
Citation: Naich, A.Y.; Requena

Carrión, J. LiDAR-Based

Intensity-Aware Outdoor 3D Object

Detection. Sensors 2024, 24, 2942.

https://doi.org/10.3390/s24092942

Academic Editors: Chih-Yang Lin

and Ir. Kahlil Muchtar

Received: 5 April 2024

Revised: 28 April 2024

Accepted: 1 May 2024

Published: 6 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

LiDAR-Based Intensity-Aware Outdoor 3D Object Detection
Ammar Yasir Naich * and Jesús Requena Carrión *

School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK
* Correspondence: a.y.naich@qmul.ac.uk (A.Y.N.); j.requena@qmul.ac.uk (J.R.C.)

Abstract: LiDAR-based 3D object detection and localization are crucial components of autonomous
navigation systems, including autonomous vehicles and mobile robots. Most existing LiDAR-based
3D object detection and localization approaches primarily use geometric or structural feature abstrac-
tions from LiDAR point clouds. However, these approaches can be susceptible to environmental
noise due to adverse weather conditions or the presence of highly scattering media. In this work, we
propose an intensity-aware voxel encoder for robust 3D object detection. The proposed voxel encoder
generates an intensity histogram that describes the distribution of point intensities within a voxel and
is used to enhance the voxel feature set. We integrate this intensity-aware encoder into an efficient
single-stage voxel-based detector for 3D object detection. Experimental results obtained using the
KITTI dataset show that our method achieves comparable results with respect to the state-of-the-art
method for car objects in 3D detection and from a bird’s-eye view and superior results for pedestrian
and cyclic objects. Furthermore, our model can achieve a detection rate of 40.7 FPS during inference
time, which is higher than that of the state-of-the-art methods and incurs a lower computational cost.

Keywords: 3D object detection; deep learning; lidar intensity; computer vision; LiDAR

1. Introduction

The pace of research into 3D vision perception has accelerated over the past few years,
as it is an essential component of indoor and outdoor navigation systems. Examples of
applications of navigation systems include autonomous vehicles (AVs) [1–3], robots [4,5], and
augmented reality [6]. In regard to AVs, 3D perception in outdoor, urban environments
still remains an open challenge [1,7,8]. This challenge is even greater in very complex
scenarios, such as in dense intersections with a high volume of traffic and uncertain
pedestrian actions. To develop AVs that operate safely and in a hazard-free manner, it is
important to understand what AVs perceive in environments that present on-road and
off-road traffic objects, especially in dense and occluded environments. In AVs, 3D visual
perception LiDAR and stereo camera sensors are considered the primary choices of sensing
modalities. Unlike 2D stereo camera images, LiDAR 3D point clouds provide accurate
depth information about the surrounding objects, such as object scale, relative positions,
and occlusion. However, due to the inherent sparsity and higher density variance in 3D
point cloud data, it is very difficult to capture the geometric abstraction of objects. To
this end, different point-cloud-encoding techniques have been proposed that implement
sparse-to-dense feature representation conversion while preserving geometric abstraction.
The proposed encoders are then followed by 2D convolution filters for object detection and
localization [9–12].

Recent 3D detection and localization methods rely on geometric encoding techniques
for feature extraction [2,10,11,13,14]. Geometric encoding consumes all the points in a
3D cloud or a subset of points resulting from quantization. The existence of false and
noisy points in a 3D cloud can have a detrimental impact on the performance of geometric
encoding techniques for feature extraction [15,16]. Specifically, 3D point clouds from
LiDAR are highly susceptible to scattering media such as fog, snow, rain, or dust in
outdoor environments [17–21], and in these scenarios, feature extraction becomes more

Sensors 2024, 24, 2942. https://doi.org/10.3390/s24092942 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24092942
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092942?type=check_update&version=1


Sensors 2024, 24, 2942 2 of 17

challenging. To improve feature extraction in noisy point clouds, denoising methods have
been developed [18,19,22]. However, these methods are computationally expensive, and
their efficiency has not been evaluated on standard benchmark datasets [7,23–25].

To develop robust feature extraction methods for 3D object detection, we argue that
voxel-wise point cloud intensity histograms can complement geometric features, as false
and true points might have different intensity properties. In this paper, we propose an
intensity-based encoder for extracting voxel-wise features, which are then used in a 3D and
2D backbone detection network. Our intensity-based encoder integrates the underlying
geometric structure with the intensity histogram to produce sparse feature maps. Using a
custom Cuda kernel, we generate voxel-wise intensity histograms in a parallel fashion to
increase efficiency. The extracted sparse feature map is followed by a sparse convolution
stage that produces a dense feature map. Finally, a Region Proposal Network (RPN) is used
for classification and 3D bounding box estimation.

2. Related Work

Geometric feature representation from 3D point clouds can be broadly categorised
into three point-cloud-encoding schemes, namely, grid-based, point-based, and hybrid. In
this section, we review each of these categories.

2.1. Grid-Based Feature Encoders

Grid-based approaches apply fixed grid structures to 3D world scenes. This allows
for point vectorization techniques to be subsequently used on a grid-cell basis. Grid-based
encoding offers a trade-off between efficiency and memory size but incurs information
loss due to the quantization of the grid size. Early attempts to encode irregular and sparse
3D point clouds imposed a regular structure onto the 3D space and performed sparse-to-
dense feature conversion. Sparse-to-dense feature conversion was then followed by 2D
convolutional neural networks (CNNs). In [26], 3D point clouds were projected onto a 2D
bird’s-eye-view (BEV) plane to form a range image, after which a fully connected CNN
was used to perform vehicle detection. Similarly, Refs. [27–29] used deep multi-sensor
fusion for 3D detection and 2D BEV, resulting in more-robust schemes. VoxelNet [12] uses
end-to-end 3D object detection on point clouds while using simple sampling techniques to
suppress sparse regions and develop dense feature representations for 3D object detection.
This approach was extended in [30] by fusing RGB and point clouds. Based on VoxelNet,
the SECOND approach [31] improved the inference speed of VoxelNet at the expense of an
increased complexity and memory footprint while using sparse 3D convolutions.

2.2. Point-Set-Based Feature Encoders

Unlike grid-based methods, point-set-based encoders consume all raw points while
preserving the permutation invariance of the input point cloud. The authors of [10,11] used
point-set-based techniques in combination with deep learning pipelines. PointRCNN [32]
generates 3D bounding boxes by consuming raw point clouds using segmentation in the
first stage of the model followed by 3D box refinement instead of using prior-fixed anchor
boxes. In a related work [33], sparse-to-dense 3D object detection was used, reaching
an improved detection rate of up to 10 frames per second (FPS). The EdgeConv model,
proposed in [34], used a dynamic graph-based technique on raw point clouds and achieved
better discrimination of local features than that demonstrated in [10]. However, EdgeConv
presents a high computational load as it requires the evaluation of pairwise k-nearest
neighbor queries.

2.3. Hybrid-Based Feature Encoders

Recent works attempting to combine the best of both grid- and point-set-based meth-
ods have shown the best results in 3D object detection. The authors of [9] proposed the
PointPillar method, a hybrid approach that combines both voxelization and point-set-based
approaches. In this method, the 3D space is first converted into 3D pillars, and then Point-



Sensors 2024, 24, 2942 3 of 17

Net is applied to each pillar containing raw points for feature representation. The obtained
feature representation is used by standard 2D convolutions for object detection. Although
PointPillar is a computationally efficient approach, it relies heavily on manually adjusting
the pillar size to improve its performance. The work in [35] proposed a two-stage feature
framework, Fast Point R-CNN, where the initial feature representation from voxelization is
fused with raw points to increase the accuracy of localization. Fast Point R-CNN achieved
detection rate values of 15 FPS. Similarly, PointVoxel-RCNN (PV-RCNN) [36], an extension
of the PointRCNN technique [32] and similar to spare-to-dense models [33], integrates two
feature-encoding methods to aid in learning more-accurate 3D bounding boxes for 3D object
detection. In PointVoxel-RCNN, the first stage encodes the scene from voxel to keypoint,
and the second stage converts keypoints to grids for abstracting region-of-interest features.

3. Methodology

In this section, we formulate the problem of object detection in 3D point clouds. Then,
we present our proposed 3D object detection pipeline. This pipeline includes an intensity-
based encoder that enriches a voxel-wise set of geometric features. Finally, we describe our
experimental setup, including the dataset used, preliminary exploration stages, evaluation
strategy, and training process.

3.1. Problem Formulation

Let us define a scene S as a 3D cloud point instance produced by a single sweep of a
LiDAR sensor. In this paper, we will consider LiDAR sensors that record the 3D spatial
coordinates xi, yi, and zi and the reflected intensity value ρi of each scene point pi. A scene
is therefore a set of N points S = {pi|1 ≤ i ≤ N}, where pi = [xi, yi, zi, ρi]

T . In the context
of 3D object detection, an annotated scene is defined as a scene S that is equipped with a
label Y that includes the location, orientation, and class of every object in S. The location
and orientation of an object can be described using a 3D bounding box, and examples of
object classes in a typical urban scene include car and pedestrian classes. Figure 1 shows
an example of an urban annotated scene consisting of a 3D point cloud produced by a
LiDAR sensor.

Figure 1. LiDAR-annotated scene consisting of a 3D point cloud and seven labelled objects indicated
by green 3D bounding boxes.

Given a scene S produced by a LiDAR sensor, the 3D object detection problem consists
of identifying the location, orientation, and class of all the objects in the scene. A possible
solution to this problem comes in the form of a computational pipeline l that uses a scene S
as an input and produces a predicted label Ŷ as its output. Mathematically, we can express
the functionality of this pipeline as follows:

Ŷ = l(S) (1)

To determine the class that one bounding box in Ŷ belongs to, the computational
pipeline l produces a probability value c for each class; this value can be interpreted as the



Sensors 2024, 24, 2942 4 of 17

pipeline’s confidence that the bounding box embeds an object of each defined class. If the
confidence for a particular class is greater than a predetermined threshold cT , the pipeline
decides that an object of that class has been detected.

The performance of 3D object detection pipelines can be evaluated using datasets
of annotated scenes. If there is only one class of objects in a scene, the performance of a
pipeline l can be assessed as follows. Firstly, given an annotated scene Sk appended with
a ground truth label Yk and a predicted label Ŷk produced by pipeline l, objects in Ŷ are
matched with objects in Y. Matching is conducted by obtaining the Intersection over Union
(IoU) between the bounding boxes of each pair of objects from Ŷ and Y, respectively. The
IoU, which we denote as O, is computed from the bounding box B of an object in Y and the
bounding box B̂ of an object in Ŷ as follows:

O =
vol(B ∩ B̂)
vol(B ∪ B̂)

(2)

where vol(·) computes the volume of its 3D argument, ∩ is the intersection between two
3D objects, and ∪ is their union. IoU values close to one indicate that there is a high
overlap between bounding boxes B and B̂, whereas IoU values close to zero indicate limited
overlap. Object matching occurs when the IoU value is above a predefined threshold OT .
In addition, if several bounding boxes in Ŷ overlap with the same ground bounding box
in Y, the one with the highest IoU value is selected. This process, which is known as
non-max suppression, is used to eliminate potential duplicate detections. Figure 2 shows
the bounding boxes in a predicted label Ŷ produced by a pipeline l for a subset of points of
the scene in Figure 1. The bounding boxes of the objects in Y are also shown, demonstrating
that the bounding box of every object in Y overlaps with the bounding box of one object
in Ŷ. In one case, the bounding box of one of the objects in Y overlaps with the bounding
boxes of two objects in Ŷ. If both predicted bounding boxes are matched to the true object,
non-max suppression is triggered to select the predicted object with the highest IoU value.

Figure 2. Bounding boxes corresponding to true objects (green) and objects predicted by a detection
pipeline (blue). True and predicted objects are matched by computing the degree of overlap between
their bounding boxes.

Once the matching process is completed, the concepts of true positive (TP), false
positive (FP), and false negative (FN) are computed for every scene Sk. These concepts are
defined as follows. An object in Ŷ that matches one object in Y is a TP. In contrast, an object
in Ŷ that does not match any object in Y is a FP. Finally, an FN is any object in Y that is
not matched by an object in Ŷ. It is worth noting that the values TP, FP, and FN depend
on the confidence threshold cT . In general, low cT values will result in many FPs and few
FNs, and vice versa. This is illustrated in Figure 3a,b for the given scene instance, which
shows, alongside the bounding boxes of the true objects, the bounding boxes of the objects
predicted by a pipeline l using two different confidence thresholds, namely, cT = 0.1 and
cT = 0.9. For cT = 0.1, the prediction pipeline produces 6 TPs, 2 FPs, and 1 FN. In contrast,
using the confidence threshold cT = 0.9 leads to 1 TP, 0 FPs, and 6 FNs.



Sensors 2024, 24, 2942 5 of 17

(a) Confidence score threshold cT = 10%. TPs = 6, FPs = 2, and FNs = 1.

(b) Confidence score threshold cT = 90%. TPs = 1, FPs = 0, and FNs = 6.
Figure 3. Superimposed in the annotated scene shown in Figure 1 are the bounding boxes of the
objects detected by a pipeline l using a confidence score of 10% (a) and 90% (b). Ground truth
objects are enclosed in a green bounding box, whereas predicted bounding boxes are blue. Predicted
bounding boxes that match ground truth ones are TPs, whereas those that do not match a ground
truth bounding box are FPs.

By aggregating the TP, FP, and FN values across all scenes Sk in a dataset, we can
compute the precision γ and recall r metrics of the pipeline l for a given confidence
threshold cT :

γ =
∑k TPk

∑k TPk + ∑k FPk
(3)

r = ∑k TPk

∑k TPk + ∑k FNk
(4)

where TPk, FPk, and TNk denote the TP, FP, and TN values for scene k. By gradually
changing the confidence threshold from cT = 0 to cT = 1, a precision-recall curve can be
obtained. The area under the precision–recall curve defines a performance metric known as
the average precision (AP). The AP, which we denote as γ̄, can be estimated from a dataset
of annotated scenes:

γ̄ =
1
L ∑

l
max
r∈Rl

[γ(r)] (5)

where Rl denotes the l-th segment resulting from partitioning the recall interval [0, 1] into
L equal parts, and γ(r) is the precision of pipeline l when its corresponding recall value is
r. Given a collection of 3D object detection pipelines, the AP value can be used as a metric
to compare their performance.

In the case of 3D scenes consisting of objects of multiple classes, we decompose the
problem into several detection problems by considering each class separately. For instance,
in a traffic scene consisting of cars, pedestrians, and bicycles, we would formulate three
separate problems focusing on car detection, pedestrian detection, and cycle detection,



Sensors 2024, 24, 2942 6 of 17

respectively. Finally, BEV approaches provide an alternative to directly detecting objects
in a 3D point cloud. By projecting 3D point clouds onto a 2D plane corresponding to
a top-down view, BEV allows the problem of 3D detection to be recast as 2D detection.
Figure 4 illustrates the principle of BEV. A 2D camera image and 3D LiDAR point cloud
captured during the same urban traffic scene are shown in Figure 4a,b, respectively. The
BEV point cloud resulting from projecting the 3D LiDAR point cloud onto a top-down view
plane is shown in Figure 4c. Objects in the original 3D point cloud scene also appear in the
BEV point cloud, which allows us to recast a 3D-object-detection-and-localization problem
as a BEV 2D-object-detection-and-localization problem.

(a)

(b)

(c)

Figure 4. Example of a scene from the KITTI dataset: (a) 2D camera image, (b) 3D LiDAR point cloud,
and (c) resulting 2D BEV point cloud. The BEV point cloud is produced by projecting the 3D LiDAR
point cloud onto a top-down view plane. Objects recognizable in the 3D LiDAR point cloud (b) are
also recognizable in the 2D BEV point cloud (c).



Sensors 2024, 24, 2942 7 of 17

3.2. 3D Object Detection Pipeline

Our proposed intensity-aware voxel encoder combines both geometric and intensity
features of 3D point clouds and can be embedded within 3D object detection pipelines. To
evaluate our intensity-aware voxel encoder, we embedded it within a single-stage 3D object
detection pipeline. This single-stage 3D object detection pipeline is illustrated in Figure 5
and consists of a voxel-wise feature map generation stage, followed by a 3D backbone stage
in which convolution operations are used to produce dense feature maps, and finally a
2D backbone stage for producing the final prediction, namely, object classification and 3D
bounding box estimation. Within this pipeline, our proposed encoder generates voxel-wise
feature maps by extracting geometric and intensity histogram features for each voxel in a
parallel fashion. The three stages of the 3D object detection pipeline are described below.

Figure 5. Our proposed 3D object detection pipeline consists of three stages, namely, an intensity-
aware voxel encoder, which includes intensity features; a 3D backbone for dense feature extrac-
tion; and a 2D backbone that produces the final prediction (object classification and bounding
box estimation).

3.2.1. Intensity-Aware Voxel Feature Encoding

Our proposed voxel encoder is illustrated in Figure 6. The first step is scene voxeliza-
tion. Given a 3D box with dimensions of D × H × W containing scene S and a predefined
voxel with dimensions of vD × vH × vW , we first partition the 3D box into a grid with the
following dimensions: TD × TH × TW = (vD/D)× (vH/H)× (vW/W). Once the voxel
grid has been generated, points occupying each voxel are identified and grouped. Due to
the sparse nature of 3D point clouds, some voxels have a large number of points, whereas
others might have fewer points.

Two voxel-feature-encoding (VFE) stages convert the sparse 3D point cloud into
a dense feature representation. VFE stages operate voxel-wise as follows. Let V be a
collection of points pi within a given voxel. First, with an eye on computational efficiency,
a subset of 35 points is randomly extracted from among all the points within each voxel.
Given this random subset of points, an augmented representation p̂i for each point pi is
obtained by including the offset between each point and the mean of the voxel point cloud
with the following coordinates: (vx, vy, vz). This augmented representation is defined as
p̂i = [xi, yi, zi, ρi, xi − vx, yi − vy, zi − vz]T . Each augmented point p̂i is then transformed
using a fully connected network into a complex feature fi. The purpose of this network
is to aggregate element-wise features, and it encodes the shape of the surface presented
within a voxel. The fully connected network consists of a linear layer, batch normalization,
and a rectified linear unit layer. After obtaining the element-wise feature representation fi,
we perform max pooling on fi to obtain a locally aggregated feature f̂i. Then, each complex
feature fi is concatenated with f̂i to form a point-wise concatenated feature f out

i . Our
intensity-aware voxel feature encoder includes two VFE blocks, namely, VFE-1 followed
by VFE-2. The output from VFE-2 is concatenated with an intensity vector Iout produced
by an intensity histogram generator that operates in a voxel-wise fashion. In our study,
the intensity histogram generator uses 10 bins and normalised intensity values within the
range of 0 to 1.



Sensors 2024, 24, 2942 8 of 17

Figure 6. Architecture of the proposed intensity-aware voxel encoder. After voxelization, a scene
is represented as a tensor with dimensions of Tv × 35 × 4, where Tv = TD × TH × TW , and TD,
TH , and TW are the number of voxels along the depth, height, and width dimensions of the scene.
After augmentation, a tensor whose dimensions are Tv × 35 × 7 is generated and then processed via
cascaded encoders VFE-1 and VFE-2. A voxel-wise intensity histogram Iout, whose dimensions are
Tv × 10, is concatenated to the output of VFE-2, whose dimensions are Tv × 128, to produce the final
Tv × 138 voxel-wise feature map.

3.2.2. 3D and 2D Backbone Stages

A 3D backbone stage inspired by [31] was implemented. This backbone performs
3D sparse convolutions, which aggregate additional context with the feature descriptor
produced by the intensity-aware voxel feature encoder. After performing the 3D sparse
convolutions and reshaping the feature vector, a 2D backbone implementing the RPN is
used for classification and 3D bounding box estimation. The RPN has two output heads,
namely, a classification head and a regression head. The classification head is used to
predict an object’s class, and the regression head is used to produce an estimation of the
object’s bounding box. To improve the computational efficiency of the RPN stage, we
use a set of predefined bounding boxes called anchors, each of which is associated with a
different object class. Specifically, in a scenario where we are interested in detecting objects
from three classes, e.g., ‘Car’, ‘Pedestrian’, and ‘Cyclist’, three anchor boxes are created.

The detailed architectures of both 3D and 2D backbones follow the architectures
presented in [31,36]. The 3D backbone stage uses sparse convolutions for dimensionality
reduction and feature extraction. Convolutions are followed by batch normalization and
rectifier linear unit activation. Sparse convolutional layers use a kernel size of (3, 1, 1) and
a stride of (2, 1, 1) and produce a feature map with 128 output channels. This feature map
is then processed via the 2D backbone stage, which consists of two blocks, each having
five layers of 2D convolutions. Using the notation Conv2D(Cout, k, s, p) to describe a 2D
convolutional layer, where Cout represents the number of output channels, k is the kernel
size, s stands for the stride, and p denotes the padding, in the first block, we employ
Conv2D(128, 3, 1, 1) layers, and in the second block, we employ Conv2D(256, 3, 1, 1) layers.
The final feature map produced by the 2D backbone is then sent to the classification and
regression heads for object class prediction and bounding box estimation.

3.3. Experimental Setup

We used the KITTI dataset [37] to train and evaluate our proposed 3D object detection
pipeline. Before training, we used the KITTI dataset and the Canadian Adverse Driving
Condition (CADC) dataset [38] to explore the nature of the intensity value of LiDAR points
in the context of object detection. The KITTI and CADC datasets, training environment,
and evaluation approach are described below.



Sensors 2024, 24, 2942 9 of 17

3.3.1. Datasets

The KITTI dataset [37] is a popular dataset used for autonomous driving applications
that offers annotated 2D camera images (375 × 1242 pixels) and 3D LiDAR images of 15K
urban traffic scenes, together with other navigation data. Labels in the KITTI dataset include
the location, size, and orientation of every object. Object location, size, and orientation are
represented using a 3D bounding box in the LiDAR 3D image and a 2D bounding box in
the corresponding 2D image. Object class name, truncation level, and occluded state are
also given for each bounding box. The KITTI dataset defines nine different object classes,
namely, ‘Car’, ‘Pedestrian’, ‘Cyclist’, ‘Van’, ‘Truck’, ‘Person (sitting)’, ‘Tram’, ‘Misc’, and
‘Don’t-Care’. The truncation value describes the fraction of objects lying outside the image
boundary. Finally, the occlusion level, which takes on the values 0 through 3, describes the
degree to which an object is occluded by other objects in a scene, where 0 indicates clearly
visible and increasing values indicate greater occlusions.

The CADC dataset [38] provides a collection of scenes captured under adverse weather
conditions. The dataset consists of 56K 2D camera images with a resolution of (1280 × 1024)
pixels and 7K LiDAR instances. The CADC dataset includes 10 annotation classes, namely,
‘Car’, ‘Pedestrian’, ‘Truck’, ‘Bus’, ‘Garbage Container on Wheels’, ‘Traffic Guidance Object’,
‘Bicycle’, ‘Pedestrian With Object’, ‘Horse and Buggy’, and ‘Animal’. In this work, the
CADC dataset is used to explore the impact of adverse weather conditions on LiDAR
intensity distributions.

A preliminary exploration was carried out to investigate the possible impact of the
surrounding environment, including scattering media such as rain, snow, and fog, on the
LiDAR intensity values associated with traffic objects. We explored LiDAR scenes recorded
in clear weather conditions from the KITTI dataset and scenes recorded in adverse weather
conditions from the CADC dataset. Our preliminary exploration produced average profiles
for the intensity distributions of objects from different classes. Intensity distributions were
obtained using kernel density estimation (KDE), a non-parametric method that expresses
a distribution as a linear combination of kernel functions centered around each dataset
sample. In our implementation of KDE, we chose a Gaussian kernel. The bandwidth of
Gaussian kernels is a parameter that needs to be set before applying KDE. We used Scott’s
estimation method to select the value of the bandwidth. Scott’s method produces a band-
width value that minimizes the mean integrated square error of the estimated distribution.

3.3.2. Training and Evaluation

We used the KITTI benchmark dataset [23] for training and evaluation. This bench-
mark dataset consists of 7481 training instances and 7518 testing instances. We split the
benchmark training dataset further into two subsets consisting of 3712 instances for training
and 3769 instances for validation. Validation was conducted in accordance with the pro-
tocol described in [2,9,27,36]. We trained and evaluated our 3D object detection pipelines
using an RTX 3080 10GB GPU and an AMD RYZEN 9 3900 CPU using a Pytorch-based
mmdetection3d framework. The CUDA mixed-precision method was employed during
training, allowing us to combine FP16 (16-bit, half-precision) and FP32 (32-bit, single-
precision) floating-point formats to enhance computational speed. We trained our 3D object
detection pipeline in an end-to-end fashion using the AdamW optimization algorithm,
using a decaying learning rate of 0.01.

We chose the AP γ̄ as our prediction performance metric. We obtained AP values
separately for the object classes ’Car’, ’Pedestrian’, and ’Cyclist’, and within each class for
3D point cloud detection and BEV detection. We followed the KITTI benchmark evaluation
criterion, which is based on the PASCAL criterion [37,39], for 3D point clouds and 2D BEV
point clouds. According to this criterion, different classes use different IoU thresholds OT to
produce a match between an object in Y and an object in Ŷ. Specifically, the threshold value
OT is 0.7 for ’Car’ objects and 0.5 for both ’Pedestrian’ and ’Cyclist’ objects. In addition to
the AP, we obtained the detection rate of each 3D object prediction pipeline, measured in
frames per second (FPS). In our study, we report both the original detection rate values, as



Sensors 2024, 24, 2942 10 of 17

reported by the authors and on our hardware. Finally, three evaluation scenarios of different
difficulty levels, namely, ’Easy’, ’Moderate’, and ’Hard’, were considered. Each difficulty
level defines a set of constraints on the characteristics of the objects that are included, and
they are defined in Table 1. For instance, at the ’Easy’ difficulty level, only objects that are
fully visible, truncated up to 15%, and have a bounding box whose height is 40 pixels are
included. We compared our 3D object detection pipeline against state-of-the-art models
in terms of AP and prediction rate. We used the AP values reported by their authors and
obtained new detection rate values using our hardware to ensure fairness.

Table 1. Evaluation difficulty levels.

Difficulty Level Min. Bounding Box Height Max. Occlusion Level Max. Truncation

Easy 40 Px 0 (Fully visible) 15%
Moderate 25 Px 1 (Partly occluded) 30%

Hard 25 Px 2 (Difficult to see) 50%

4. Results

Figure 7 illustrates the effects of the weather conditions on the reflected intensities
of LiDAR cloud points. Compared to clear weather conditions (Figure 7a), the spatial
distribution of LiDAR points when there are adverse weather conditions (Figure 7b) is
noisy due to collisions with air particles that do not correspond to true objects in a scene.
In addition, the intensity values in adverse weather conditions are lower than those under
clear weather conditions. LiDAR intensity values can therefore provide useful information
about scenes that can contribute to the interpretation of LiDAR point spatial distribution.
We also observed that different scene objects reveal different intensity profiles. The average
intensity distributions for the objects ‘Car’, ‘Van’, ‘Truck’, ‘Pedestrian’, ‘Person (sitting)’,
and ‘Cyclist’ in scenes from the KITTI dataset are shown in Figure 8. Each object reveals
a unique intensity profile; consequently, the intensity distribution of the LiDAR points
associated with an object can provide information about their class. We based the design
of our proposed encoder on this fundamental observation, namely, that LiDAR intensity
distributions depend on the class of the underlying object. Therefore, the LiDAR intensity
distribution can be used to improve object classification.

(a) (b)
Figure 7. Examples of 3D LiDAR point cloud scenes where the reflected intensity ρi has been-color
coded. (a) KITTKI instance taken in clear weather conditions. (b) CADC instance taken during
adverse weather conditions, where the highlighted region (red eclipse) shows low intensity values.



Sensors 2024, 24, 2942 11 of 17

Figure 8. Intensity profiles of six objects defined in the KITTI dataset, obtained by averaging the
intensity distributions obtained for each object by using KDE (‘Car’: 6647 objects; ‘Van’: 2106 objects;
‘Truck’: 1027 objects; ‘Pedestrian’: 1778 objects; ‘Person (sitting)’: 98 objects; ‘Cyclist’: 1132 objects).
Intensity values below 0 or above 1 are artifacts due to the smoothing nature of the KDE method.

Tables 2–4 compare the AP values of the selected state-of-the-art 3D object detection
models for ‘Car’, ‘Pedestrian’, and ‘Cyclist’ objects, respectively. The highest AP values in
the ‘Hard’ evaluation scenario are highlighted, as they provide the strongest comparison
between existing detection models. Despite its simplicity, the 3D object detection pipeline
that we have designed to illustrate our proposed intensity-aware voxel encoder has a
performance that is comparable with state-of-the-art models. Our proposed model ranks
third in the AP benchmark for the ‘Car’ object, as shown in Table 2. Moreover, for the
’Pedestrian’ and ’Cyclist’ classes, our 3D object detection pipeline demonstrates superior
performance, as shown in Tables 3 and 4, respectively. Therefore, not only does this
comparatively simpler architecture have a performance that is close to that of the more
complex state-of-the-art models in regard to the ’Car’ benchmark, it also surpasses this
performance for the ’Pedestrian’ and ’Cyclist’ benchmarks. Computational performance is
compared in Tables 5 and 6, which show the detection rates reported by the authors and
the detection rates obtained in our computing environment, respectively. Our 3D object
detection pipeline, which includes our proposed intensity-based encoder, achieved the
second-highest detection rate, namely, 40.7, among the considered 3D object detection
pipelines. It is worth noting that PointPillars, the model that achieved the highest frame
rate, also presents a comparatively lower AP. The detection and computational performance
of every 3D object detection pipeline under consideration are summarized in Figure 9,
where the detection rate and AP for ‘Car’, ‘Pedestrian’, and ‘Cyclist’ objects under 3D
detection and BEV detection are represented as coordinates on a 2D plane. The highest-
performing models are situated close to the upper right corner, where AP is close to 100
and the detection rate is close to the real-time value of 60 FPS. Figure 9 demonstrates that
the simple 3D object detection pipeline built around our intensity-aware voxel encoder
achieves results that are superior to those obtainable by state-of-the-art models.



Sensors 2024, 24, 2942 12 of 17

Table 2. Performance comparison of 3D object detection pipelines applied to the KITTI test set for
the ‘Car’ object. “L” indicates LiDAR-only method, while “R + L” indicates multi-modality method
including both RGB images and LiDAR sensors.

Method Modality
3D Detection (Car) BEV Detection (Car)

Easy Medium Hard Easy Medium Hard

MV3D [27] R + L 74.97 63.63 54.00 86.62 78.93 69.80
AVOD-FPN [28] R + L 83.07 71.76 65.73 90.99 84.82 79.62
F-PointNet [40] R + L 82.19 69.79 60.59 91.17 84.67 74.77
UberATG-MMF R + L 88.40 77.43 70.22 93.67 88.21 81.99

SECOND [31] L 83.34 72.55 65.82 89.39 83.77 78.59
PointPillars [9] L 82.58 74.31 68.99 90.07 86.56 82.81
PointRCNN [36] L 86.96 75.64 70.70 92.13 87.39 82.72
STD [33] L 87.95 79.71 75.09 94.74 89.19 86.42
Part-A2-Net [14] L 85.94 77.86 72.00 89.52 84.76 81.47

PV-RCNN [36] L 90.25 81.43 76.82 94.98 90.65 86.14
Voxel R-CNN [2] L 90.90 81.62 77.06 95.52 91.25 88.99

Ours L 88.88 79.27 74.27 92.97 88.70 85.97

Table 3. Performance comparison of 3D object detection pipelines on the KITTI test set for the
‘Pedestrian’ object. “L” indicates LiDAR-only method, while “R + L” indicates a multi-modality
method including both RGB images and LiDAR sensors.

Method Modality
3D Detection (Pedestrian) BEV Detection (Pedestrian)
Easy Medium Hard Easy Medium Hard

AVOD-FPN [28] R + L 50.46 42.27 39.04 58.49 50.32 46.98
F-PointNet [40] R + L 50.53 41.15 38.08 57.13 49.57 45.48
SECOND [31] L 51.45 41.92 38.89 58.69 50.13 46.84
PointPillars [9] L 51.85 41.58 39.37 58.77 50.35 46.13
PointRCNN [36] L 53.29 43.47 38.35 60.02 48.72 44.55
STD [33] L 54.49 44.50 42.36 59.72 51.12 48.04
Part-A2-Net [14] L 53.42 43.29 40.29 59.86 50.57 46.74

PV-RCNN [36] L 53.77 43.59 40.29 59.80 50.57 46.74
Voxel R-CNN [2] L 54.95 44.52 41.25 60.74 50.58 46.74

Ours L 61.62 53.74 47.90 65.75 58.76 52.30

Table 4. Performance comparison of 3D object detection pipelines on the KITTI test set for the ‘Cyclist’
object. “L” indicates LiDAR-only method, while “R + L” indicates a multi-modality method including
both RGB images and LiDAR sensors.

Method Modality
3D Detection (Cyclist) BEV Detection (Cyclist)

Easy Medium Hard Easy Medium Hard

AVOD-FPN [28] R + L 63.76 50.55 44.93 69.39 57.12 51.09
F-PointNet [40] R + L 72.27 56.12 49.01 77.26 61.37 53.78

SECOND [31] L 71.33 52.08 45.83 76.5 56.05 49.45
PointPillars [9] L 77.1 58.65 51.92 79.9 62.73 55.58
PointRCNN [36] L 74.96 58.82 52.53 82.56 67.24 60.28
STD [33] L 78.69 61.59 55.3 81.36 67.23 59.35
Part-A2-Net [14] L 78.58 62.73 57.74 81.91 68.12 61.92

PV-RCNN [36] L 78.6 63.71 57.65 82.49 68.89 62.41

Ours L 83.61 65.88 61.94 85.71 69.12 64.85



Sensors 2024, 24, 2942 13 of 17

Table 5. Reported detection rates on the KITTI benchmark, using IoU thresholds of 70, 50, and 50 for
‘Car’, ‘Pedestrian’, and ‘Cyclist’ objects, respectively.

Encoding Schemes Models Modality Hardware FPS

Grid-Based

VoxelNet [12] L Titan X 4.4
MVX-Ne [30] L - -
Second [31] L GTX 1080 Ti 30.4
SA-SSD [41] L GTX 1080 Ti 25.0

Voxel R-CNN [2] L RTX 2080 Ti 25.2
Ours L RTX 3080 40.7

Point-Based Points [10] L + R GTX1080 1.3
MV3D [27] L + R Titan X 2.8

Hybrid
PointPillars [9] L GTX 1080 Ti 42.4
PV-RCNN [36] L GTX1080 8.9

MMF [42] L + R GTX1080 0.08

Table 6. Detection rates on the KITTI benchmark running on an RTX 3080 GPU, using IoU thresholds
of 70, 50, and 50 for ‘Car’, ‘Pedestrian’, and ‘Cyclist’ objects, respectively.

Encoding Schemes Models FPS

Grid-Based

VoxelNet [12] 4.4
Second [31] 41.5
SA-SSD [41] 40.0

Voxel R-CNN [2] 22.2
Ours 40.7

Hybrid PointPillars [9] 57.5
PV-RCNN [36] 12.6

Figure 9. Visualisation in the AP × detection rate plane of the performance of the models shown in
Table 6 . AP values are obtained separately for ’Car’, ’Pedestrian’ and ’Cyclist’ objects, and for 3D and
BEV detection modalities. Detection rates were computed using one single NVIDIA RTX 3080 GPU.



Sensors 2024, 24, 2942 14 of 17

5. Conclusions and Discussion

In this paper, we have presented an intensity-aware voxel encoder for 3D LiDAR
object detection and localization. The proposed encoder achieves AP values comparable
to the state-of-the-art models while yielding higher detection rates during inference. In
addition to this, a computationally efficient implementation of a voxel-wise histogram
generator has been developed. Our results indicate that 3D object detection pipelines
simpler than the state of the art can be developed to achieve accurate and robust 3D
detection. The combination of our feature extractor and histogram generator can contribute
to the development of 3D object detection models with higher inference rates.

Our preliminary analysis of the reflected intensity values of points associated with
objects of different classes in the KITTI dataset suggests that each class of objects has
a different intensity signature; therefore, LiDAR intensity values can be useful during
3D LiDAR object detection. In addition, we compared the intensity values from scenes
under favorable and adverse weather conditions and observed the impact of rain and
snow on the spatial distribution of LiDAR points and their intensity values. Based on this
preliminary exploration, we proposed an intensity-aware voxel encoder that generates
intensity histograms of point clouds within each voxel to capture the intensity profiles of
objects within voxels. Voxel intensity histograms were then integrated as features together
with conventional voxel feature sets.

We built a simple 3D object detection pipeline that included our intensity-aware
voxel encoder to evaluate the potential impact of voxel intensity features on detection
performance. Using the KITTI test dataset, we compared the detection performance and
computational performance of our 3D object detection pipeline with state-of-the-art 3D
object detection pipelines. Our 3D object detection pipeline outperforms the state-of-art
models in regard to the ’Pedestrian’ and ’Cyclist’ classes. Although grid and point set-based
feature encoders can implicitly consume intensity information together with the spatial
distribution of 3D point clouds, our proposed encoder stands out in that it explicitly builds
LiDAR intensity distributions by generating intensity histograms.

Current state-of-the-art 3D object detection pipelines have significantly improved over
the past years with respect their performance on clear-weather datasets, but their perfor-
mance deteriorates considerably when they are applied to adverse weather scenarios [15,43].
The reason for this deterioration is that LiDAR 3D point clouds are highly susceptible to
adverse weather conditions or scattering media (fog, snow, rain, or dust) [17–21]. There-
fore, adverse weather conditions produce noisy 3D point clouds that result in poor 3D
object detection accuracy. To contribute to the development of 3D perception, academic
and industrial partners have shared their pools of ever-growing datasets obtained under
different environmental conditions while using different sensing modalities including
LiDAR, cameras, and radar. Most of these benchmark datasets were recorded in clear
weather [7,23,44], and some were obtained under adverse weather conditions [24,25,45].
We hypothesize that intensity-aware encoders might also improve 3D object detection per-
formance under adverse weather conditions. Therefore, a future avenue for research on our
proposed model will be to investigate its impact on 3D object detection performance under
a wider range of weather conditions. This investigation should include adverse weather
augmentation approaches to create controlled datasets of different complexity. Having
robust 3D object detection pipelines that perform well under any weather conditions and
in real-time is essential to achieve level 5 autonomy, which is defined as autonomy with no
human intervention in any driving conditions. Due to the diversity of hazardous situations,
collecting a complete dataset seems impractical. Employing simulation techniques based
on physical and behavioral models of traffic objects and actors in different weather con-
ditions is a promising direction. Creating custom simulated environments with complex
situations can help develop robust and accurate 3D detection and tracking models for
autonomous vehicles.



Sensors 2024, 24, 2942 15 of 17

Author Contributions: Conceptualization, A.Y.N. and J.R.C.; methodology, A.Y.N. and J.R.C.; soft-
ware, A.Y.N.; validation, A.Y.N. and J.R.C.; formal analysis, A.Y.N.; investigation, A.Y.N. and J.R.C.;
resources, A.Y.N. and J.R.C.; writing—original draft preparation, A.Y.N. and J.R.C.; writing—review
and editing, A.Y.N. and J.R.C.; visualization, A.Y.N.; supervision, J.R.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anderson, M. The road ahead for self-driving cars: The av industry has had to reset expectations, as it shifts its focus to level 4

autonomy-[News]. IEEE Spectr. 2020, 57, 8–9. [CrossRef]
2. Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel r-cnn: Towards high performance voxel-based 3d object detection. In

Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 1201–1209.
3. Wu, X.; Peng, L.; Yang, H.; Xie, L.; Huang, C.; Deng, C.; Liu, H.; Cai, D. Sparse fuse dense: Towards high quality 3d detection

with depth completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, 18–24 June 2022; pp. 5418–5427.

4. Pire, T.; Corti, J.; Grinblat, G. Online object detection and localization on stereo visual slam system. J. Intell. Robot. Syst. 2020, 98,
377–386. [CrossRef]

5. Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M.. A review of multi-sensor fusion slam systems based on 3d
lidar. Remote Sens. 2022, 14, 2835. [CrossRef]

6. Ghasemi, Y.; Jeong, H.; Choi, S.H.; Park, K.B.; Lee, J.Y. Deep learning-based object detection in augmented reality: A systematic
review. Comput. Ind. 2022, 139, 103661. [CrossRef]

7. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11618–11628.

8. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep multi-modal
object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell.
Transp. Syst. 2020, 22, 1341–1360. [CrossRef]

9. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

10. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

11. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017,
arXiv:1706.02413.

12. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

13. Hegde, S.; Gangisetty, S. Pig-net: Inception based deep learning architecture for 3d point cloud segmentation. Comput. Graph.
2021, 95, 13–22. [CrossRef]

14. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and
part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 48, 2647–2664. [CrossRef] [PubMed]

15. Hahner, M.; Sakaridis, C.; Dai, D.; Van Gool, L. Fog simulation on real lidar point clouds for 3d object detection in adverse
weather. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 15283–15292.

16. Kilic, V.; Hegde, D.; Sindagi, V.; Cooper, A.B.; Foster, M.A.; Patel, V.M. Lidar light scattering augmentation (lisa): Physics-based
simulation of adverse weather conditions for 3d object detection. arXiv 2021, arXiv:2107.07004.

17. Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D. A Survey on 3D Object Detection Methods for Autonomous Driving
Applications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3782–3795. [CrossRef]

18. Charron, N.; Phillips, S.; Waslander, S.L. De-noising of lidar point clouds corrupted by snowfall. In Proceedings of the 2018 15th
Conference on Computer and Robot Vision, CRV 2018, Toronto, ON, Canada, 8–10 May 2018; pp. 254–261.

19. Heinzler, R.; Piewak, F.; Schindler, P.; Stork, W. CNN-Based Lidar Point Cloud De-Noising in Adverse Weather. IEEE Robot.
Autom. Lett. 2020, 5, 2514–2521. [CrossRef]

http://doi.org/10.1109/MSPEC.2020.9078402
http://dx.doi.org/10.1007/s10846-019-01074-2
http://dx.doi.org/10.3390/rs14122835
http://dx.doi.org/10.1016/j.compind.2022.103661
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.1016/j.cag.2021.01.004
http://dx.doi.org/10.1109/TPAMI.2020.2977026
http://www.ncbi.nlm.nih.gov/pubmed/32142423
http://dx.doi.org/10.1109/TITS.2019.2892405
http://dx.doi.org/10.1109/LRA.2020.2972865


Sensors 2024, 24, 2942 16 of 17

20. Lindell, D.B.; Wetzstein, G. Three-dimensional imaging through scattering media based on confocal diffuse tomography. Nat.
Commun. 2020, 11, 4517. [CrossRef] [PubMed]

21. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

22. Park, J.I.; Park, J.; Kim, K.S. Fast and accurate desnowing algorithm for lidar point clouds. IEEE Access 2020, 8, 160202–160212.
[CrossRef]

23. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012.

24. Chang, M.F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse:
3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

25. Waymo. Waymo Open Dataset: An Autonomous Driving Dataset; Waymo: Mountain View, CA, USA, 2020.
26. Li, B.; Zhang, T.; Xia, T., Vehicle detection from 3d lidar using fully convolutional network. arXiv 2016, arXiv:1608.07916.
27. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D object detection network for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.
28. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L Joint 3d proposal generation and object detection from view aggregation.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1–8.

29. Liang, M.; Yang, B.; Wang, S.; Urtasun, R. Deep continuous fusion for multi-sensor 3d object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

30. Sindagi, V.A.; Zhou, Y.; Tuzel, O. Mvx-net: Multimodal voxelnet for 3d object detection. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 7276–7282.

31. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
32. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 770–779.
33. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Std: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1951–1960.
34. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM

Trans. Graph. Tog 2019, 38, 146. [CrossRef]
35. Chen, Y.; Liu, S.; Shen, X.; Jia, J. Fast point r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.
36. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 10526–10535.

37. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

38. Pitropov, M.; Garcia, D.E.; Rebello, J.; Smart, M.; Wang, C.; Czarnecki, K.; Waslander, S. Canadian Adverse Driving Conditions
Dataset. Int. J. Robot. Res. 2020, 40, 681–690. [CrossRef]

39. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results. 2012. Available online: http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
(accessed on 28 April 2024).

40. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.

41. He, C.; Zeng, H.; Huang, J.; Hua, X.S.; Zhang, L. Structure aware single-stage 3d object detection from point cloud. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11873–11882.

42. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3D object detection. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 7337–7345.

43. Qian, K.; Zhu, S.; Zhang, X.; Li, L.E. Robust multimodal vehicle detection in foggy weather using complementary lidar and
radar signals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021.

http://dx.doi.org/10.1038/s41467-020-18346-3
http://www.ncbi.nlm.nih.gov/pubmed/32908155
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.1109/ACCESS.2020.3020266
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1177/0278364920979368
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html


Sensors 2024, 24, 2942 17 of 17

44. Agarwal, S.; Vora, A.; Pandey, G.; Williams, W.; Kourous, H.; McBride, J. Ford Multi-AV Seasonal Dataset. Int. J. Robot. Res. 2020,
39, 1367–1376.

45. Maddern, W.; Pascoe, G.; Gadd, M.; Barnes, D.; Yeomans, B.; Newman, P Real-time kinematic ground truth for the oxford
robotcar dataset. arXiv 2020, arXiv: 2002.10152.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Grid-Based Feature Encoders
	Point-Set-Based Feature Encoders
	Hybrid-Based Feature Encoders

	Methodology 
	Problem Formulation
	3D Object Detection Pipeline
	Intensity-Aware Voxel Feature Encoding
	3D and 2D Backbone Stages

	Experimental Setup
	Datasets
	Training and Evaluation


	Results
	Conclusions and Discussion
	References

