
Citation: Im, H.; Lee, D.; Lee, S. A

Novel Architecture for an Intrusion

Detection System Utilizing

Cross-Check Filters for In-Vehicle

Networks. Sensors 2024, 24, 2807.

https://doi.org/10.3390/s24092807

Received: 28 March 2024

Revised: 16 April 2024

Accepted: 26 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Architecture for an Intrusion Detection System Utilizing
Cross-Check Filters for In-Vehicle Networks
Hyungchul Im , Donghyeon Lee and Seongsoo Lee *

Department of Intelligent Semiconductors, Soongsil University, Seoul 06978, Republic of Korea;
tory@soongsil.ac.kr (H.I.); takeuser@soongsil.ac.kr (D.L.)
* Correspondence: sslee@ssu.ac.kr

Abstract: The Controller Area Network (CAN), widely used for vehicular communication, is vul-
nerable to multiple types of cyber-threats. Attackers can inject malicious messages into the CAN
bus through various channels, including wireless methods, entertainment systems, and on-board
diagnostic ports. Therefore, it is crucial to develop a reliable intrusion detection system (IDS) capable
of effectively distinguishing between legitimate and malicious CAN messages. In this paper, we
propose a novel IDS architecture aimed at enhancing the cybersecurity of CAN bus systems in
vehicles. Various machine learning (ML) models have been widely used to address similar problems;
however, although existing ML-based IDS are computationally efficient, they suffer from suboptimal
detection performance. To mitigate this shortcoming, our architecture incorporates specially designed
rule-based filters that cross-check outputs from the traditional ML-based IDS. These filters scrutinize
message ID and payload data to precisely capture the unique characteristics of three distinct types of
cyberattacks: DoS attacks, spoofing attacks, and fuzzy attacks. Experimental evidence demonstrates
that the proposed architecture leads to a significant improvement in detection performance across all
utilized ML models. Specifically, all ML-based IDS achieved an accuracy exceeding 99% for every
type of attack. This achievement highlights the robustness and effectiveness of our proposed solution
in detecting potential threats.

Keywords: controller area network; cybersecurity; intrusion detection system; in-vehicle network;
machine learning; cross-check system

1. Introduction

Each year, the evolution of vehicles advances toward greater connectivity and au-
tonomy, primarily driven by the advanced interactions among Electronic Control Units
(ECUs) [1]. These ECUs are integral to controlling a wide range of vehicular functions,
including engine and telematics control and the deployment of airbags. This escalating
dependence on ECUs to manage vehicular technologies introduces new and complex chal-
lenges in cybersecurity [2]. ECUs are not isolated systems; they communicate with external
devices through on-board diagnostics-II (OBD-II) interfaces. Additionally, in the realm of
modern vehicular technology, vehicles frequently establish connections not only within
themselves but with external entities. This is achieved through vehicle-to-everything (V2X)
communication, which encompasses connections with other vehicles (V2V) and roadside
infrastructure (V2I) [3]. These advancements, while enhancing functionality, significantly
increase the potential for cybersecurity vulnerabilities, requiring continuous innovation
and vigilance in vehicular technologies and security protocols. In 2021, a research team at
Upstream Security released a comprehensive report on global automotive cybersecurity,
analyzing 633 publicly reported incidents over the past decade. This report highlights the
significant and exponential increase in cyberattacks targeting connected vehicles [4].

There are various established standards for in-vehicle communication, including the
Controller Area Network (CAN), FlexRay, Local Interconnect Network (LIN), and Media

Sensors 2024, 24, 2807. https://doi.org/10.3390/s24092807 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0004-8934-7162
https://orcid.org/0009-0008-1488-3488
https://orcid.org/0000-0002-3407-6236
https://doi.org/10.3390/s24092807
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092807?type=check_update&version=1


Sensors 2024, 24, 2807 2 of 20

Oriented Systems Transport (MOST). Of these, CAN is the most widely used protocol
due to its robustness, compatibility with real-time networks, ease of maintenance, and
cost-effectiveness. However, the growing number of ECUs in vehicles and their increased
connectivity to external networks raise significant concerns about the lack of inherent
security measures against cyber-threats. Smith et al. [5] initially highlighted the funda-
mental security vulnerabilities of CAN. Further, Aliwa et al. [2] extensively explored these
vulnerabilities through a variety of physical and remote access attacks. These vulnerabili-
ties substantially increase cybersecurity risks, highlighting the critical need for enhanced
protective measures within vehicle communication systems. Consequently, automotive
manufacturers face the critical task of either eliminating malicious entities or effectively
detecting and blocking malicious messages to prevent potential dangers.

To address these challenges, numerous studies have focused on using intrusion de-
tection systems (IDS) to detect malicious messages. As shown in Figure 1, all messages
transmitted via the CAN bus are monitored by these systems. Machine learning (ML)-
based methods have attracted particular attention due to their effectiveness in identifying
such threats. For instance, Yang et al. [6] employed tree-based classifiers, while Martinelli
et al. [7] utilized a fuzzy nearest-neighbor algorithm. Additionally, Avatefipour et al. [8]
proposed an anomaly detection model based on a one-class Support Vector Machine. In
2021, Moulahi et al. [9] evaluated the performance of conventional ML-based IDS systems,
such as Decision Trees (DT), Random Forests (RF), Multilayer Perceptrons (MLP), and
Support Vector Machines (SVM). Deep learning (DL) techniques have been proposed as
well, as demonstrated by Song et al. [10], who focused on advanced architectures. In
another example, Wei et al. [11] proposed a domain adversarial neural network-based IDS
capable of detecting various types of attacks. Similarly, Lo et al. [12] introduced HyDL-IDS,
which combines CNN and LSTM structures. Salek et al. [13] explored the use of a classical
neural network and a quantum restricted Boltzmann machine (RBM).

Figure 1. Typical structure of an intrusion detection system for the CAN bus.

Regardless of whether they rely on DL or ML architectures, existing IDS systems pri-
marily depend on a single model inference to detect attacks. However, systems that directly
impact human safety, such as vehicular security, require procedures that can recognize
uncertain predictions and make corrections. Moreover, existing IDS systems often neglect
the actual attack patterns observed in CAN bus traffic. For example, historical statistics of
CAN data frames, which include both message IDs and payload data, are valuable inputs
for an IDS. However, these data are rarely utilized in traditional systems. Therefore, the
efficacy of intrusion detection can be substantially improved by implementing straightfor-
ward rules derived from the history of CAN bus attack patterns and incorporating them
into existing IDS.

This study presents a novel IDS architecture that incorporates simple rule-based
filters to validate the results generated by a conventional ML-based IDS. Considering that
the proposed IDS principally relies on traditional ML techniques, it remains sufficiently
lightweight for implementation in in-vehicle edge computing devices [14,15]. In addition,
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these rule-based filters are computationally inexpensive and can be seamlessly integrated
into nearly all existing ML-based IDS frameworks. To the best of our knowledge, this
topic has not yet been considered in the literature on in-vehicle networks. The results
of our experimental study revealed a significant enhancement in detection performance
across various traditional ML-based IDS, including RF, k-Nearest Neighbors (kNN), MLP,
and SVM.

The main contributions of this study are as follows:

1. This paper highlights the importance of cross-checks for IDS predictions and proposes
a novel architecture that verifies and revises these predictions.

2. The proposed novel architecture is specifically designed for intrusion detection sys-
tems in vehicles, focuses on enhancing the cybersecurity of the CAN bus, and includes
specially designed rule-based filters.

3. The rule-based filters work alongside conventional ML-based IDS to cross-check pre-
dictions, thereby addressing the low detection performance commonly encountered
in existing systems.

The rest of this paper is organized as follows. Section 2 introduces related work. In
Section 3, we provide background information on the CAN bus and various attack types.
The proposed architecture is presented in Section 4. Section 5 presents the experimental
results and discussion. Finally, Section 6 concludes the study and describes future research.

2. Related Works

Over the past few years, intrusion detection in the CAN bus context has attracted
significant attention from researchers. This surge in interest is largely attributed to funda-
mental security vulnerabilities inherent in CAN communication protocols. Consequently,
there has been a substantial increase in academic research in this field. The literature on
this topic is extensive, and encompasses a range of studies, analyses, and reviews. This is
evident from several comprehensive surveys and research papers focusing on the CAN
IDS, as cited in [2,16–20]. These studies collectively highlight the growing importance of
developing robust security solutions for the CAN bus, reflecting the broader push within
the automotive industry to ensure cybersecurity in modern vehicles.

Song et al. [21] proposed a streamlined method to detect intrusions in network systems
by leveraging the timing intervals of message transmissions. Subsequently, an in-depth
study was conducted that focused on the frequency domain characteristics of timing
intervals in CAN messages [22]. The proposed method does not require any modifications
to the existing CAN bus, and is designed for efficient execution on platforms with extremely
limited computational resources. Similarly, Lee et al. [23] proposed a method for analyzing
the ratio of the offset and time difference between sending and receiving messages which
focuses on the remote and data frames. By assessing the response behaviors of ECUs,
this method can distinguish between normal operations and potential security breaches,
such as malicious messages. However, the study did not provide a crucial metric, such as
the accuracy of attack detection, which is essential for evaluating the effectiveness of the
proposed method.

Recently, innovative methods that utilize deep neural networks have been proposed.
Kang and Kang [24] proposed a Deep Belief Network (DBN)-based intrusion detection to
distinguish between normal behavior and attacks. A comparative analysis revealed that
their DBN-based IDS outperformed traditional neural networks, particularly in enhancing
detection precision while maintaining real-time responsiveness. However, the process
of training a DBN is time-consuming, resulting in significant overhead. Song et al. [10]
proposed an IDS using a deep convolutional neural network (DCNN). To train the DCNN
model, arbitration IDs were extracted from CAN packets. These IDs, initially in hexadeci-
mal format, were converted into binary IDs. Subsequently, binary versions of 29 sequential
arbitration IDs were used to generate an image with dimensions of 29 × 29. This approach
effectively led to the accurate classification of the majority of attack and normal packets
into their respective categories. However, Desta et al. [25] observed that DCNN-based
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IDS could only distinguish between attack and normal packets when there a high vol-
ume of attack packets is present within a short time frame. Hence, they proposed a new
method utilizing recurrence plots called Rec-CNN based IDS. Their approach showed
enhanced effectiveness in scenarios with fewer attack packets over a longer duration. Gao
et al. [26] proposed CanNet, a lightweight model that utilizes a specially designed CAN
image generation scheme to convert CAN traffic data into images, which is suitable for
DoS attacks.

The supervised learning-based IDS approach depends on a substantial volume of
fully annotated data during the training phase of the model. In addition, these models
have fundamental limitations in detecting unknown attacks. To solve these problems, Seo
et al. [27] pioneered the application of a Generative Adversarial Network (GAN) model,
which is an unsupervised learning approach, for intrusion detection in a CAN bus. The
method was designed to learn the operational patterns of CAN traffic and identify attacks
by spotting deviations from the baseline behavior. They detected each of four attacks,
with an average accuracy of 98%. However, when compared to supervised learning-based
IDS, the performance was lower, though GIDS remained efficient, even in contemporary
contexts where there is a deficiency in establishing known attack patterns for vehicles. Xie
et al. [28] proposed an enhanced GAN-based IDS to overcome the limitation of generating
imprecise CAN message blocks. Agrawal et al. [29] proposed an IDS that employs Long
Short-Term Memory (LSTM) combined with reconstruction and thresholding techniques
to identify various attacks such as DoS, fuzzy attacks, RPM spoofing, and gear spoofing.
Furthermore, Araujo-Filho et al. [30] presented an intrusion prevention system (IPS) for the
CAN bus using an isolation forest (iForest), which not only detects malicious messages but
discards them as well.

Deng et al. [31] noted that general ML/DL models differ from human students, who
often double-check their answers during examinations, especially when their confidence is
low. This is because ML/DL models typically produce an answer with a single inference.
Therefore, they proposed a double-check framework that recognizes unreliable predictions
and revises them. Similarly, existing IDS systems for vehicular security rely only on a
single inference of IDS. In this context, we use rule-based filters to identify unreliable
predictions. These filters assume that unreliable predictions result from incorrect pattern
recognition by the IDS. Furthermore, they revise predictions based on the nature of the
attacks, for example, ’Does the frame have enough low IDs to dominate the CAN bus given
the function of a DoS attack?’

3. Theoretical Background
3.1. Controller Area Network

The Controller Area Network (CAN) bus is a serial communication protocol engi-
neered for real-time control systems in vehicles [32]. The majority of sensors, actuators, and
processors within a vehicle communicate through this network, which employs twisted
differential-pair lines to enhance noise and error resilience. The CAN message format is
designed based on two criteria: the standard frame, as defined by CAN 2.0A, and the
extended frame, outlined in CAN 2.0B. Figure 2 shows the standard CAN data frame. The
CAN bus operates on two voltage levels, termed “dominant” (corresponding to a digital
“0”) and “recessive” (corresponding to a digital “1”). In situations where multiple nodes
attempt simultaneous transmission of conflicting signals, the “dominant” voltage level
prevails, ensuring that a digital “0” supersedes a digital “1”. Importantly, all the nodes in
this network function as masters, permitting any node to initiate a data transmission when
the bus is idle. During the arbitration phase, the bits of this identifier are compared and
resolved from the most significant bit (MSB) to the least significant bit (LSB). Specifically,
nodes transmitting a “0” continue their transmission while those transmitting a “1” switch
to a receiving mode. This mechanism ensures that the CAN node with the lowest message
ID invariably completes transmission without interruption.
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Figure 2. Structure of the standard CAN data frame.

3.2. Attack Model

Common existing CAN bus attacks are categorised into denial-of-service (DoS), spoof-
ing, and fuzzy attacks based on the level of insight the attacker has into the bus system
being targeted, the intention behind the attack, and the technique being used. These
categories are elaborated as below.

3.2.1. DoS Attack

During a DoS attack on a CAN bus, the attacking node aggressively dominates the
communication bus. This is achieved by sending frames with exceptionally high priority,
typically represented by a message ID of 0x000 or another value that is comparably low, as
shown in Figure 3. The simplest DoS attack type is performed using the highest priority
ID, as shown in Figure 3a. Park et al. [33] introduced an advanced DoS attack, shown in
Figure 3b, which has a sufficiently high message ID to dominate the CAN bus. This attack
method is designed to exploit the priority-based arbitration of the CAN protocol, in which
lower message IDs have higher priority. In this way, the attacker can launch a DoS attack
even with minimal pre-existing knowledge.

Figure 3. DoS attack scenario in CAN bus: (a) simplest DoS and (b) advanced DoS.

The nature of this attack is crucial when designing defense mechanisms such as rule-
based filters in an IDS. For example, if the IDS incorrectly classifies a CAN frame with a high
message ID as a DoS attack, the filter should recognize this wrong prediction and revise it.
Therefore, considering the subtleties of DoS attacks on the CAN bus, it is crucial for an IDS
to differentiate between genuine high-priority messages and those used maliciously during
an attack. A sophisticated rule-based filter must consider the context and frequency of these
high-priority messages in order to make an accurate assessment. This understanding forms
the basis for the development and refinement of more effective and nuanced intrusion
detection strategies within CAN networks.

3.2.2. Spoofing Attack

In spoofing attacks targeting the CAN bus, the assailant undertakes a thorough pre-
liminary analysis of the CAN traffic, as shown in Figure 4. This pre-attack phase involves
the close monitoring and recording of bus traffic, with a particular focus on identifying
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message IDs that correspond to the functionalities of different subsystems. Consequently,
in order to execute a spoofing attack the attacker must possess a detailed understanding of
the CAN bus operation. When the attack commences, the attacker continuously transmits
data frames with the same payload, inducing system malfunctions.

Figure 4. Spoofing attack scenario in CAN bus.

Recognizing the nuanced nature of such attacks, the development of rule-based filters
for IDS must consider these characteristics. An essential component of such a filter is the
incorporation of comprehensive statistical analysis. This analysis should focus on historical
data concerning the frequency and patterns of specific message IDs and payloads, particu-
larly those that have been previously identified as attack indicators [34]. By meticulously
evaluating these historical data, the filter can be fine-tuned to more accurately discern
between normal operations and potential spoofing attacks.

3.2.3. Fuzzy Attack

In the case of a fuzzy attack on the CAN bus, the approach adopted by a malicious
node is notably distinct and presents unique challenges for detection. In these attacks, a
node disrupts the network by sending intentionally randomized data frames, as shown in
Figure 5. These frames contain message IDs and payloads that do not follow predictable or
consistent patterns; therefore, the attacker can launch this type of attack without in-depth
knowledge of CAN bus operations, much like a DoS attack.

Figure 5. Fuzzy attack scenario in CAN bus.

Despite this randomness, a critical aspect that can be leveraged for detection is the
distinct difference between the characteristics of these frames and those of normal network
traffic. In a standard operating environment, message IDs and payloads follow a certain
structure and frequency that is consistent with the functional requirements of the network.
In contrast, the frames generated in a fuzzy attack have message IDs and payloads that
starkly contrast with this normative pattern. Such distinctiveness is a pivotal consideration
for the proposed rule-based filter, and the statistics pertaining to message IDs and payloads
from prior normal frames should be rigorously evaluated in the final classification.

4. Proposed Architecture

In instances of vehicular hacking, attack frames are surreptitiously injected into the
CAN bus of a vehicle. As a consequence of this signal injection, alterations occur in the
sequential pattern of CAN IDs [10,21,22,25]. Accordingly, in this study, ML-based IDS
variants were trained using temporal intervals associated with identical CAN IDs, as shown
in Figure 6. Specifically, two temporal intervals, Iprev1 = Tcur − Tprev1, Iprev2 = Tcur − Tprev2,
were employed as features for training. Here, Tcur, Tprev1, and Tprev2 denote the timestamps
of the current frame, immediate prior frame with the same message ID, and penultimate
frame with the same message ID, respectively. It is important to note that Iprev1 < Iprev2.



Sensors 2024, 24, 2807 7 of 20

Figure 6. Extracting time intervals between the same CAN identifiers on the CAN bus for training.

Figure 7 shows the proposed architecture of IDS with cross-check rule-based filter.
Typically, an IDS consists of a training step and a detection step. However, the proposed
architecture includes an additional final step following the detection step, resulting in a
total of three phases. In the training step, two intervals Iprev1 and Iprev2 are used as inputs,
and labeling is based on Tcur. This labeling method enables real-time detection, as the
IDS predicts whether an attack is occurring based on the current frame. After the training
process, the trained model is used as the IDS. The real CAN frames without labels are used
in the detection step to extract time intervals. Therefore, the IDS is considered a function
that takes two intervals as input and outputs the label of this input. The function can be
expressed as

Y = f (X, θ), (1)

where Y is the prediction of the IDS, X represents the input data, θ means the parameters
of the IDS, and f represents the IDS. In the final step, prediction outcomes from the IDS
trained with two intervals are subjected to verification through an additional rule-based
filter. The final decision can be formulated in a similar way to the expression of Equation (1),
provided by

Y′ = g(Y, ε), (2)

where Y′ is the final label and is classified as either attack or normal, ε denotes the IDS error
and normal CAN data configuration, and g represents the rule-based filter. This filter is
meticulously developed to take full advantage of the unique characteristics presented by
the three attack scenarios outlined previously.

Figure 7. The architecture of the intrusion detection system supplemented with a cross-check rule-
based filter.

• DoS attack: This attack type obstructs the transmission of messages with low-priority
identifiers by flooding the CAN bus with high-priority message IDs.
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• Spoofing attack: Attackers can manipulate vehicle subsystems by sending a large
number of CAN frames, each with a given constant but valid value.

• Fuzzy attack: The message IDs in a fuzzy attack are randomly selected, and the data
field bits are randomly generated.

The operational principles of the proposed rule-based filter are as follows
(Sections 4.1, 4.2 and 4.3).

4.1. Denial-of-Service Attack Scenario

The proposed rule-based filter executes the following protocols to verify the classifica-
tion results generated by a conventional IDS (Algorithm 1).

Algorithm 1 DoS Attack Scenario

1: Train the ML-based IDS model
2: Input: Features {Iprev1, Iprev2}
3: Output: Final Decision {‘attack’ or ‘normal’}
4: while Monitoring results of the IDS do
5: if Tcur − Tupdate > Treset then
6: AC[IDcur]← 0
7: Tupdate ← Tcur
8: end if
9: if decision of the IDS is DoS Attack then

10: AC[IDcur]← AC[IDcur] + 1
11: if AC[IDcur] > FPmax then ▷ (Rule 1)
12: attack← True
13: else if IDcur > IDth then ▷ (Rule 2)
14: attack← False
15: else
16: attack← True
17: end if
18: else
19: if AC[IDcur] > FPmax then ▷ (Rule 1)
20: attack← True
21: else
22: attack← False
23: end if
24: end if
25: end while

4.1.1. DoS Attack: First Rule

(Rule 1) A current frame shall be classified as an attack, irrespective of the initial
judgment by the IDS, if its message ID has been recurrently categorized as an attack by
the IDS which has been trained with intervals between same message IDs.

For each individual message ID, the attack count, denoted as AC[ID], is incremented
whenever the IDS classifies a corresponding frame as an attack. When the message ID
for the current frame is IDcur, its associated attack count AC[IDcur] is evaluated against a
threshold FPmax. The attack count is reset after a certain period Treset to prevent the continu-
ous increase of AC[IDcur] and avoid the generation of false positives (FP). We propose that
if Tcur − Tupdate > Treset, then the attack count is reset; here, Tcur and Tupdate respectively
represent the current time and the time when the monitoring of CAN communication
began, Treset indicates the total duration of normal CAN communication in the normal
dataset, and Tupdate is replaced with Tcur after Treset.

FPmax represents the highest value of FP[ID] recorded across all message IDs. Follow-
ing the training phase, which utilizes a DoS attack dataset, the IDS is evaluated using a
normal dataset. Here, FP[ID] denotes the number of FP cases recorded during the testing
phase. Consequently, FPmax represents the most egregious classification error committed
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by the IDS. It is imperative to recognize that when AC[IDcur] > FPmax, the attack count
corresponding to the CAN ID of the current frame exceeds the inherent error margin of the
IDS. Under such circumstances, the frame should be designated as an attack regardless of
the initial IDS assessment.

4.1.2. DoS Attack: Second Rule

(Rule 2) A current frame shall be classified as normal, irrespective of the IDS’s
preliminary assessment, if its current message ID surpasses a predetermined threshold.

In this study, we propose using the predetermined threshold IDth to cross-check the
predictions of the IDS. The actual IDs and data of a vehicle’s CAN messages depend on
the Database Container (DBC), which is proprietary to the automotive manufacturer [35].
The best method is to access the DBC in order to determine the appropriate IDth. However,
for security reasons, the DBC file is kept strictly by the manufacturer. Thus, we analyze a
normal dataset and determine the IDth according to the experimental results in Section 5.

During a DoS attack, the attacking node typically sends out frames with high priority,
which correspond to lower message IDs in the context of the arbitration phase in the CAN
bus. In such scenarios, if the current message ID, denoted as IDcur, surpasses IDth, then
there exists a strong likelihood that the frame is not part of a DoS attack but rather a
normal communication. This understanding is based on the knowledge that frames with
higher message IDs face challenges in dominating the CAN bus traffic. Attack frames
with high message IDs struggle to gain control over the bus because of their lower priority,
which is the opposite of what occurs during DoS attacks. This behavioral pattern is a key
observation for distinguishing between normal operations and potential security breaches
in CAN traffic.

4.2. Spoofing Attack Scenario

The proposed rule-based filter executes the following protocols to verify the classifica-
tion results of a conventional IDS (Algorithm 2).

4.2.1. Spoofing Attack: First Rule

(Rule 1) A frame shall be classified as an attack, irrespective of the initial IDS
classification, if both its current message ID and payload data have been excessively
categorized as attacks.

In the context of a spoofing attack, Rule 1 parallels its counterpart in the DoS attack
scenario; however, in the spoofing attack context, both the message ID and payload data
are taken into account. Yu et al. [36] conducted an analysis of CAN communication data,
identifying the transmission frequency and data variation range for each ECU device; for
example, the attacker needs to send a large number of malicious messages, each with the
same data field and a valid ID, within a short period of time in order to cause a malfunction.

For each distinct message ID, an ID attack count ACI [ID] is incremented when the
IDS designates a frame as an attack. Correspondingly, for each unique payload datum,
the payload data attack count ACD[DATA] increases. When the current message ID and
payload data are denoted as IDcur and Datacur, their respective attack counts ACI [IDcur]
and ACD[DATAcur] are contrasted with predetermined thresholds FPI,max and FPD,max.
Therefore, in a spoofing attack scenario, both the ID attack count and the payload data
attack count are reset after Treset.

Here, the variables FPI,max and FPD,max represent the highest values of FP[ID] and
FP[DATA] across all the message IDs and payload data, respectively. Following train-
ing of the IDS on a spoofing attack dataset, its performance is assessed using a normal
dataset. In this instance, FP[ID] and FP[DATA] signify the number of FP cases identified
in the test results for each individual message ID and payload. Consequently, FPI,max and
FPD,max represent the maximum errors engendered by the IDS. If ACI [IDcur] > FPI,max
and ACD[DATAcur] > FPD,max, then the frame in question should be designated as an
attack, disregarding the initial IDS classification.
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Algorithm 2 Spoofing Attack Scenario

1: Train the ML-based IDS model
2: Input: Features {Iprev1, Iprev2}
3: Output: Final Decision {‘attack’ or ‘normal’}
4: while Monitoring results of the IDS do
5: if Tcur − Tupdate > Treset then
6: ACI [IDcur]← 0
7: ACD[DATAcur]← 0
8: Tupdate ← Tcur
9: end if

10: if decision of the IDS is Spoofing Attack then
11: ACI [IDcur]← ACI [IDcur] + 1
12: ACD[DATAcur]← ACD[DATAcur] + 1
13: if ACI [IDcur] > FPI,max and ▷ (Rule 1)

ACD[DATAcur] > FPD,max then
14: attack← True
15: else if ACI [IDcur] > FPI,max and ▷ (Rule 2)

ACD[DATAcur] ≤ FPD,max then
16: attack← False
17: else
18: attack← True
19: end if
20: else
21: if ACI [IDcur] > FPI,max and ▷ (Rule 1)

ACD[DATAcur] > FPD,max then
22: attack← True
23: else
24: attack← False
25: end if
26: end if
27: end while

4.2.2. Spoofing Attack: Second Rule

(Rule 2) A frame shall be classified as normal, even if the IDS initially classifies it as
an attack, under the condition that the current message ID has been repeatedly classified
as an attack but the current payload data have not.

This rule specifies that if a frame’s current message ID has been frequently classified as
an attack but the payload data have not been similarly classified, then the frame should be
considered normal. This is because if ACI [IDcur] exceeds FPI,max within Treset, then it can
be inferred that an attack involving CAN frames with IDcur has occurred. However, it is
essential to distinguish these from normal frames that have the same ID. Typically, spoofing
attacks continuously inject frames with identical payload data in order to disrupt specific
devices [28]. This guideline serves as an additional layer of verification to reduce FPs.

In a spoofing attack, the attacker deliberately transmits frames with a specific message
ID corresponding to the targeted subsystem, thereby maintaining uniformity in the payload
data. This behavior contrasts with the operations of a normal node, which slightly varies
the payload data while keeping the message ID constant [34,36,37]. Considering these
characteristics, the frame should be classified as normal if the IDS initially designates it as
an attack but the payload data have not been frequently classified as part of an attack.

4.3. Fuzzy Attack Scenario

The proposed rule-based filter executes the following protocols to verify the classifica-
tion results of a conventional IDS (Algorithm 3).
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Algorithm 3 Fuzzy Attack Scenario

1: Train the ML-based IDS model
2: Input: Features {Iprev1, Iprev2}
3: Output: Final Decision {‘attack’ or ‘normal’}
4: while Monitoring results of the IDS do
5: if decision of the IDS is Fuzzy Attack then
6: attack← True
7: else
8: if IDcur /∈ Znormal then ▷ (Rule 1)
9: attack← True

10: else if Hcur > Hmax[IDcur] and ▷ (Rule 2)
BCcur ≥ DLCcur/2 then

11: attack← True
12: else
13: attack← False
14: end if
15: end if
16: end while

4.3.1. Fuzzy Attack: First Rule

(Rule 1) A frame shall be classified as an attack, irrespective of the IDS’s initial
classification, if the current message ID of the frame is absent in the normal dataset.

The set of all message IDs in the normal dataset, designated as Znormal , forms the basis
for vehicular control within the CAN bus. This dataset reflects the standard message flow
as defined by the vehicle’s Database Container (DBC). In situations where access to the
proprietary DBC file is restricted for security reasons (a common practice among automotive
manufacturers), the reliance on Znormal becomes crucial. This is particularly the case in
scenarios where direct access to the DBC is unavailable, making the normal dataset essential
for identifying deviations. Therefore, if the current message ID IDcur is not found in Znormal ,
it is regarded as an unfamiliar ID, suggesting that it does not belong to the standard message
set and potentially indicating an attack. Similarly, Olufowobi et al. [38] proposed the use of
a lookup table that contains a list of all message IDs to detect attack frames.

4.3.2. Fuzzy Attack: Second Rule

(Rule 2) A frame shall be classified as an attack, irrespective of the IDS’s initial
classification, if it satisfies two specific conditions concerning its payload data:

• Condition (1): The Hamming distance [39] between the payload data of the current
frame and its predecessor surpasses any such distance observed between consecu-
tive frames with the identical message ID in the normal dataset.

• Condition (2): A majority of the bytes in the current payload data contains a higher
number of “1” bits than any corresponding byte positions in the payload data of
the normal dataset.

In the context of a fuzzy attack, payload data are arbitrarily generated, and diverge
significantly from the payload data in normal frames. Two primary divergences can be
identified: the Hamming distance between consecutive frames Condition (1), and the
number of “1” bits at corresponding byte positions Condition (2). Therefore, if both
conditions are satisfied, the frame is classified as an attack.

Figure 8 shows Condition (1), which assesses the dissimilarity between the payload
data of two consecutive frames with the same message ID. In the case of normal frames,
consecutive payloads exhibit a high degree of similarity. Conversely, payloads differ
significantly between normal and attack frames [40].
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Figure 8. Hamming distance between two consecutive payloads with the same message ID.
(a) searching for Hmax between consecutive frames with the same Message ID; (b) current frame
attack detection by Hamming distance exceeding Hmax; (c) normal frame exhibiting Hamming
distance exceeding Hmax.

In Figure 8a, Hcur represents the Hamming distance between the payload data of the
current frame and its immediate predecessor, both of which share the same message ID,
denoted as IDcur. The variable Hmax[IDcur] signifies the maximum Hamming distance
recorded between any two consecutive frames in the normal dataset that share the same
message ID IDcur. In Figure 8b, the inequality Hcur > Hmax[IDcur] holds true when the
current frame is under attack; however, Figure 8c presents a complicating factor in that the
same inequality Hcur > Hmax[IDcur] holds true when the current frame is actually normal.
This overlap in conditions necessitates additional parameters for accurate differentiation
between normal and attack frames.

Figure 9 shows Condition (2), which examines the dissimilarity of the payload data
across byte positions. In the context of a fuzzy attack, the payload data of the current
frame differ significantly from the payload data of other frames with the same message
ID. Although an ideal approach would involve comparing the payload of the current
frame with all the payloads in a normal dataset, such a method would require excessive
computational resources. To circumvent this challenge, the present study pre-counts the
number of “1” bits in each byte of the normal dataset and employs the highest counts
as comparative thresholds. The quantity of bytes in the current payload data containing
more “1” bits than those in the normal dataset serves as a measure of dissimilarity, and is
designated as BCcur.

As shown in Figure 9, the number of “1” bits in the current payload data is enumerated
in terms of the respective byte positions. When the number of “1” bits in any byte of the
current payload exceeds the predetermined maximum for that specific byte position in the
normal dataset, BCcur increases by one for that particular position. The total number of
bytes in the payload data of the current frame is denoted as DLCcur. If BCcur ≥ DLCcur

2 , then
it can be inferred that the current payload is substantially dissimilar from the payloads
in the normal dataset for over half of the byte positions. Therefore, the current frame
is classified as an attack because of its significant dissimilarity to normal frames. It is
imperative to note that, according to Rule 2, a frame is identified as an attack only if both
Conditions (1) and (2) are satisfied.
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Figure 9. Method for byte count based on dissimilarity of payload data in byte positions.

5. Experiments and Analysis

In this section, we describe the datasets used in our experiments involving conven-
tional ML algorithms. We then present an evaluation method for the conventional IDS and
the proposed IDS that incorporates a cross-check rule-based filter.

5.1. Dataset and Classifier Models

As shown in Table 1, the car hacking dataset [41] used in this study encompasses
five distinct datasets. The attacks include a DoS attack involving the injection of ’0000’
CAN ID messages every 0.3 ms; a fuzzy attack in which completely random CAN ID
and DATA values are injected every 0.5 ms; and spoofing attacks related to RPM/gear
information, with specific CAN IDs being injected every 1 ms. Although the attack datasets
comprised both attack and normal frames, the normal dataset was composed exclusively of
normal frames. These datasets were constructed by recording CAN traffic via the OBD-II
port in an actual vehicle (YF Sonata) while parked with the engine turned on during a
message-injection attack. This attack involved the injection of counterfeit messages aimed
at misleading the original ECUs, leading to vehicle malfunctions.

Table 1. Summary of the car hacking dataset.

Dataset Normal Messages Attacking Messages
DoS Attack 3,078,250 587,521

Spoofing Attack (Gear) 3,845,890 597,252
Spoofing Attack (RPM) 3,966,805 654,897

Fuzzy Attack 3,347,013 491,847
Normal 988,871 –

We partitioned the datasets into 70% and 30% subsets for training and testing, respec-
tively. In addition, four conventional ML algorithms were employed, each specifically
tailored for binary classification tasks. The conventional ML algorithms are presented
as follows:
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• Random Forest (RF): An ensemble learning method that operates by constructing
multiple decision trees during training and outputting the mode of the classes for
classification tasks.

• k-Nearest Neighbors (kNN): A simple algorithm that stores all available cases and
classifies new cases based on a similarity measure.

• Multilayer Perceptron (MLP): A class of feedforward artificial neural network that
contains layers of nodes and is used for pattern recognition.

• Support Vector Machine (SVM): A powerful and versatile machine learning algorithm
used for both classification and regression tasks, which works by finding the best
boundary that separates classes of data.

Similar to the DL models, these models have been employed in various security and
privacy areas [42]. However, considering the limited capabilities of automotive devices,
computing resources are often constrained for each vehicle [14]. Therefore, ML-based IDS
are more appropriate for resource-constrained ECU than DL-based IDS.

5.2. Performance Metrics

The performance of the proposed method was evaluated using four performance
metrics: Recall, Accuracy, Precision, and F1-score. These metrics are defined as follows:

• Recall: Often termed the true positive rate (TPR), this metric represents the proportion
of correctly classified attack frames.

• Accuracy: This metric calculates the proportion of both true positives (TP) and true
negatives (TN) among all evaluated cases.

• Precision: This metric calculates the proportion of TP to the total number of instances
predicted as positive. In short, precision indicates the fraction of actual attacks within
the predictions classified as attacks.

• F1-score: The F1-score is a metric that strikes a balance between precision and recall,
often employed to assess classification performance, particularly in datasets with
imbalanced class distributions.

The metrics are defined as follows:

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)

F1− score =
2 · Recall · Precision
Recall + Precision

(6)

where TP represents the number of frames correctly classified as attacks, TN represent the
number of frames correctly classified as normal, and false positives (FP) and false negatives
(FN) represent the number of frames in which the model is incorrectly classified as attack
or normal, respectively.

5.3. Experimental Results

Figure 10 shows the false positive rate (FPR) of the four ML-based IDS, highlighting
how the performance of these systems is influenced by the threshold IDth. According to the
experimental results, if IDth is set to 0x400, the FPR increases to an average of approximately
twelve times higher than when IDth is set to 0x100. Therefore, IDth should be appropriately
determined based on the ID settings used in actual vehicles, as it influences the performance
of our proposed cross-check system. The empirically determined threshold IDth was
optimized through simulation and established at 0x100 for the performance comparison of
the ML-based IDS variants conducted in this study.
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Figure 10. Improvement of false positive rate in DoS attack scenario according to IDth.

Figure 11a–d show the rate of performance increase after implementing the proposed
cross-check rule-based filters in terms of recall, accuracy, precision, and F1-score for DoS,
gear spoofing, RPM spoofing, and fuzzy attacks, respectively. The performance improve-
ment is defined as follows:

Performance Improvement =
Mj −Mi

Mi
× 100 (7)

where Mi and Mj represent the performance metrics before and after the application of
the rule-based filters. As illustrated in the Figure 11, the proposed filters improved the
performance of all ML-based IDS. In particular, the performances of the MLP and SVM
models improved significantly. Overall, there was a tendency for recall to increase in DoS
attacks and for precision to increase in gear and RPM spoofing attacks. However, in a
fuzzy attack scenario, the performance improvement was lower than that observed in other
types of attacks. This seems to be due to the higher complexity associated with fuzzy
attacks compared to other types. Additionally, the algorithms used in the DoS and spoofing
attack scenarios showed higher performance improvements due to the effective setting
of attack frequency thresholds. In the fuzzy attack scenario, as evidenced by Figure 11d
and described in Section 4, the approach to DBC can significantly influence performance
improvement. The improvement in recall can be attributed to the first rule for fuzzy attacks,
which treats message IDs not found in the normal dataset as attacks. Meanwhile, the
precision remained largely unchanged due to reliance on the normal dataset. This can be
attributed to the inability to accurately access the DBC, which results in legitimate IDs
being mistakenly treated as attacks.

Table 2 enumerates the performance enhancements realized by applying the proposed
rule-based filters evaluated across the four ML algorithms. Regardless of the specific
evaluation metrics used, each algorithm demonstrated significant improvement in detec-
tion capabilities. The proposed rule-based filters are adaptable and capable of utilizing
other predictive models to enhance attack detection performance in addition to the ML
algorithms used in this study,. Additionally, these filters primarily execute comparison
operations, which typically consume fewer computing resources than multiplication or
division operations. In terms of time complexity, these filters can be expressed as either
O(1) or O(n). However, in order for the proposed rule-based filters to cross-check the
predictions of the IDS, the predictions must be made on a per-frame basis; for example, if
the IDS is trained across multiple frames and only determines whether an attack is present
or not, it would be challenging to apply these filters.
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Figure 11. Performance improvement of ML-based IDS: (a) DoS attack; (b) gear spoofing attack;
(c) RPM spoofing attack; (d) fuzzy attack.

Table 2. Performance when applying the cross-check rule-based filters to conventional ML-based
IDS.

Attack Type ML Models Recall (%) Accuracy (%) Precision (%) F1-Score (%)

DoS attack

Random forest 98.391→ 100 99.691→ 99.995 99.679→ 99.966 99.031→ 99.983
k-nearest neighbor (k=10) 99.533→ 100 99.866→ 99.998 99.632→ 99.990 99.583→ 99.995
MLP (2 hidden layers) 97.582→ 99.990 99.462→ 99.986 99.054→ 99.920 98.312→ 99.955
Support vector machine 93.283→ 99.997 98.452→ 99.983 99.333→ 99.924 96.213→ 99.960

Gear attack

Random forest 99.083→ 100 99.008→ 99.991 93.877→ 99.936 96.410→ 99.968
k-nearest neighbor (k=10) 98.347→ 100 99.263→ 99.987 96.257→ 99.906 97.291→ 99.953
MLP (2 hidden layers) 98.870→ 99.999 98.264→ 99.993 89.466→ 99.946 93.857→ 99.972
Support vector machine 99.407→ 100 97.827→ 99.993 89.384→ 99.958 94.130→ 99.979

RPM attack

Random forest 99.224→ 100 99.075→ 99.993 94.498→ 99.952 96.803→ 99.976
k-nearest neighbor (k=10) 98.099→ 100 99.296→ 99.997 96.978→ 99.982 97.535→ 99.991
MLP (2 hidden layers) 98.966→ 100 99.296→ 99.997 89.270→ 99.995 93.868→ 99.998
Support vector machine 99.688→ 100 97.806→ 99.997 89.337→ 99.985 94.229→ 99.993

Fuzzy attack

Random forest 97.757→ 99.512 99.539→ 99.762 98.640→ 98.648 98.197→ 99.079
k-nearest neighbor (k=10) 97.568→ 99.571 99.524→ 99.780 98.710→ 98.724 98.136→ 99.146
MLP (2 hidden layers) 97.290→ 99.368 99.440→ 99.702 98.291→ 98.307 97.788→ 99.835
Support vector machine 96.740→ 99.331 99.380→ 99.709 98.389→ 98.412 97.558→ 98.869

5.4. Comparison with Existing Works

We compared our proposed IDS architecture with other state-of-the-art IDS variants,
as shown in Table 3. The most well-known DCNN model [10] shows almost perfect
detection performance. However, it has a drawback in that it processes 29 CAN frames as
a single input to determine the presence of an attack among these frames. This approach
makes it difficult to identify exactly which frame contains the attack. GIDS [27] and
NovelADS [29] are unsupervised learning-based IDS models capable of detecting unlearned
attacks. However, similar to the DCNN model, they are limited in identifying precisely
which frame contains an attack. CanNet [26] is a lightweight image classification network
designed to detect anomalies in images generated from CAN data. The network evaluates
the presence of an attack based on units of 16 CAN frames and uses a method that calculates
the exact moment an attack occurs. However, the applicability of this network in other
attack scenarios remains unclear, as experiments were conducted only on DoS attacks. The
iForest-based IPS [30] offers the significant advantage of being able to detect attacks on a
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per-frame basis and remove the attacking frames. Nevertheless, this IPS has the limitation
of relatively low detection performance compared to the other tested models.

The conventional ML algorithms we used for our experiments were trained on a
per-frame basis; therefore, if the final decision from our cross-check system indicates an
attack, it means that the current CAN frame has been identified as an attack. Table 3
shows the Random Forest model as a representative example of the ML algorithms used
in the experiments. Compared to existing IDS models, it was observed that the Random
Forest IDS enhanced with the proposed cross-check system exhibited superior detection
performance for all types of attacks except for fuzzy attacks.

Table 3. Comparison between the proposed IDS architecture and existing IDS models.

Attack Type Models Detection Units Accuracy Precision Recall F1-Score

DoS attack

DCNN [10] 29 CAN frames 99.97 100 99.89 99.95
GIDS [27] 64 CAN frames 97.90 96.80 99.60 98.18

NovelADS [29] 100 CAN frames - 99.97 99.91 99.94
CanNet [26] 16 CAN frames 99.66 100 99.77 99.88
iForest [30] per CAN frame - - - -

Proposed method per CAN frame 99.99 99.96 100 99.98

Fuzzy attack

DCNN [10] 29 CAN frames 99.97 100 99.89 99.95
GIDS [27] 64 CAN frames 98.00 97.30 99.50 98.39

NovelADS [29] 100 CAN frames - 99.99 100 100
CanNet [26] 16 CAN frames - - - -
iForest [30] per CAN frame 99.29 95.07 99.93 97.44

Proposed method per CAN frame 99.76 98.64 99.51 99.07

Gear attack

DCNN [10] 29 CAN frames 99.97 100 99.89 99.95
GIDS [27] 64 CAN frames 96.20 98.10 96.50 97.29

NovelADS [29] 100 CAN frames - 99.89 99.93 99.91
CanNet [26] 16 CAN frames - - - -
iForest [30] per CAN frame 99.24 94.79 100 97.33

Proposed method per CAN frame 99.99 99.93 100 99.96

RPM attack

DCNN [10] 29 CAN frames 99.97 100 99.89 99.95
GIDS [27] 64 CAN frames 98.00 98.30 99.00 98.65

NovelADS [29] 100 CAN frames - 99.91 99.90 99.91
CanNet [26] 16 CAN frames - - - -
iForest [30] per CAN frame 99.85 98.97 100 99.48

Proposed method per CAN frame 99.99 100 99.95 99.97

5.5. Discussion and Limitation

In the experiments conducted in this study, the proposed novel IDS architecture
utilizing cross-check filters demonstrated improved performance across various types of
attacks. However, our architecture has a significant limitation in detecting untrained types
of attacks due to its reliance on supervised learning methods. Moreover, while the proposed
filters take into account three typical types of attacks, it is possible that more varied types of
attacks exist in the real world. To overcome this limitation, the proposed architecture needs
to be applied to an unsupervised learning IDS to detect unknown attacks. In addition, it is
necessary to collect and analyze different types of attacks in order to effectively cross-check
and validate the system against various threats. Nevertheless, the proposed cross-check
architecture remains effective against typical types of attacks for in-vehicle networks.

6. Conclusions

In this study, we have proposed a novel architecture for an IDS that incorporates rule-
based filters to corroborate the classification outcomes of conventional ML algorithms. The
experimental results demonstrate a marked enhancement in the detection performance of
various ML-based IDS frameworks. This enhancement was particularly evident when the
unique attributes of different attack scenarios were considered. Notably, the recall metric,
which signifies the rate at which the attack frames were accurately classified, exceeded 99%
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after application of the proposed filters. However, these models inherently face challenges
in identifying attack types that have not been included in their training owing to their
foundation in supervised learning methods. Although further adjustments are required
to address additional types of attack scenarios in real-world vehicular applications, this
study provides a substantial foundation for the development of a comprehensive intrusion
detection architecture.

In the future, we aim to refine our proposed rule-based filters to enhance their versatil-
ity across a broad spectrum of attack types. Currently, IDS models that analyze attacks on
a per-frame basis tend to show lower performance compared to those that assess attacks
over multiple frames. Therefore, our objective is to enhance our system by incorporating
advanced filters into an unsupervised learning-based IDS. This improved system will be
able to precisely identify the specific frame containing an attack while achieving superior
overall detection performance. Moreover, the advanced filters will address various attacks
not considered in this study. Every frame, whether normal or representing an attack,
adheres to the CAN data format; specifically, attack frames can occur under four scenarios,
namely, when the ID and the data field are each either fixed or random. By considering
these cases, it would be possible further strengthen our cross-check system.

Author Contributions: Conceptualization, methodology, H.I.; resources, investigation, analysis,
writing—original draft preparation, H.I. and D.L.; software, H.I. and D.L.; review, editing, and
supervision, S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the R&D Program of the Ministry of Trade, Industry, and
Energy (MOTIE) and the Korea Evaluation Institute of Industrial Technology (KEIT). (RS-2022-
00155731, RS-2023-00232192, 20023805).

Informed Consent Statement: Not applicable.

Data Availability Statement: https://ocslab.hksecurity.net/Datasets/car-hacking-dataset (accessed
on 28 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Leen, G.; Heffernan, D. Expanding automotive electronic systems. Computer 2002, 35, 88–93. [CrossRef]
2. Aliwa, E.; Perera, C.; Rana, O. Cyberattacks and Countermeasures For In-Vehicle Networks. ACM Comput. Surv. 2020, 54, 31–37.

[CrossRef]
3. Jeong, H.H.; Shen, Y.C.; Jeong, J.P.; Oh, T.T. A comprehensive survey on vehicular networking for safe and efficient driving in

smart transportation: A focus on systems, protocols, and applications. Veh. Commun. 2021, 31, 100349. [CrossRef]
4. Upstream Security’s 2021 Global Automotive Cybersecurity Report. Available online: https://upstream.auto/2021report

(accessed on 15 March 2024).
5. Hoppe, T.; Dittman, J. Sniffing/replay attacks on CAN buses: A simulated attack on the electric window lift classified using

an adapted CERT taxonomy. In Proceedings of the 2nd Workshop Embedded System Security (WESS), Salzburg, Austria, 4
October 2007.

6. Yang, L.; Moubayed, A.; Hamieh, I.; Shami, A. Tree-based intelligent intrusion detection system in internet of vehicles. In
Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019.

7. Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A. Car hacking identification through fuzzy logic algorithms. In Proceedings of
the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017.

8. Avatefipour, O.; Al-Sumaiti, A.S.; El-Sherbeeny, A.M.; Awwad, E.M.; Elmeligy, M.A.; Mohamed, M.A.; Malik, H. An Intelligent
Secured Framework for Cyberattack Detection in Electric Vehicles’ CAN Bus Using Machine Learning. IEEE Access 2019, 7,
127580–127592. [CrossRef]

9. Moulahi, T.; Zidi, S.; Alabdulatif, A.; Atiquzzaman, M. Comparative performance evaluation of intrusion detection based on
machine learning in in-vehicle controller area network bus. IEEE Access 2021, 9, 99595–99605. [CrossRef]

10. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198 . [CrossRef]

11. Wei, J.; Chen, Y.; Lai, Y.; Wang, Y.; Zhang, Z. Domain adversarial neural network-based intrusion detection system for in-vehicle
network variant attacks. IEEE Commun. Lett. 2022, 26, 2547–2551. [CrossRef]

12. Lo, W.; Alqahtani, H.; Thakur, K.; Almadhor, A.; Chander, S.; Kumar, G. A hybrid deep learning based intrusion detection system
using spatial–temporal representation of in-vehicle network traffic. Veh. Commun. 2022, 35, 100471. [CrossRef]

https://ocslab.hksecurity.net/Datasets/car-hacking-dataset
http://doi.org/10.1109/2.976923
http://dx.doi.org/10.1145/3431233
http://dx.doi.org/10.1016/j.vehcom.2021.100349
https://upstream.auto/2021report
http://dx.doi.org/10.1109/ACCESS.2019.2937576
http://dx.doi.org/10.1109/ACCESS.2021.3095962
http://dx.doi.org/10.1016/j.vehcom.2019.100198
http://dx.doi.org/10.1109/LCOMM.2022.3195486
http://dx.doi.org/10.1016/j.vehcom.2022.100471


Sensors 2024, 24, 2807 19 of 20

13. Salek, M.S.; Biswas, P.K.; Pollard, J.; Hales, J.; Shen, Z.; Dixit, V.; Chowdhury, M.; Khan, S.M.; Wang, Y. A novel hybrid
quantum-classical framework for an in-vehicle controller area network intrusion detection. IEEE Access 2023, 11, 96081–96092.
[CrossRef]

14. Feng, J.; Liu, Z.; Wu, C.; Ji, Y. AVE: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans.
Veh. Technol. 2017, 66, 10660–10675. [CrossRef]

15. Shuvo, M.M.H.; Islam, S.K.; Cheng, J.; Morshed, B.I. Efficient acceleration of deep learning inference on resource-constrained
edge devices: A review. Proc. IEEE 2023, 111, 42–91. [CrossRef]

16. Lokman, S.-F.; Othman, A.T.; Abu-Bakar, M.-H. Intrusion detection system for automotive controller area network (CAN) bus
system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 194. [CrossRef]

17. Jo, H.J.; Choi, W. A survey of attacks on controller area networks and corresponding countermeasures. IEEE Trans. Intell. Transp.
Syst. 2022, 23, 6123–6141. [CrossRef]

18. Wang, K.; Zhang, A.; Sun, H.; Wang, B. Analysis of recent deep-learning-based intrusion detection methods for in-vehicle network.
IEEE Trans. Intell. Transp. Syst. 2023, 24, 1843–1854. [CrossRef]

19. Lampe, B.; Meng, W. A survey of deep learning-based intrusion detection in automotive applications. Expert Syst. Appl. 2023,
221, 119771. [CrossRef]

20. Luo, F.; Wang, J.; Zhang, X.; Jiang, Y.; Li, Z.; Luo, C. In vehicle network intrusion detection systems: A systematic survey of deep
learning-based approaches. PeerJ Comput. Sci. 2023, 9, e1648. [CrossRef]

21. Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for
in-vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 13–15 January 2017.

22. Young, C.; Olufowobi, H.; Bloom, G.; Zambreno, J. Automotive intrusion detection based on constant can message frequencies
across vehicle driving modes. In Proceedings of the ACM Workshop on Automotive Cybersecurity, Richardson, TX, USA, 27
March 2019.

23. Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In
Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017.

24. Kang, M.-J.; Kang, J.-W. Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 2016,
11, e0155781. [CrossRef]

25. Desta, A.K.; Ohira, S.; Arai, I.; Fujikawa, K. Rec-CNN: In-vehicle networks intrusion detection using convolutional neural
networks trained on recurrence plots. Veh. Commun. 2022, 35, 100470. [CrossRef]

26. Gao, S.; Zhang, L.; He, L.; Deng, X.; Yin, H.; Zhang, H. Attack Detection for Intelligent Vehicles via CAN- Bus: A Lightweight
Image Network Approach. IEEE Trans. Veh. Technol. 2023, 72, 16624–16636. [CrossRef]

27. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 2018
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018.

28. Xie, G.; Yang, L.T.; Yang, Y.; Luo, H.; Li, R.; Alazab, M. Threat analysis for automotive CAN networks: A GAN model-based
intrusion detection technique. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4467–4477. [CrossRef]

29. Agrawal, K.; Alladi, T.; Agrawal, A.; Chamola, V.; Benslimane, A. NovelADS: A novel anomaly detection system for intra-
vehicular networks. IEEE Trans. Intell. Transp. Syst. 2022, 11, 22596–22606. [CrossRef]

30. De Araujo-Filho, P.F.; Pinheiro, A.J.; Kaddoum, G.; Campelo, D.R.; Soares, F.L. An efficient intrusion prevention system for CAN:
Hindering cyber-attacks with a low-cost platform. IEEE Access 2021, 9, 166855–166869. [CrossRef]

31. Deng, X.; Feng, F.; Wang, X.; He, X.; Zhang, H.; Chua, T.-S. Learning to Double-Check Model Prediction From a Causal Perspective.
IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 5054–5063. [CrossRef]

32. Bosch, R. Can specification version 2.0. Rober Bousch Gmbh Postfach 1991, 300240, 72.
33. Park, S.B.; Jo, H.J.; Lee, D.H. Flooding attack mitigator for in-vehicle CAN using fault confinement in CAN protocol. Comput.

Secur. 2023, 126, 103091. [CrossRef]
34. Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly detection in automobile control network data with long short-term memory

networks. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal,
QC, Canada, 17–19 October 2016.

35. Marchetti, M.; Stabili, D. Read: Reverse engineering of automotive data frames. IEEE Trans. Inf. Forensics Secur. 2018, 14,
1083–1097. [CrossRef]

36. Yu, Z.; Liu, Y.; Xie, G.; Li, R.; Liu, S.; Yang, L.T. TCE-IDS: Time interval conditional entropy- based intrusion detection system for
automotive controller area networks. IEEE Trans. Ind. Informat. 2023, 19, 1185–1195. [CrossRef]

37. Zhang, H.; Zeng, K.; Lin, S. Federated graph neural network for fast anomaly detection in controller area networks. IEEE Trans.
Inf. Forensics Secur. 2023, 18, 1566–1579. [CrossRef]

38. Olufowobi, H.; Hounsinou, S.; Bloom, G. Controller area network intrusion prevention system leveraging fault recovery. In
Proceedings of the ACM Workshop on Cyber-Physical Systems Security Privacy, London, UK, 11 November 2019.

39. Hamming, R.W. Error detecting and error correcting codes. Bell Labs Tech. J. 1950, 29, 147–160. [CrossRef]
40. Stabili, D.; Marchetti, M.; Colajanni, M. Detecting attacks to internal vehicle networks through hamming distance. In Proceedings

of the 2017 AEIT International Annual Conference, Cagliari, Italy, 20–22 September 2017.

http://dx.doi.org/10.1109/ACCESS.2023.3304331
http://dx.doi.org/10.1109/TVT.2017.2714704
http://dx.doi.org/10.1109/JPROC.2022.3226481
http://dx.doi.org/10.1186/s13638-019-1484-3
http://dx.doi.org/10.1109/TITS.2021.3078740
http://dx.doi.org/10.1109/TITS.2022.3222486
http://dx.doi.org/10.1016/j.eswa.2023.119771
http://dx.doi.org/10.7717/peerj-cs.1648
http://dx.doi.org/10.1371/journal.pone.0155781
http://dx.doi.org/10.1016/j.vehcom.2022.100470
http://dx.doi.org/10.1109/TVT.2023.3296705
http://dx.doi.org/10.1109/TITS.2021.3055351
http://dx.doi.org/10.1109/TITS.2022.3146024
http://dx.doi.org/10.1109/ACCESS.2021.3136147
http://dx.doi.org/10.1109/TNNLS.2023.3264712
http://dx.doi.org/10.1016/j.cose.2023.103091
http://dx.doi.org/10.1109/TIFS.2018.2870826
http://dx.doi.org/10.1109/TII.2022.3202539
http://dx.doi.org/10.1109/TIFS.2023.3240291
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x


Sensors 2024, 24, 2807 20 of 20

41. Hacking and Countermeasure Research Lab. Car-Hacking Dataset. Available online: https://ocslab.hksecurity.net/Datasets/car-
hacking-dataset (accessed on 19 March 2024).

42. Singh, S.; Sulthana, R.; Shewale, T.; Chamola, V.; Benslimane, A.; Sikdar, B. Machine-learning-assisted security and privacy
provisioning for edge computing: A survey. IEEE Internet Things J. 2022, 9, 236–260. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ocslab.hksecurity.net/Datasets/car-hacking-dataset
https://ocslab.hksecurity.net/Datasets/car-hacking-dataset
http://dx.doi.org/10.1109/JIOT.2021.3098051

	Introduction
	Related Works
	Theoretical Background
	Controller Area Network
	Attack Model
	DoS Attack
	Spoofing Attack
	Fuzzy Attack


	Proposed Architecture
	Denial-of-Service Attack Scenario
	DoS Attack: First Rule
	DoS Attack: Second Rule

	Spoofing Attack Scenario
	Spoofing Attack: First Rule
	Spoofing Attack: Second Rule

	Fuzzy Attack Scenario
	Fuzzy Attack: First Rule
	Fuzzy Attack: Second Rule


	Experiments and Analysis
	Dataset and Classifier Models
	Performance Metrics
	Experimental Results
	Comparison with Existing Works
	Discussion and Limitation

	Conclusions
	References

