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Abstract: This work presents an approach for the recognition of plastics using a low-cost spectroscopy
sensor module together with a set of machine learning methods. The sensor is a multi-spectral mod-
ule capable of measuring 18 wavelengths from the visible to the near-infrared. Data processing
and analysis are performed using a set of ten machine learning methods (Random Forest, Support
Vector Machines, Multi-Layer Perceptron, Convolutional Neural Networks, Decision Trees, Logistic
Regression, Naive Bayes, k-Nearest Neighbour, AdaBoost, Linear Discriminant Analysis). An experi-
mental setup is designed for systematic data collection from six plastic types including PET, HDPE,
PVC, LDPE, PP and PS household waste. The set of computational methods is implemented in a
generalised pipeline for the validation of the proposed approach for the recognition of plastics. The
results show that Convolutional Neural Networks and Multi-Layer Perceptron can recognise plastics
with a mean accuracy of 72.50% and 70.25%, respectively, with the largest accuracy of 83.5% for PS
plastic and the smallest accuracy of 66% for PET plastic. The results demonstrate that this low-cost
near-infrared sensor with machine learning methods can recognise plastics effectively, making it
an affordable and portable approach that contributes to the development of sustainable systems
with potential for applications in other fields such as agriculture, e-waste recycling, healthcare and
manufacturing.

Keywords: plastic recognition; near-infrared sensor; machine learning; low-cost sensors; principal
component analysis

1. Introduction

Plastics are widely used materials that can be found in a large variety of products in
daily use such as food containers, bags, bottles, cards, telephones, computers and household
objects [1,2]. The use of plastics for manufacturing of consumer products is attractive for
the global economy since they are versatile, lightweight, low-cost, resistant to corrosion and
durable [3,4]. However, the mass production, uncontrolled usage and low biodegradability
of plastics have led to the generation of tons of waste contaminating the environment
(streets, parks, cities, beaches, oceans), increasing carbon levels and contributing to health
problems [5,6].

For this reason, recycling and reuse of plastics are urged for better waste management,
cutting the manufacturing of new plastic objects and closing the material–consumption loop
to maintain our natural resources and enable a circular and sustainable economy [7,8]. To
facilitate the recycling process, the American Society for Testing and Materials (ASTM) has
grouped plastics into seven main categories: (i) polyethylene-terephthalate (PE), (ii) high-
density polyethylene (HDPE), (iii) polyvinyl-chloride (PVC), (iv) low-density polyethylene
(LDPE), (v) polypropylene (PP), (vi) polystyrene (PS) and (vii) others [9]. However, efficient
automated recycling and sorting processes require the identification of plastic waste, which
is a critical task given that waste is usually mixed with different types of plastics and
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other objects [10]. Currently, plastics can be identified automatically by extracting data and
analysing features of plastic waste using a variety of sensors and computational methods,
including RGB cameras, hyperspectral imaging (HSI), near-infrared spectroscopy (NIR),
visual image spectroscopy (VIS), and X-ray fluorescence (XFR) [11,12]. These sensors have
shown their capability for accurate identification of plastics; however, most of them tend
to be highly expensive (GBP 6k–50k) and accessible only to few groups, limiting their
potential to tackle the worldwide issue of plastic pollution.

This work presents an alternative approach for recognition of plastic types using a
low-cost near-infrared spectroscopy (NIR) sensor module (∼GBP 75) and a generalised
pipeline with a set of machine learning (ML) methods. Our proposed approach is highly
affordable compared to the traditional methods that use expensive spectroscopy sensors.
The sensor module, which can perform measurements from the visible to NIR, is used
together with an experimental setup to extract properties systematically from six (PET,
HDPE, PVC, LDPE, PP, PS) different types of household plastic waste. The data collected
are analysed using a set of ten computational methods including Multi-Layer Perceptron
(MLP), Convolutional Neural Networks (CNNs), Linear Discriminant Analysis (LDA),
AdaBoost, Random Forest, Decision Trees, Support Vector Machines (SVMs), Naive Bayes,
Logistic Regression and k-Nearest Neighbour (kNN). The potential of these methods for
plastic recognition is also evaluated by adding Principal Component Analysis (PCA) and
LDA stages, which also offer a key and powerful preprocessing step for dimensionality
reduction. The systematic data analysis and experimental results show that the low-cost
NIR sensor module, with ML and dimensionality reduction of sensor data, can recognise
plastic waste accurately and reliably while being affordable for any lab. Overall, the results
show the potential of low-cost NIR spectroscopy sensors for material identification tasks
and also their suitability for the design of affordable, reliable and portable tools that can
contribute to reaching a circular and sustainable economy.

The rest of this paper is organised as follows: previous related works are described
in Section 2; the low-cost sensor, plastic data and recognition process are presented in
Section 3; the experiments and results are described in Section 4; and the discussion and
conclusion of this work are presented in Sections 5 and 6, respectively.

2. Related Work

The recognition of plastics has become a crucial task for recycling and reusing materials
and alleviating the uncontrolled production of consumer products made of plastic. This is
also an important to reduce the worldwide problem of plastic contaminating our streets,
cities and oceans. For this reason, researchers have developed a variety of approaches
combining different sensors and computational methods to classify plastic categories
defined by the American Society for Testing and Materials.

Commonly, material property extraction from plastics for analysis and recognition has
been performed using different sensing technologies, including XRF, Raman spectroscopy,
NIR, miniaturised near-infrared (MicroNIR), laser-induced breakdown spectroscopy (LIBS),
and hyperspectral computer tomography (CT) [11–15]. In the work presented by [16],
hyperspectral CT sensing was used for data extraction, together with Artificial Neural
Networks (ANNs) and SVMs, for the recognition of plastics, achieving 80% and 61%
accuracies, respectively. The analysis in this work employed virgin plastics only; common
plastics from household waste were not evaluated. Data measured with an industrial
in-line hyperspectral camera were processed using PCA and k-Means for dimensionality
reduction and clustering of different plastics [17]. The plastics were clustered correctly;
however, the need for an industrial-level sensor makes this approach highly expensive and
unsuitable for application in other environments. Spectroscopy sensing is one of the most
popular techniques for recognition of plastics. Four different spectroscopy sensors: Fourier
transform infrared spectroscopy (ATR-FTIR), NIR, LIBS, and XRF and a set of machine
learning methods including SVM, kNN, LDA, PCA–SVM, PCA–kNN and PCA–LDA were
used for the recognition of six plastic types (PET, HDPE, PVC, LDPE, PP, PS) from marine
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debris [12]. Mean accuracies of 70%, 91%, 97% and 99% were achieved by the combination
of XRF and kNN, LIBS and LDA, NIR and LDA, and ATR-FTIR and LDA, respectively.

Video cameras and images have also been used for the detection and recognition of
plastics based on the objects’ shape and colour [18–21]. Colour images were used together
with SVM and YOLOv5 networks for detection and classification of plastics with accuracies
of 94.7% and 95.2%, respectively [22,23]. These methods showed to be accurate; however,
they focused mainly on the recognition of plastic bottles. Computer vision and recycling
labels have also been used for classification of plastic waste [24,25]. These works employed
PCA techniques and image processing for feature extraction and SVM for classification
processes, achieving mean accuracies ranging from 96% to 97.3% for identification of PET
and non-PET plastics. RGB cameras mounted in a microcontroller with CNN models were
able to recognise four types of plastic with a 74% accuracy [26]. An approach consisting of
micro-cameras and a Raspberry Pi computer was able to measure and identify signals from
three plastic types (PET, HDPE, LDPE) using image processing techniques [27]. Machine
vision and YOLOv3 were used in [28] for the identification of marine plastics with a mean
accuracy of 98%. YOLO methods have gained popularity for plastic and general waste
identification, using vision sensors with accuracies ranging from 65% to 94.5% [29,30].
These vision-based approaches have potential for autonomous identification and sorting
of plastics using robotic platforms. However, their performance still depends largely on
the quality of the images taken with cameras and on the environmental conditions, and
they require a high computational power. Furthermore, these vision-based methods rely
on the objects’ shape and colour only [21,31] and do not consider the composition of the
plastic material, which is key for the recognition of actual plastic types. Transfer learning
techniques with deep learning methods have allowed the recognition of plastics with an
89.87% accuracy under different environmental conditions, including domestic and outdoor
environments [32]. Even though a reliable accuracy was achieved by this work, the analysis
was performed using online databases only, limiting the robustness of this approach [33]. A
deep learning approach consisting of CNN layers, feature transfer and dense connections
was able to identify plastic waste with a 69% accuracy [34]. This value is lower compared
to other methods but the transfer feature process allows it to recognise other waste types,
including metals, glass and fabrics [35]. The use of deep learning methods and vision
sensing technologies is gaining popularity for waste detection. However, their performance
relies on vision data only, while material properties, extracted using spectral sensors, play
a key role in the robust and reliable identification of plastics and other materials.

The spectroscopy-based methods described here have shown to be reliable for plastic
recognition with accuracies ranging from 80.56% to 99% [36–38]. However, these works
require specialised sensors that tend to be expensive (>GBP 25,000) and large, making
them unaffordable and impractical [39,40]. Therefore, in this work, a new low-cost and
small-sized triad spectroscopy sensor module is employed with a set of ML methods for
the recognition of six different plastic types. This approach is affordable and accessible for
the masses but also allows for the design of portable solutions for a variety of applications
in different fields, including waste management, agriculture, monitoring and inspection,
construction and manufacturing.

3. Methods
3.1. Multi-Spectral Sensor

This work examines the use of the low-cost multi-spectral chipset AS7265x from
OSRAM. This chipset consists of three sensor devices, AS72651, AS72652 and AS72653,
which can be used for spectral identification in a range from the visible to the NIR. Each of
these three sensors includes six optical filters capable of measuring the light intensity in
a range from 410 nm (ultraviolet—UV) to 940 nm (infrared—IR) with a full width at half
maximum (FWHM) bandwidth of 20 nm. Thus, these three sensors were combined to form
an AS7265x chipset with 18 multi-spectral wavelengths. These three multi-spectral sensors
were integrated into a single package triad spectroscopy sensor, developed by the Ameri-



Sensors 2024, 24, 2821 4 of 14

can company SparkFun Electronics, alongside visible, UV, and IR LEDs to illuminate and
evaluate surfaces for light spectroscopy. This single package is used in the proposed experi-
mental setup for plastic recognition. The sole unit cost of the AS7265x sensor is ∼GBP 15,
while the integrated triad spectroscopy sensor is ∼GBP 56, which is ∼20x cheaper than
high-cost spectroscopy sensors. Figure 1a shows the triad spectral sensor module with the
arrangement of the visible, IR and UV chips and their corresponding LEDs.

AS72651 (Visible)

AS72653 (IR)
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V
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UV LED

(a)
PET HDPE PVC LDPE PP PS

(b)

Figure 1. Low-cost spectroscopy sensor and examples of plastic waste. (a) Triad spectral sensor
module from SparkFun Electronics [41]. (b) Examples of household plastic waste used for data
collection and recognition processes.

3.2. Plastics Used For Data Collection

The majority of household waste comprises single or multiple types of plastics from
the seven main categories identified by the American Society for Testing and Materials.
These plastics and their corresponding identification codes are PET (code 1), HDPE (code 2),
PVC (code 3), LDPE (code 4), PP (code 5), PS (code 6) and other (code 7). Therefore, for
this work, typical plastics that can be found in household waste have been collected and
labelled for the recognition process. Examples of plastic waste used in this work, such as
pieces of bottles, lids and food containers are shown in Figure 1b. A total of 423 samples
of plastic waste were employed for data collection, which include 100 LDPE, 100 HDPE,
100 PET, 100 LDPE, 15 PS and 8 PVC samples. All the plastics collected were washed at
60 ◦C to remove any surface debris, and a sample was cut from each plastic, ensuring it
was as flat as possible, close to the dimensions of 50 mm × 50 mm for a systematic data
collection process using the experimental setup described in Section 3.3. The samples were
labelled with a unique ID according to their resin identification code (RIC) marked on the
plastic item.

3.3. Experimental Setup For Data Collection

An experimental setup has been designed and developed by the authors of this work
for systematic, reliable and robust data collection. This setup comprises a custom-built
sealed wood-based box with dimensions of 406 mm × 206 mm × 200 mm and mounted
3D-printed holders to place the triad spectral sensor and plastic samples (see Figure 2).
The whole experimental environment was painted in a thick matt black colour to reduce
the effect of internal reflections. This setup also allows us to remove interference from
external light sources and to keep a consistent background reflectance to ensure reliable
measurements. The 3D-printed sensor and sample holder parts ensure that the triad
spectral sensor module is mounted firmly with a consistent measurement distance and
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angle from the plastic sample. The plastic sample holder is mounted at a 50 mm distance
from the sensor to allow the field-of-view divergence of the sensor to cover the whole
surface of the sample with dimensions of 50 mm × 50 mm. Computer-aided design (CAD)
files and different views of the experimental test environment with a plastic sample are
shown in Figure 2a,b.

Plastic
sample

Spectroscopy
sensor

Plastic
holder

Sensor
holder

(a)

406 mm

2
0
6
 m

m

200 m
m

(b)

Figure 2. Illustration of the experimental setup used for systematic data collection. (a) View of the
setup with the sensor and a plastic samples. (b) Setup with physical dimensions and illustration of
the sensor measurement volume.

3.4. Data Collection

The sensor and experimental setup shown in Figure 2 were used for systematic
data collection from PET, HDPE, PVC, LDPE, PP, and PS plastic types. First, plastics
obtained from household waste (see Figure 1b) were used for data collection. A total of
200 measurements from each plastic type were collected, creating a dataset of 1200 sensor
readings. For PET, HDPE, LDPE and PP, two measurements were taken (200 measurements
for each plastic), but for the case of PVC and PS, multiple measurements were taken to
compensate for the lower number of plastic samples. Example plots with 200 measurements
of raw spectra from each of the six types of plastic waste are shown in Figure 3a–f, where
the x axis shows the range of wavelengths measured and the y axis shows the normalised
amplitude of the signals. The datasets collected from plastic waste were used for training
and testing the computational methods with the processing pipeline presented in Section 3.5
for recognition of plastic types.

(a) (b)

Figure 3. Cont.
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Figure 3. Example of data collected from plastic waste and visualisation with dimensionality re-
duction. (a–f) Spectral information with 200 measurements from each of the six plastic types. Two
main components from the plastic waste using (g) Principal Component Analysis and (h) Linear
Discriminant Analysis techniques.

3.5. Machine Learning Methods For Recognition
3.5.1. Data Processing

The datasets with samples from all plastic waste types are split into training and
testing groups for cross-validation processes as follows. First, the datasets are segmented
into 10 folds, with 9 folds used to train each of the ML methods and the remaining fold for
the test process. Then, the training and testing process is repeated 10 times, allowing each
fold to be tested by each of the ML methods. Cross-validation has shown to be a robust
approach for analysis of ML methods in a variety of recognition applications [42,43].

Second, a dimension reduction step is applied to the datasets using two different
techniques: Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).
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These techniques are widely used in recognition tasks in order to use relevant information
from datasets, reducing the computational complexity and overfitting. Figure 3f,g shows
plots with the two main components of the plastic waste dataset after applying PCA
and LDA.

3.5.2. Machine Learning Pipeline

Data collected from the triad spectroscopy sensor are used for recognition of plastic
types using a set of computational methods. These methods include MultiLayer Perception
(MLP), Convolutional Neural Networks (CNNs), Support Vector Machine (SVM), Decision
Trees, Random Forest, AdaBoost, k-Nearest Neighbours (kNN), Logistic Regression, Linear
Discriminant Analysis (LDA) and Naive Bayes, which have been chosen according to works
from the literature about plastic recognition. As described in Section 3.5.1, the spectral
data from the sensor module are also preprocessed applying PCA and LDA [44]. Thus, the
combination of these two dimensionality reduction techniques and the set of computational
methods (e.g., PCA–MLP, PCA–SVM, LDA–MLP, LDA–SVM) is also used for evaluation of
the recognition performance. Figure 4 shows the diagram of the generalised and systematic
methodology used to implement and optimise each computational method for recogni-
tion of plastics. This diagram is composed of five main processes: (1) cross-validation,
(2) dimensionality reduction, (3) recognition, (4) performance metrics and (5) optimisation.
The input dataset is split into training and testing folds for cross-validation to validate the
performance of the set of ML methods. The folds are used for dimensionality reduction
and then employed as input data for the recognition of plastic types. The output from the
recognition process is used for the performance metrics and optimisation steps, which are
described in Sections 3.5.3 and 3.5.4.
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Figure 4. Generalised approach for implementation, training and testing of the set of machine
learning methods composed of cross-validation, dimensionality reduction, recognition, performance
metrics and optimisation stages.

3.5.3. Performance Metrics

The performance of the computational methods used for the recognition process was
evaluated using a set of metrics. These metrics include the accuracy of the identification
of plastics, precision, recall and F1-score, which are commonly used for performance
evaluations of ML methods [45–47]. The calculation of these metrics employs information
from the correct recognition of the target class or true positive (TP), correct recognition
of the non-target class or true negative (TN), incorrect recognition of the target class or
false positive (FP) and incorrect recognition of a non-target class (FN). These metrics are
calculated as follows:

P =
TP

TP + FP
× 100% (1)

R =
TP

TP + FN
× 100% (2)
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F1 =
2PR

P + R
2TP

2TP + FP + FN
× 100% (3)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (4)

where P, R and F1 represent the precision, recall and F1-score performance metrics for each
computational method. The accuracy metric considers all the positive recognition outputs
achieved by the ML methods from all the samples used for the testing process for each
ML method.

3.5.4. Optimisation Process

The grid search approach is used in this work to optimise the parameters of the
computational methods [48,49]. The optimisation process uses data samples from the test
dataset. This optimisation process involves the following steps. First, cross-validation,
dimensionality reduction and the machine learning method are integrated into a pipeline.
Second, a coarse grid search covering the whole search space to locate the region that
provides a high accuracy is implemented. Third, a more detailed grid search targeting the
region found in the previous step is applied. The coarse and detailed grid search steps
are repeated until the accuracy value achieved does not change or remains stable. Fourth,
the final parameters obtained from the iterative optimisation process are used in the ML
pipeline for the recognition process in testing mode but the optimisation process is disabled.
The optimised parameters change for each ML method. For example, in Decision Trees,
optimisation is applied to the number of branches in the tree, the number of sample data
per branch, and the number of features per branch. In Random Forest, optimisation is
applied to the number of individual Decision Trees in the forest. In KNN, optimisation is
applied to the number of neighbours and the weights. In MLP, optimisation is applied to
the number of hidden layers and neurons, the activation function, the learning rate and
the epochs. In CNNs, optimisation is applied to the kernel size, filters, activation function,
and epochs. In SVM, optimisation is applied to the kernel and regularisation parameter.
Finally, the recognition outputs from this last process are used to compute the performance
metrics for evaluation of the ML methods. This optimisation process is applied to each of
the ML approaches implemented in this work using raw data and using PCA and LDA
dimensionality reduction [44].

4. Experiments and Results

In this section, experiments are presented to evaluate the capability of the low-cost
spectroscopy sensor for recognition of plastic types using plastic samples from household
waste. The experiments for the recognition of plastic types use the dataset and machine
learning methods are presented in Sections 3.4 and 3.5, respectively. The mean or averaged
values of the raw data samples collected from the six plastic types are shown in Figure 5.
This plot is only for visual inspection purposes, but for the training and testing processes,
raw data from the spectroscopy sensor are employed. From visual inspection of this plot,
the PS plastic type seems to be more accurately identified over the other plastics. However,
the use of machine learning can help to identify the six types of plastic being measured by
the spectroscopy sensor, as shown in the next paragraphs.

The results for the recognition of plastic waste are presented in terms of the accuracy,
precision, recall and F1-score. All computational methods implemented in this work (MLP,
CNN, SVM, Decision Trees, Random Forest, AdaBoost, kNN, Logistic Regresion, LDA
and Naive Bayes) were trained, optimised and tested using the sensor data collected
from household plastic waste shown in Figures 1b and 3a–e. The experiments for the
recognition of plastics with each computational method were implemented using input
data in three different configurations: (1) raw sensor data as input to the ML method,
(2) data preprocessed using PCA followed by the ML method and (3) data preprocessed
using LDA followed by the ML method. This approach for the input to the ML methods
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is used to evaluate and compare the impact of dimensionality reduction in the plastic
recognition process.
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Figure 5. Meandata from plastic waste samples collected in Section 3.4.

The mean recognition accuracy results over all plastic types and for each computational
method are shown by the bar plot in Figure 6a. These results are obtained by computing
the mean from the 10 folds used in the cross-validation approach. The four best recognition
performances were achieved by the use of (1) PCA for dimensionality reduction followed by
a Convolutional Neural Network (PCA–CNN), (2) PCA followed by Multi-Layer Perceptron
(PCA–MLP), (3) PCA followed by Random Forest (PCA–Random Forest) and (4) PCA
followed by Support Vector Machine (PCA–SVM), with mean accuracies over all plastic
types of 72.5%, 70.25%, 69.17% and 67.20%, respectively. The bar plot shows that the
majority of computational methods are able to achieve accuracies of over 50% using raw
data only, but the results are still improved by preprocessing the data with PCA. LDA for
data preprocessing also shows slight improvements over raw data and PCA when it is used
together with the Decision Tree method (LDA–Decision Trees) and the k-Nearest Neighbour
method (LDA–kNN), achieving accuracies of 51.67% and 60.83%, respectively. The only
cases where raw data alone were able to achieve better accuracies (not preprocessed by
PCA and LDA) are with Logistic Regression (51.83% accuracy) and Naive Bayes (48.75%
accuracy) computational methods.

The confusion matrices in Figure 6 show the recognition accuracy of each individ-
ual plastic type achieved by the CNN with preprocessing stages, which presented the
best performance. The accuracy values in these confusion matrices were obtained using
Equation (4) with information from TP, FP, TN and FN values. The results from PCA–CNN
in the confusion matrix of Figure 6d show that all plastic types are recognised, with accura-
cies ranging from a minimum of 66% for PET to the highest accuracy of 83.5% for PS. The
CNN with raw data alone, shown in Figure 6b, achieved minimum and maximum accura-
cies of 60% and 83.5% for PET and PS, respectively. The performance of the LDA–CNN
configuration drops to a minimum accuracy of 52.5% for PVC and a maximum accuracy of
66% for PS plastic, as shown in Figure 6c. These confusion matrices also indicate the level
of confusion between all plastics for the CNN method. In the matrix shown in Figure 6b,
using raw data alone with CNN method, the largest errors are presented for PET being
confused with PVC, HDPE with PP, PVC with PET, LDPE with PP, PP with PET and PS
with PVC. For the case of LDA and the CNN in Figure 6c, the largest confusion between
plastics is PET being confused with PVC, HDPE with PP, PVC with PS, LDPE with PS, PP
with HDPE and PS with LDPE. The largest errors observed for PCA–CNN, which achieved
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the best recognition performance, are for PET plastic being confused with PVC, HDPE with
PP, PVC with PET, LDPE with PP, PP with PET and PS with PVC. These results indicate
that for the three configurations (CNN, LDA–CNN, PCA–CNN), PET is largely confused
with PVC and HDPE is confused with PP.
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Figure 6. Results from plastic waste and each computational method. (a) Mean recognition accuracy
from each machine learning method using (i) raw data only, (ii) PCA preprocessing and (iii) LDA
preprocessing. (b–d) Confusion matrices with the highest recognition accuracy for each plastic type
using machine learning and raw data, LDA and PCA.

Table 1 presents the summary of the recognition performance, including the accuracy,
precision, recall and F1-score, from the best computational methods that achieved at least a
70% recognition accuracy with data from plastic waste.

Table 1. Summary of performance of the best computational methods for recognition of plastic waste.

Best
Classifier

Dimensionality
Reduction Accuracy Precision Recall F1-Score

CNN PCA 72.50% 72.43% 72.50% 72.38%
CNN Raw data 72.17% 72.08% 72.17% 72.03%
MLP PCA 70.25% 70.24% 70.25% 70.18%
MLP Raw data 70.08% 70.03% 70.08% 70.00%

5. Discussion

This research has presented an analysis and the potential of a low-cost multi-spectra
triad spectroscopy sensor module, together with a set of machine learning methods, for
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the recognition of plastics, including PET (code 1), HDPE (code 2), PVC (code 3), LDPE
(code 4), PP (code 5), and PS (code 6).

The experimental setup developed for this study allowed for systematic data collection
from household plastic waste. A dataset composed of 1200 samples from plastic waste
was collected for subsequent analysis. This dataset is larger than those used for plastic
recognition using spectroscopy sensors [11–13,36]. Each measurement collected from each
plastic sample is composed of 18 wavelengths ranging from 410 nm to 940 nm. Thus, this
database offers an alternative source of information for systematic recognition of plastic
waste. Moreover, the approach followed in this work, based on the sensor module and
experimental setup, allows researchers to replicate the data collection process.

The data from plastic waste were analysed by the set of machine learning methods and
the following three approaches: (1) the ML method with raw data only (2) the ML method
with data preprocessed using PCA and (3) the ML method with data preprocessed using
LDA. PCA and LDA techniques were used for dimensionality reduction and their impacts
were observed in the recognition process. The computational methods for the recognition
of plastics, implemented in the generalised pipeline shown in Section 3.5.2, were optimised
using a grid search approach. The outputs from the identification of plastics showed that
the use of PCA for data preprocessing improves the recognition accuracy in most ML
methods, particularly for the CNN, MLP, Random Forest, AdaBoost, LDA and SVM, with
the highest accuracy of 72.50% achieved by the PCA–CNN configuration. The results also
showed that the use of LDA for data preprocessing achieves the highest accuracy of 60.50%
when used together with kNN. The only case when using raw data outperformed the use
of PCA and LDA was observed with the Logistic Regression approach, with an accuracy
of 51.5%. The positive impact when using PCA with ML for plastic recognition aligns
with previous works [11]. Even though previous works [13,50] have achieved recognition
accuracies ranging from 80.56% to 100%, they employed highly expensive spectroscopy
sensors (>GBP 25,000). Additionally, some of these methods focused only on a reduced
number of plastic types and excluded PET [11], which tends to create more confusion
in the recognition process. In contrast, our proposed system combines the benefits of
low-cost multi-spectra NIR sensors (∼GBP 56), dimensionality reduction and ML methods
to achieve a reasonable recognition accuracy (72.5%). The results from the recognition
of plastic waste with the proposed approach also showed that PET achieved the lowest
accuracy of 66% among all plastic types, while the highest accuracy was achieved by PS,
with 83.50%. Table 2 shows a comparison, in terms of plastic types, accuracy and cost, of
our approach with the highly specialised devices used in the literature for the recognition
of plastics. In Table 2, some studies have achieved a high accuracy (>90%), but these works
required specialised sensors with costs of >GBP 6k. Some of these sensors are relatively
small, but not small enough to embedded them into portable and lightweight tools. In
contrast, the triad spectroscopy sensor used in our work is small enough to mount it in
lightweight and portable tools and devices such as smart bins, conveyors, wands and
others. In general, the higher the recognition accuracy, the better the feasibility for practical
applications in real time. However, achieving a 100% accuracy with affordable sensors is
a difficult task, but based on the literature, a recognition accuracy above 90% is feasible
for practical applications. Therefore, in our work, we researched the potential of the low-
cost triad spectroscopy sensor (with a cost of ∼GBP 56) with machine learning for the
recognition of plastic types, and even though the highest accuracy achieved was 72.50%,
this initial investigation provides reliable and robust results that can be used as a reference
for the design and implementation of new/emerging ML methods for the recognition of
plastics in offline and real-time modes.

In general, the results show that the proposed approach can identify plastic types
using the low-cost triad spectroscopy sensor together with ML methods. Even though
the accuracy achieved is not as high as the accuracy reported by expensive spectroscopy
sensors, this work offers a reliable, affordable and portable solution that contributes to
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a sustainable circular economy. Furthermore, this work contributes to addressing the
growing plastic waste and pollution emergency found throughout the world.

Table 2. Comparison of accuracy and cost of our approach against highly specialised and costly
sensors in related works.

Authors Sensor Plastic Types Number of
Samples Accuracy Method Sensor

Cost

[11] Ocean Optics–NIR512 HDPE, LDPE, PC, PS, PET, PVC 184 (Waste) 95.7% PCA–SVM >GBP
25,000

[13] VIAVI—MicroNIR PE, PP, PVC, PET, PS 250 (Waste) 99% PLS–DA >GBP 8500

[12] Ocean Optics—Flame NIR PET, HDPE, PVC, LDPE, PP &
PS 180 (Waste) 91% LDA ∼GBP

6000

[36] ASD Field Spec 4 ABS, PS 26 (Waste) 80.56% PLS–DA ∼GBP
52,000

This
work

Triad Spectroscopy Sensor
module

PET, HDPE, PVC, LDPE, PP &
PS 423 (Waste) 72.5% PCA–CNN ∼GBP 56

6. Conclusions

This work presented an alternative low-cost approach for the recognition of plastic
types (PET, HDPE, PVC, LDPE, PP, PS) commonly found in household waste. This approach
exploited the potential of multi-spectral NIR sensors (a triad spectroscopy sensor) together
with machine learning methods (MLP, CNNs, Random Forest, Decision Trees, AdaBoost,
kNN, LDA, SVM, Logistic Regression, Naive Bayes) within a systematic experimental setup.
The data analysis also employed a dimensionality reduction stage with PCA and LDA
methods. The results showed that PCA combined with a CNN achieved the best mean accu-
racy of 72.5% for the recognition of plastics. The results suggest that the proposed approach
can identify plastic waste with a reasonable accuracy given the capabilities of the low-cost
sensor. Overall, this approach is suitable for the development of material identification
systems, contributing to affordable device development for sustainable environments and
a circular economy.
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