos. 15, 16, 17, and 18 in Figure 2) affect the performance
of the engine and cause it to operate at full thrust as swiftly as possible. Upon reaching
the steady state, known as full thrust, the LPRE performance can be controlled using three
control valves (Nos. 6, 7, and 8 in Figure 2). Finally, during the shutdown process, another
transient state, the LPRE operation is terminated by the four main valves.

To ensure the accuracy of the simulation results, they were compared with experi-
mental data from the steady and transient states. In the steady state (full thrust) of the
simulation, with all valves and parameters fixed, a maximum error of 3.7% and a minimum
error of 0% were observed [32]. However, during transient states such as the startup or
shutdown procedures, four main valves were fully opened and closed at the appropriate
time, respectively [16]. The comparison of transient states (startup and shutdown processes)
is provided in Appendix B.

2.2. Fault Modeling

A fault is an unexpected change or an unpermitted deviation in system parameters
from the standard no-fault condition, so a fault in a system may lead to system malfunction
or mission failure [27]. This can be performed mathematically by combining the corre-
sponding fault types; hence, we artificially injected each fault signal following the proven
approach outlined in Refs. [15,20], which is verified with actual datasets. For the fault
conditions in this study, turbopump faults and pipeline blockages, which are representative
faults [15,20,27], are considered sudden faults:

θ(t) =
{

θ0 for t < t0
θ0(1 − f ) ≜ θ1 for t0 ≤ t

(1)

where θ is a parameter of the system, θ0 is the parameter in a normal condition, and f = ∆θ
θ0

represents the fault factor.
Even though Equation (1) describes fault development as a step function, the fault

mathematical model can also be modeled by applying linear, quadratic, cubic, and expo-
nential functions and changing the fault development time depending on the
fault characteristics.
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2.2.1. Turbopump Fault

There are many factors for a turbopump fault, such as cavitation, rotor bearing faults,
and turbine blade faults, which are difficult to implement individually by mathematical
modeling. However, most faults in a pump or turbine induce a decrease in efficiency.
Therefore, using Equation (1), we express a fault condition mathematically by injecting
an efficiency decrease (θ = ηt for turbine or ηp for pump in Equation (1)) considering an
abruptly occurring ablation of turbine nozzle blades [15,20].

2.2.2. Pipeline Fault

Pipeline faults are mostly leakages or hole blockages [15,20], but we only consider a
pipeline blockage to be simple in this study by decreasing the pipe cross-sectional area
(A). For this, using Equation (1), we express a blockage fault due to some impurities in
propellants by injecting the area variation (θ = A in Equation (1)) into a part of the pipeline
(CC oxidizer pipeline (o3) and CC fuel pipeline (f3) in Figure 2).

3. Particle Filter for Residual Generation

This section delineates the PF to generate the residuals for an FDD algorithm of an
open-cycle LPRE. In previous research, Cha et al. [21] developed the FDD algorithm with
the EKF/UKF. However, the linearization process in the EKF yields approximation errors
in each prediction/update step, and it is difficult to globally approximate based on a small
set of trial points in the UKF [29,30]. Consequently, these issues may lead to poor detection
or high false alarm rates for the FDD method. The PF, a method based on Monte Carlo
simulation principles for a nonlinear and non-Gaussian dynamic model, is appealing for
its ability to adeptly handle various nonlinear distribution characteristics of measurement
noise because it updates probability densities using a Bayesian approach [34,35].

The dynamic simulation program can be expressed using continuous state dynamics
and a discrete measurement procedure as follows:

ẋ(t) = f (x(t), u(t)) + w(t), (2)

zk = h(xk) + vk, (3)

where uk ∈ Rm, xk ∈ Rn, and zk ∈ Rl are the input, state, and output variables, respectively,
and w(t) ∈ Rn and vk ∈ Rl are the state and measurement noises, respectively, assuming
normal distributions with the covariances Q(t) and Rk, respectively.

For the nonlinear system, the PF was proposed to represent and recursively generate
an approximation for the conditional probability density function (PDF), p(xk|Zk), where
Zk = {z1, z2, · · · , zk}. The fundamental concept of the PF is to obtain and portray the
necessary PDF using particles in a swarm. The swarm can be regarded as the realization
of random samples from the required PDF in each step. Thus, as the number of particles
increases, they tend to approach the necessary PDF more closely [34,35]. Figure 3 illustrates
the process of the PF algorithm. Then, we generate the residuals (ϵk) using the system
output variables (zk) and estimated output variables (ẑk) as follows:

ϵk = zk − ẑk (4)
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Figure 3. The four-step process for the particle filter [34].

4. Fault Detection and Diagnosis Using Residuals

Now, the CUSUM and MM methods use the residuals generated by the PF for the
FDD process. As illustrated in Figure 1, the algorithm progresses through two blocks after
residuals are generated by the PF: (1) the residual analysis block to detect faults and (2) the
MM method block to diagnose faults.

4.1. CUSUM Algorithm for Fault Detection

The residual analysis process determines whether a fault occurred through the residual-
change-checking method, for example, by identifying whether a signal exceeds a thresh-
old [36]. However, because the sensor measurements may contain anomalies due to various
factors, such as noise, impulsive noise can be associated with the threshold being exceeded
during the data acquisition process or by the sensor itself. Therefore, to overcome this
problem, this study proposes a residual analysis method based on a modified CUSUM al-
gorithm, widely used for fault detection [37]. As the mean value of the residuals generated
by a filter shifts when a fault occurs, the algorithm can detect whether and when a fault
occurs by checking a change in the mean values between the normal condition (θ0) and
a fault condition (θ1) (see Equation (1)) [16]. Figure 4 presents the process of the CUSUM
algorithm, through which we can detect a fault considering two cases by checking whether
the CUSUM algorithm results (Su

k and Sl
k) are zero or not. Since the results are zero until the

absolute value of each residual (|ϵk|) exceeds δ/2, the variation magnitude (δ) in the process
is a tuning parameter. Hence, the magnitude (δ) should be determined by considering the
factor of safety (FS) of the engine. Generally, the FS depends on the components and engine
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types, but it is usually at least 1.1 (10% FS), especially for the combustion chamber because
of combustion instability [38,39]. Therefore, here, we set the variation magnitude (δ) to
15% (δ/2 = 7.5%) of each output variable under the normal condition to identify a fault
occurring before exceeding the 10% FS.

Figure 4. The three-step process of the CUSUM algorithm [37].

To see the algorithm performance, we applied the algorithm to two fault cases: a
decreased turbine efficiency fault for internal faults and the CC pressure sensor positive
bias fault for sensor/valve faults. For this, we artificially injected each fault at 0.9 s during
the startup process (see Figure A2) and utilized the CUSUM algorithm using the residuals
generated by the PF. Figure 5 shows the results of the CUSUM algorithm for a turbine
efficiency fault (Figure 5a) and the CC pressure sensor bias fault (Figure 5b) using seven
normalized state variables: Pc, Pg, ω, ṁo3, ṁ f 3, ṁo2, and ṁ f 2 (see Table 1). In the turbine
efficiency fault case, the fault affects all engine components, so all the variables change. On
the other hand, a sensor bias fault causes only the corresponding sensor output variables to
change. Therefore, all results of the CUSUM algorithm in Figure 5a change in the negative
case (blue line, Sl

k), while in Figure 5b, only the CC pressure (Pc) changes in the positive
case (red line, Su

k ) and others do not. Through this process, we can see that the CUSUM
algorithm can detect a fault by checking the change in the residuals. Furthermore, we can
deduce from additional information that the CUSUM algorithm can distinguish between
the internal component fault and the sensor fault from the number of changes in the results.
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Figure 5. The results of the CUSUM algorithm (a) internal component fault results; (b) sensor
fault results.

Table 1. Inverse of signal-to-noise ratio.

Notation Meaning 1/SNR [%]

PC Combustion chamber pressure 0.47
PG Gas generator pressure 0.51
ṁo3 Combustion chamber oxidizer flow rate 0.48
ṁ f 3 Combustion chamber fuel flow rate 0.57
ω Turbopump rotational speed 0.40

ṁOIC Combustion chamber oxidizer injector flow rate 0.48
ṁFIC Combustion chamber fuel injector flow rate 0.57
ṁOIG Gas generator oxidizer injector flow rate 1.88
ṁFIG Gas generator fuel injector flow rate 2.29
ṁo2 Gas generator oxidizer flow rate 1.88
ṁ f 2 Gas generator fuel flow rate 2.29

4.2. Multiple-Model Method for Fault Diagnosis

Once a fault is detected, the next step is to diagnose the fault, determining its location
and severity. The MM method, consisting of multiple filters, is employed for fault diagnosis
after the initial detection [16]. The decision mechanism is based on the residuals generated
by a set of N filters. Each filter is designed based on different hypothesized models. If
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one of the hypothesized models is true, the residuals and covariance generated by the
corresponding filter are small. Therefore, the hypothesized model that produces the
smallest residual and covariance can be regarded as the true model [21]. This study
assumes that a fault occurs in each of the five components for each hypothesized model,
including the efficiency decreases among the turbine, fuel pump, and oxidizer pump, and
two blockages in the fuel and oxidizer pipelines for the hypothesized models, and the
artificially injected fault signature in the turbine efficiency at 0.9 s (see Figure A2) [16].

The MM method results are depicted in Figure 6. Under the normal condition, the
probability is mostly 1, and when the fault occurs, the probability changes to 0, and the
turbine fault probability changes to 1. During this process, the probability of an oxidizer
pump fault briefly reaches 1 due to the similarity of fault effects to those of turbine and
oxidizer pump efficiency faults. Therefore, it can be confused at the beginning of the
occurring fault, and the method can accurately diagnose the fault that eventually occurs.

Figure 6. The results of the multiple-model method with the PF under the turbine efficiency fault [16].

5. PF-CUSUM-MM Application Results

This section validates the feasibility of the proposed FDD algorithm. For this, we
artificially injected a reasonable fault into the startup process using the minimum detectable
fault analysis. Then, to evaluate the FDD algorithm, we used a Monte Carlo simulation
in each process of the FDD algorithm and compared the performance with the previous
results using the EKF/UKF. The process of the FDD algorithm is as follows: it first detects
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a fault using the residuals generated by a nonlinear filter, and then the fault diagnosis
algorithm runs after the fault is detected. The overall flowchart of the proposed algorithm
is shown in Figure 7.

Figure 7. The flowchart of the proposed algorithm.

5.1. Minimum Detectable Fault Analysis

To evaluate the performance of the FDD algorithm using an LPRE simulation with
artificially injected faults, it is crucial to determine a reasonable initial fault magnitude
for each fault model. Small fault sizes relative to the noise level can make detection
and diagnosis challenging, potentially resulting in false alarms during the process [40].
Therefore, we analyzed the minimum detectable fault severity (MDFS) for five fault cases,
each with four different fault magnitudes (5%, 10%, 15%, and 20%). This analysis compared
the fault severity with the noise level, determined by the inverse of the signal-to-noise ratio
(SNR) using Equation (5) (see Table 1), in scenarios involving efficiency decreases in the
turbine, fuel pump, and oxidizer pump, as well as blockages in the CC oxidizer and CC
fuel pipelines. However, since there are eleven output variables (n = 11) and a fault affects
each output variable differently, we used the MDFS of each fault by calculating the mean
error rate value from the normal condition value of each output variable using Equation (6)
and summarize the results in Table 2.

SNRi =
E
[
si

normal
]

E[σi]
, i = 1, ..., n, (5)
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MDFS =
1
n

n

∑
i=1

E
[
si

f ault

]
− E

[
si

normal
]

E
[
si

normal
] , (6)

where σi represents the standard deviation of the i-th output variable noise, and si
normal and

si
f ault are the i-th signal of the eleven output variables under normal and fault

conditions, respectively.

Table 2. The minimum detectable fault severity of each fault type and magnitude [16].

Fault Type
Fault Injection Level [%]

5% 10% 15% 20%
Peak Final Peak Final Peak Final Peak Final

Turbine efficiency 5.88 5.88 11.80 11.80 17.77 17.77 23.78 23.78
Oxidizer pump efficiency 3.11 3.11 6.39 6.39 9.86 9.86 13.54 13.54

Fuel pump efficiency 2.82 2.82 5.81 5.81 8.99 8.99 12.39 12.39
CC oxidizer pipeline blockage 0.48 0.39 1.03 0.84 1.66 1.35 2.39 1.94

CC fuel pipeline blockage 1.29 1.11 2.67 2.32 4.15 3.61 5.74 5.01

All MDFSs for turbine and pump faults exceed the values listed in Table 1. This
indicates that, even at the smallest fault magnitude (5%) for turbine or pump efficiency
faults, the effects of the faults are greater than the noise effects. Therefore, the deviations
can be identified as being caused by faults, rather than noise. In contrast, for the fuel
pipeline blockage fault up to a magnitude of 5% and for the oxidizer pipeline blockage fault
up to a magnitude of 15%, the MDFSs are smaller than the values listed in Table 1. Then,
at those fault magnitudes, it becomes difficult to distinguish between deviations caused
by faults and those caused by noise, which leads to an increase in false alarms. Therefore,
this study uses 20% for each fault magnitude, where all MDFSs exceed all values listed in
Table 1.

5.2. Performance Validation: A Comparison with the EKF and UKF

To confirm the algorithm performance, we compared the algorithms proposed in this
study with those used in the previous study [21], which employed the other two nonlinear
Kalman filters, focusing on a qualitative analysis. For this, a Monte Carlo simulation was
conducted at each stage of the FDD algorithm, as illustrated in Figure 1. Subsequently, we
compared the simulation results for the FDD algorithm based on each filter. In the Monte
Carlo simulation process, we set two types of noise, Gaussian (N

(
0, σ2)) and uniform

(U (−3σ, 3σ)) distributions, and added them to the simulation data in each case.
Figure 8 shows the comparison results of the CUSUM algorithm based on the EKF,

UKF, and PF with Gaussian and uniform noises. The results of each detection probability
show that the CUSUM algorithm, using the residuals from the PF, is better than the other
nonlinear filters. The CUSUM algorithm using the UKF is better than the EKF, except for in
some fault cases (in the pipeline blockage fault) with a uniform noise distribution. This
could be because the UKF generates the residuals using a set of points obtained from the
Gaussian distribution, whereas the EKF uses the linearization approach. Therefore, under
noise distributions other than the Gaussian distribution, the algorithm based on the UKF
may yield worse results compared to those with the EKF.
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Figure 8. Monte Carlo simulation results of the CUSUM algorithm.

Subsequently, a Monte Carlo simulation was conducted using the MM method to
compare the performance in the diagnostic process by applying the residuals and error
covariances generated by each filter. Figure 9 shows that the MM method, employing
residuals and covariance derived from the PF, outperforms the other nonlinear filters
(EKF/UKF).

According to these two results, the PF is superior to the other filters in the Monte
Carlo simulation. In addition, since the algorithm with the PF has a computational cost and
performance that depend on the number of particles, the FDD algorithm combined with
the PF is expected to demonstrate greater effectiveness in posterior analysis, independent
of computational complexity. For this analysis, the algorithm utilizes secured flight status
and system condition datasets transmitted via telemetry devices during flight missions as
the system output variables. Through this process, the cause of the fault can be determined
and analyzed. Subsequently, this posterior analysis will facilitate failure analysis and
enable learning from mistakes. It will also ensure the reliability of launch vehicles and the
successful performance of Post-Mission Disposal (PMD) [26].
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Figure 9. Monte Carlo simulation results of the multiple-model method.

6. Conclusions

This study developed an FDD algorithm consisting of a PF, CUSUM algorithm, and
MM approach for an open-cycle LPRE in the startup process using a nonlinear simula-
tion verified using experimental data from both the steady and transient states. We then
designed a PF to generate residuals and detected and diagnosed faults using a modified
CUSUM algorithm and MM method. To assess the FDD algorithm, we numerically eval-
uated the performance of the CUSUM algorithm and the MM method in each FDD step.
Subsequently, we compared the performance with that obtained in a previous study [21]
using the Monte Carlo simulation under various fault conditions and noise distributions.
In this study, the FDD algorithm based on the PF performed better than the FDD algorithm
employing the other nonlinear filters, on average. Furthermore, considering the balance be-
tween computational resources and algorithmic performance, the FDD algorithm utilizing
the PF can enhance effectiveness, particularly in posterior analysis tasks. The procedures
used for other fault cases can be found in Cha’s study [16].
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Abbreviations

The following abbreviations are used in this manuscript:

A Cross-area of pipe
Itp Moment of inertia of turbopump rotor
L Length of pipe
Pa Oxidizer pipe branch point (a) pressure
Pb Fuel pipe branch point (b) pressure
PC Combustion chamber pressure
Pf ic Combustion chamber fuel injector inlet pressure
Pf ig Gas generator fuel injector inlet pressure
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PG Gas generator pressure
Poic Combustion chamber oxidizer injector inlet pressure
Poig Gas generator oxidizer injector inlet pressure
RC Combustion chamber gas constant
RG Gas generator gas constant
TC Combustion chamber temperature
TG Gas generator temperature
VC Combustion chamber volume
VG Gas generator volume
ṁcn Nozzle inlet flow rate
ṁFIC Combustion chamber fuel injector flow rate
ṁFIG Gas generator fuel injector flow rate
ṁ f 2 Gas generator fuel flow rate
ṁ f 3 Combustion chamber fuel flow rate
ṁG Gas generator outlet flow rate
ṁOIC Combustion chamber oxidizer injector flow rate
ṁOIG Gas generator oxidizer injector flow rate
ṁo2 Gas generator oxidizer flow rate
ṁo3 Combustion chamber oxidizer flow rate
ṁG Generated mass flow rate from solid propellant
ϵ f c Amount of time delay in combustion fuel injector
ϵ f g Amount of time delay in gas generator fuel injector
ϵoc Amount of time delay in combustion oxidizer injector
ϵog Amount of time delay in gas generator oxidizer injector
λ Pressure loss coefficient
ρ f Fuel density
ρo Oxidizer density
τf p Fuel pump torque
τop Oxidizer pump torque
τtb Turbine torque
ω Angular velocity of turbopump

Appendix A. Mathematical Model of the Liquid-Propellant Rocket Engine

The mathematical modeling of the LPRE used in this paper can be expressed in the
form of differential and algebraic equations (DAEs). The differential equations are derived
from seven governing equations, while the algebraic equations are derived from either
empirical equations or the laws of thermal-fluid dynamics [33]. To streamline the LPRE
simulation model, we utilized four governing equations, assuming a constant coefficient
representation for heat transfer dynamics in the mass flow rate dynamics. Using this ap-
proach, we developed an open-cycle LPRE simulation program that employs 11 first-order
ordinary differential equations and 37 algebraic equations [32]. The 11 nonlinear equations
of motion derived from the governing equations are listed in Table A1. Additionally, the
highest level of the simulation program in the MATLAB/Simulink environment is depicted
in Figure A1.

Table A1. Dynamic model equations.

Number Governing Equation Mathematical Equation

1 Rotational dynamics Itp
dω
dt = τtb − τop − τf p

2

Pipe dynamics

(
L
A

)
dṁo3

dt = Pa − Poic −
(

λ
2ρo A2

)
ṁ2

o3

3
(

L
A

)
dṁ f 3

dt = Pb − Pf ic −
(

λ
2ρ f A2

)
ṁ2

f 3

4
(

L
A

)
dṁo2

dt = Pa − Poig −
(

λ
2ρo A2

)
ṁ2

o2
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Table A1. Cont.

Number Governing Equation Mathematical Equation

5
(

L
A

)
dṁ f 2

dt = Pb − Pf ig −
(

λ
2ρ f A2

)
ṁ2

f 2

6 Pressure dynamics

(
Vc

RcTc

)
dPC
dt = ṁOIC + ṁFIC − ṁcn

7
(

Vg
RgTg

)
dPG
dt = ṁOIG + ṁFIG − ṁG

8

Time-delay equation

dṁOIC
dt = 1

ϵoc
(ṁo3 − ṁOIC)

9 dṁFIC
dt = 1

ϵ f c

(
ṁ f 3 − ṁFIC

)
10 dṁOIG

dt = 1
ϵog

(ṁo2 − ṁOIG)

11 dṁFIG
dt = 1

ϵ f g

(
ṁ f 2 − ṁFIG

)

Figure A1. Simulation model of liquid-propellant rocket engine [32].

Appendix B. Verification of Dynamic Simulation

We verified the simulation results by comparing the startup and shutdown processes
with the normalized simulation and experimental data of three state variables: Pc, Pg, and
ω (see Table 1). In Figure A2, the startup process is delineated, progressing sequentially
through the pyro-starter, CC ignition, and GG ignition stages. In the startup process, the
pyro-starter first rotates the turbopump, and then ignition starts combustion in the CC.
Finally, combustion begins in GG, and the turbopump accelerates until the full thrust
is achieved.

In contrast, Figure A3 shows the shutdown process, delineating a sequential pattern.
First, the GG oxidizer valve (GOV) and GG fuel valve (GFV) close to reduce the turbopump
rotation speed and the propellant flow to the CC. Afterward, when the propellant flow
to the CC is sufficiently reduced, the main oxidizer valve (MOV) closes, terminating
engine operation.
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Figure A2. Comparison of the startup process between the simulation and experimental data. (Top)
Combustion chamber pressure, (Middle) gas generator pressure, and (Bottom) turbopump rotational
speed [16].

Figure A3. Comparison of the shutdown process between the simulation and experimental data.
(Top) Combustion chamber pressure, (Middle) gas generator pressure, and (Bottom) turbopump
rotational speed [16].
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