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Abstract: The past decades have witnessed a paradigm shift from the traditional drug discovery
shaped around the idea of “one target, one disease” to polypharmacology (multiple targets,
one disease). Given the lack of clear-cut boundaries across disease (endo)phenotypes and genetic
heterogeneity across patients, a natural extension to the current polypharmacology paradigm is to
target common biological pathways involved in diseases via endopharmacology (multiple targets,
multiple diseases). In this study, we present proximal pathway enrichment analysis (PxEA) for
pinpointing drugs that target common disease pathways towards network endopharmacology.
PxEA uses the topology information of the network of interactions between disease genes,
pathway genes, drug targets and other proteins to rank drugs by their interactome-based proximity to
pathways shared across multiple diseases, providing unprecedented drug repurposing opportunities.
Using PxEA, we show that many drugs indicated for autoimmune disorders are not necessarily
specific to the condition of interest, but rather target the common biological pathways across
these diseases. Finally, we provide high scoring drug repurposing candidates that can target common
mechanisms involved in type 2 diabetes and Alzheimer’s disease, two conditions that have recently
gained attention due to the increased comorbidity among patients.

Keywords: drug repurposing; proximal pathway enrichment analysis; network endopharmacology;
systems medicine; comorbidity; autoimmune disorders; Alzheimer’s disease; type 2 diabetes

1. Introduction

Following Paul Ehrlich’s more-than-a-century-old proposition on magic bullets (one drug,
one target, one disease), the drug discovery pipeline traditionally pursues a handful of leads identified
in vitro based on their potential to bind to target(s) known to modulate the disease [1]. The success of
the selected lead in the consequent clinical validation process relies on the prediction of a drug’s effect in
vivo. Although it is often more desirable to tinker the cellular network by targeting multiple proteins [2],
this is hard to achieve in practice due to the interactions of the compound and its targets with other
proteins and metabolites. As a result, the characterization of drug effect has been a daunting task,
yielding high pre-clinical attrition rates for novel compounds [3,4].

The high attrition rates can be attributed to the immense response heterogeneity across patients,
likely stemming from a polygenic nature of most complex diseases. Consequently, researchers have
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turned their attention to polypharmacology, where novel therapies aim to alter multiple targets
involved in the pathway cross-talk pertinent to the disease pathology, rather than single proteins [5,6].
This has given rise to network-based approaches that predict the effects of individual drugs [7] as well
as drug combinations [8], allowing for the repositioning of compounds for novel indications.

Over the past years, reusing existing drugs for conditions different from their intended indications
has emerged as a cost effective alternative to traditional drug discovery. Various drug repurposing
methods aim to mimic the most likely therapeutic and safety outcomes of candidate compounds
based on similarities between compounds and diseases characterized by high-throughput omics
data [9–11]. Most studies so far, however, have focused on repurposing drugs for a single
condition of interest, failing to recognize the cellular, genetic and ontological complexity inherent
to human diseases [12,13]. In reality, pathway cross-talk plays an important role in modulating the
pathophysiology of diseases [14] and most comorbid diseases are interconnected to each other in
the interactome through proteins belonging to similar pathways [15–19]. The pathway cross-talk is
especially relevant for autoimmune disorders, which have been shown to share several biological
functions involved in immune and inflammatory responses [20,21]. Autoimmune disorders affect
around 15% of the population in the USA [22] and co-occur in the same patient more often than
expected (i.e., comorbid) [23]. Recent evidence suggests that endophenotypes—shared intermediate
pathophenotypes—[24], such as inflammasome, thrombosome, and fibrosome play essential roles in
the progression of not only autoimmune disorders but also many other diseases [25].

Here, we propose a novel drug repurposing approach, Proximal pathway Enrichment
Analysis (PxEA), to specifically target intertangled biological pathways involved in the common
pathology of complex diseases. We first identify pathways proximal to disease genes across various
autoimmune disorders. Then we use PxEA to investigate whether the drugs promiscuously used
in these disorders target specifically the pathways associated with one disease or the pathways
shared across the diseases. We find several examples of anti-inflammatory drugs where the pathways
proximal to the drug targets in the interactome correspond to the pathways shared between two
autoimmune disorders. The observed lack of specificity among these drugs points to the existence
of immune system related endophenotypes, motivating us to explore shared disease mechanisms
for repurposing drugs. We demonstrate that PxEA is a powerful computational strategy for
targeting multiple pathologies involving common biological pathways, such as type 2 diabetes (T2D)
and Alzheimer’s disease (AD). Based on these findings, we argue that PxEA paves the way for
simultaneously targeting endophenotypes that manifest across various diseases, a concept which we
refer to as endopharmacology.

2. Results

2.1. Pathway Proximity Captures the Similarities between Autoimmune Disorders

Conventionally, functional enrichment analysis relies on the significance of the overlap between
a set of genes belonging to a condition of interest and a list of genes involved in known biological
processes (pathways). Using known pathway genes, one can identify pathways associated with the
disease via a statistical test (e.g., Fisher’s exact test for the overlap between genes or z-score comparing
the observed number of common genes to the number of genes one would have in common if genes
were randomly sampled from the data set). We start with the observation that such an approach
(hereafter referred as to conventional approach) often misses key biological processes involved in the
disease due to the limited overlap between the disease and pathway genes. To show that this is
the case, we focus on nine autoimmune disorders for which we obtain genes associated with the
disease in the literature and we calculate p-values based on the overlap between these genes and the
pathway genes for each of the 674 pathways in the Reactome database (Fisher’s exact test, one-sided
p ≤ 0.05). Intriguingly, Table 1 demonstrates that this conventional approach yields less than ten
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pathways that are significantly enriched in five out of nine diseases, potentially underestimating the
molecular underpinning of these diseases.

Table 1. Number of pathways enriched across nine autoimmune disorders based on the overlap
between the pathway and disease genes (one-sided p ≤ 0.05, assessed by a Fisher’s exact test) and
the proximity of the pathway genes to the disease genes in the interactome (z ≤ −2, see Methods
for details).

Disease
# of Pathways

Overlap Proximity
celiac disease 7 143
Crohn’s disease 5 116
diabetes mellitus, insulin-dependent 16 121
Graves’ disease 3 92
lupus erythematosus, systemic 17 98
multiple sclerosis 12 138
psoriasis 5 50
rheumatoid arthritis 55 17
ulcerative colitis 6 138

Alternatively, the shortest distance between genes in the interactome can be used to find pathways
closer than random expectation to a given set of genes [7,26], augmenting substantially the number of
pathways relevant to the disease pathology. Using network-based proximity [7], we define the pathway
span of a disease as the set of pathways significantly proximal to the disease (z ≤ −2, see Methods).
We show that the number of pathways involved in diseases increases substantially when proximity is
used (Table 1).

To show the biological relevance of the identified pathways using interactome-based proximity,
we check how well these pathways can highlight genetic and phenotypic relationships between nine
autoimmune disorders. First, to serve as a background model, we build a disease network for the
autoimmune disorders (diseasome) using the genes and symptoms shared between these diseases as
well as the comorbidity information extracted from medical insurance claim records (see Methods).
The autoimmune diseasome (Figure 1a) is extremely connected, covering 33 out of 36 potential links
between nine diseases (with average degree < k > = 7.3 and clustering coefficient CC = 0.93).
The three missing links are those between ulcerative colitis and rheumatoid arthritis, ulcerative colitis
and Graves’ disease, and Graves’ disease and type 1 diabetes. On the other hand, several diseases
such as celiac disease, Crohn’s disease, systemic lupus erythematosus, and multiple sclerosis are
connected to each other with multiple evidence types in the autoimmune diseasome based on genetic
(shared genes) and phenotypic (shared symptoms and comorbidity) similarities, emphasizing the
shared pathological components underlying these diseases.

We compare the autoimmune diseasome generated using shared genes, common symptoms and
comorbidity, to the disease network in which the disease-disease connections are identified using the
pathways they share. We identify the pathways enriched in the diseases using both the conventional
and proximity approaches mentioned above and check whether the number of common pathways
between two diseases is significant (two-tailed Fisher’s exact test, p < 0.05). The disease network
based on pathways shared across diseases using the overlap between the pathway and disease genes
is markedly sparser than the original diseasome, containing 17 links (Figure 1b). None of the diseases
share pathways with psoriasis and among the connections supported by multiple evidence in the
original diseasome, the links between Crohn’s disease and celiac disease as well as Crohn’s disease
and systemic lupus erythematosus are missing. On the contrary, the disease network based on shared
pathways using proximity of the pathway genes to the disease genes consists of 34 links, where the
only unconnected disease pairs are Crohn’s disease and Graves’ disease and type 1 diabetes and
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psoriasis, suggesting that it captures the connectedness of the original diseasome better than the
conventional approach.
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Figure 1. Genetic, phenotypic and functional overlap across autoimmune disorders. Disease relationships
(links) based on (a) shared genes (gray solid lines), shared symptoms (orange dashed lines) and
comorbidity (blue sinusoidal lines); (b) shared pathways (gray solid lines) using common disease and
pathway genes, (c) shared pathways (gray solid lines) using the proximity of the pathway genes to the
diseases genes in the interactome.

We next turn our attention to the shared pathways across diseases identified by both conventional
and proximity based approaches and observe that most common pathways involve biological processes
relevant to the immune system endophenotypes. In particular, we see that inflammasome-related
pathways, such as signaling of cytokines (interferon gamma, interleukins like IL6, IL7) and
lymphocytes (ZAP70, PD1, TCR, among others) are overrepresented. While conventional enrichment
finds that most of these pathways are shared among only 4–5 diseases, proximity based enrichment
points to the commonality of these pathways among almost all the diseases. Furthermore, the proximity
based enrichment uncovers the involvement of additional interleukin (IL2, IL3, IL5) and lymphocyte
(BCR) molecules ubiquitously in autoimmune disorders. These findings suggest that proximity-based
pathway enrichment identifies biological processes relevant to the diseases, highlighting the common
etiology across autoimmune disorders.

2.2. Diseases Targeted by the Same Drugs Exhibit Functional Similarities

Having observed that pathway proximity to diseases in the interactome captures the underlying
biological mechanisms across diseases, we seek to investigate the potential implications of the
connections between diseases for drug discovery. We hypothesize that a drug indicated for several
autoimmune disorders would exert its effect by targeting the shared biological pathways across
these diseases. To test this, we use 25 drugs that are indicated for two or more of the autoimmune
disorders in Hetionet [27] and split disease pairs into two groups: (i) diseases for which a common
drug exists and (ii) diseases for which no drugs are shared. We then count the number of pathways
in common between two diseases for each pair in the two groups using pathway enrichment based
on both the gene overlap and proximity in the interactome. We find that the diseases targeted by the
same drugs tend to involve an elevated number of common pathways compared to the disease pairs
that do not have any drug in common (Figure 2). The average number of pathways shared among
diseases that are targeted by the same drug is 3.4 and 38 using overlap and proximity based enrichment,
respectively, whereas, the remaining disease pairs share 2 and 31 pathways on average using the two
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enrichment approaches. We note that due to the relatively small sample size and potentially incomplete
drug indication information, we interpret the elevated number of pathways as a trend rather than a
general rule across all diseases (p = 0.043 and p = 0.066, assessed by one-tailed Mann-Whitney U test,
for the overlap and proximity based approaches, respectively). Nevertheless, taken together with the
high overall pathway level commonalities observed in the autoimmune disorders mentioned in the
previous section, this result suggests that the drugs used for multiple indications are likely to target
common pathways involved in these diseases.
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Figure 2. Number of shared pathways across disease pairs that are targeted by the same drug compared
to the rest of the pairs. The pathway enrichment is calculated using (a) gene overlap and (b) proximity
of genes in the interactome. The number of disease pairs in each group is given in the parenthesis
below the group label in the x-axis.

2.3. Proximal Pathway Enrichment Analysis Reveals Drugs Targeting the Autoimmune Endophenotypes

The results indicating that the drugs used for multiple autoimmune disorders potentially target
common pathways raise the following question: “Can pathway level commonalities between diseases
be leveraged to quantify the impact of a given drug on these diseases?” To this end, we propose
PxEA, a novel method for Proximal pathway Enrichment Analysis that scores the likelihood of a set of
pathways (e.g., targeted by a drug) to be represented among another set of pathways (e.g., disease
pathways) based on the proximity of the pathway genes in the interactome. As opposed to the
Gene Set Enrichment Analysis (GSEA) [28] which uses gene sets and the ranking of genes based on
differential expression, PxEA uses pathway sets and the ranking of pathways based on proximity in
the interactome. PxEA scores a drug based on whether or not the pathways targeted by the drug are
proximal to a pathway set of interest, such as pathways shared across different diseases. For a given
drug and a pair of diseases, we first identify the pathways in the pathway span of both of the diseases,
then we rank the pathways with respect to the proximity of the drug targets to the pathway genes and
finally we calculate a running sum statistics corresponding to the enrichment score between the drug
and the disease pair (Figure 3, see Methods for details).

We employ PxEA to score 25 drugs indicated for at least two of the seven autoimmune disorders
(there were no common drugs for celiac and Graves’ diseases). For each disease, we first run PxEA
using the pathways proximal to the disease and the proximity of the drugs used for that disease to
these pathways. We then run PxEA for each disease pair, using the pathways proximal to both of
the diseases in the pair and the drugs commonly used for the two diseases. We notice that several
drugs indicated for multiple conditions score higher using common pathways between two diseases
than using the pathways of the disease they are indicated for (Figure 4). This is not surprising
considering that many of the drugs used for autoimmune disorders target common immune and
inflammatory processes. For instance, sildenafil, a drug used for the treatment of erectile dysfunction
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and to relieve the symptoms of pulmonary arterial hypertension, is reported by Hetionet to show
palliative effect on type 1 diabetes and multiple sclerosis. Actually, sildenafil is not specific to any of
these two conditions and targets a number of the 57 pathways in common between type 1 diabetes
and multiple sclerosis including but not limited to pathways mentioned in Table 2, such as “IL-3,
5 and GM CSF signaling” (z = −1.6), “regulation of signaling by CBL” (z = −1.1), “regulation of
KIT signaling” (z = −1.0), “IL receptor SHC signaling” (z = −1.0), and “growth hormone receptor
signaling” (z = −1.0).

Similarly, prednisone, a synthetic anti-inflammatory glucocorticoid agent that is indicated for
six of the autoimmune disorders, is assigned a higher PxEA score using the pathways shared by
Crohn’s disease and systemic lupus erythematosus compared to using the pathways involved only
in Crohn’s disease, systemic lupus erythematosus, multiple sclerosis, psoriasis, rheumatoid arthritis,
or ulcerative colitis. Thus, prednisone does not specifically target any of the six autoimmune disorders
but rather acts on the endophenotypes that manifest across these diseases. We observe a similar
trend in meloxicam, an anti-inflammatory drug that shows analgesic and antipyretic effects by
inhibiting prostaglandin synthesis. Consistent with its known mechanism of action, meloxicam
is proximal to “cholesterol biosynthesis” (z = −3.5), “fatty acid, triacylglycerol, and ketone body
metabolism” (z = −2.0), and “prostanoid ligand receptors” (z = −1.7) pathways in the interactome.
While meloxicam is originally indicated for rheumatoid arthritis and systemic lupus erythematosus,
the higher PxEA score when common arthritis and lupus pathways are used suggests that it targets
common inflammatory processes in these two diseases.

Table 2. Pathways shared by autoimmune disorders based on the overlap and proximity of genes (only
pathways that appear most commonly across diseases are shown).

Pathway
# of Shared Diseases

Overlap Proximity
interferon gamma signaling 5 8
costimulation by the CD28 family 5 7
cytokine signaling in immune system 5 7
translocation of ZAP-70 to immunological synapse 5 6
phosphorylation of CD3 and TCR zeta chains 5 6
PD1 signaling 5 4
IL-6 signaling 4 8
generation of second messenger molecules 4 6
TCR signaling 4 6
signaling by ILs 3 9
immune system 3 7
downstream TCR signaling 3 7
interferon signaling 3 7
adaptive immune system 3 3
regulation of KIT signaling 2 7
IL-7 signaling 2 6
CTLA4 inhibitory signaling 2 5
chemokine receptors bind chemokines 2 3
extrinsic pathway for apoptosis 2 3
MHC class II antigen presentation 2 2
IL receptor SHC signaling - 9
IL-3, 5 and GM CSF signaling - 9
signaling by the B cell receptor BCR - 8
regulation of IFNG signaling - 8
growth hormone receptor signaling - 8
IL-2 signaling - 8
regulation of signaling by CBL - 8
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Figure 3. Schematic overview of proximal pathway enrichment analysis (PxEA). PxEA scores a drug
with respect to its potential to target the pathways shared between two diseases. For a given drug and
two diseases of interest, PxEA first identifies the common pathways between the two diseases and
then uses the proximity-based ranking of the pathways (i.e., average distance in the interactome to the
nearest pathway gene, normalized with respect to a background distribution of expected scores) to
assign a score to the drug and the disease pair.
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Figure 4. PxEA scores of drugs used in autoimmune disorders. (a) Disease-disease heatmap, in which
for each disease pair, the common pathways proximal to the two diseases are used to run PxEA.
Note that the diagonal contains the PxEA scores obtained when the proximal pathways for only that
disease are used. The hue of the color scales with the PxEA score. (b) Drug-disease heatmap, in which
the PxEA is run using the pathways proximal to the pathways of the disease in the column for the
drugs in the rows (25 drugs that are used at least in two diseases). The last two columns show the
median and maximum values of the PxEA scores obtained for the drug among all disease pairs the
drug is indicated for.

2.4. Targeting the Common Pathology of Type 2 Diabetes and Alzheimer’s Disease

T2D and AD, two diseases highly prevalent to an ageing society, are known to exhibit increased
comorbidity [29,30]. Recently, repurposing anti-diabetic agents to prevent insulin resistance in AD
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has gained substantial attention due to the therapeutic potential it offers [31]. Indeed, the pathway
spans of T2D and AD cover 170 and 82 pathways, respectively, 35 of which are shared between two
diseases, linking significantly the two diseases at the pathway level (Fisher’s exact test, two-sided
p = 2.2× 10−4).

We use PxEA to score 1466 drugs from DrugBank using the 35 pathways involved in the common
pathology of T2D and AD. When we look at the drugs ranked on the top of the list (Table 3),
we spot orlistat, a drug indicated for obesity and T2D in Hetionet. Interestingly, existing studies also
suggest a role for this drug in the treatment of AD [32]. Orlistat targets extracellular communication
(Ras-Raf-MEK-ERK, NOTCH, and GM-CSF/IL-3/IL-5 signaling) and lipid metabolism pathways
(Figure 5). Several of the proteins in the pathways pertinent to the common T2D-AD pathology, such as
APOA1, PSEN2, PNLIP, LPL, and IGHG1 are either Orlistat’s targets themselves or are in the close
vicinity of the targets. The next top scoring drugs are chenodeoxycholic and obeticholic acid, biliar
acids that are in clinical trials for T2D (NCT01666223) and are argued to modulate cognitive changes
in AD [33].

Table 3. Top ten drug repurposing opportunities to target common T2D and AD pathology, where the
drugs that target the same proteins according to DrugBank are grouped together in the same row and
the Anatomical Therapeutic Chemical (ATC) classification and indication information within the same
group is marked with the first letter of the drug in the parenthesis (if applicable).

Drug ATC Hetionet
Indication

DrugBank
Indication PxEA Score Adjusted

p-Value

orlistat A08 obesity, type 2
diabetes obesity 94.07 < 0.0001

obeticholic acid,
chenodeoxycholic
acid

A05 primary biliary
cirrhosis (C)

liver disease (O), primary
biliary cholangitis (O),
gallbladders (C)

74.06 <0.0001

esmolol, practolol C07 hypertension (E)

atrial fibrillation (E),
noncompensatory sinus
tachycardia (E), cardiac
arrhythmias (P)

70.55 <0.0001

clenbuterol R03 - asthma 70.44 <0.0001
erythrityl
tetranitrate C01 - angina 70.32 <0.0001

fenoterol,
arbutamine,
bupranolol

R03 (F),
G02 (F)
C01 (A),
C07 (B)

-

asthma (F), coronary
artery disease (A),
hypertension (B),
tachycardia (B),
glaucoma (B)

68.97 <0.0001

dalfampridine N07 multiple sclerosis multiple sclerosis 68.44 <0.0001

magnesium
sulfate

D11, V04,
A06, B05,
A12

-

eclampsia, acute
nephritis, acute
hypomagnesemia,
uterine tetany

68.27 <0.0001

roflumilast,
crisaborole R03 (R)

chronic
obstructive
pulmonary
disease (R)

chronic obstructive
pulmonary disease (R),
dermatitis (C),
psoriasis (C)

66.33 <0.0001

montelukast R03

chronic
obstructive
pulmonary
disease, asthma,
allergic rhinitis

asthma 65.94 <0.0001
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Figure 5. Orlistat from PxEA perspective. The subnetwork shows how the targets of Orlistat are
connected to the nearest pathway protein for the pathways shared between T2D and AD. For clarity,
only the pathways that are proximal to the drug are shown. Blue rectangles represent pathways, circles
represent drug targets (orange) or proteins on the shortest path to the nearest pathway gene (gray).
Blue dashed lines denote pathway membership, solid lines are protein interactions. The interactions
between the drug and its targets are shown in dashed orange lines and the interactions between the
drug targets and their neighbors are highlighted with solid orange lines.

It is noteworthy that the top scoring drugs belong to a diverse set of Anatomical Therapeutic
Chemical (ATC) classes, covering alimentary tract and metabolism drugs (A05, A06, A08, A12), blood
substitutes (B05), dermatologicals (D11) as well as cardiovascular (C01, C07), genito-urinary (G02),
nervous (N07), and respiratory (R03) system drugs. The diversity of the ATC classes of top scoring
drugs indicates that PxEA is not biased towards any particular ATC class. We also calculate the
significance of the PxEA scores by permuting the ranking of the pathways. We find that the adjusted
p-values (corrected for multiple hypothesis testing using Benjamini–Hochberg procedure) for the top
candidates are all below 1× 10−4, the minimum possible value (due to the 10,000 permutations used
in the calculation).

3. Discussion

The past decades have witnessed a substantial increase in human life expectancy owing to major
breakthroughs in translational medicine. Yet, the increase on average age and changes in life style,
have given rise to a spectra of problems challenging human health like cancer, neurodegenerative
disorders and diabetes. These diseases do not only limit the life expectancy but also induce a
high burden on public healthcare costs. In the US alone, more than 20 and 5 million people
have been affected by T2D and AD, respectively, ranking these diseases among the most prevalent
health problems [29].

Mainly characterized by hyperglycemia due to resistance to insulin, the disease mechanism of
T2D involves a combination of multiple genetic and dietary factors. On the other hand, AD is
relatively less understood and several hypotheses have been proposed for its cause: reduced
synthesis of neurotransmitter acetylcholine, accumulation of amyloid beta plaques and/or tau protein
abnormalities, giving rise to neurofibrillary tangles. Accordingly, most available treatments in AD
are palliative (treating symptoms rather than the cause). Given the comorbidity between T2D
and AD [29,30] several studies have recently suggested repurposing diabetes drugs for AD [31].
However, to our knowledge, currently there is no systematic method that can pinpoint drugs that
could be useful to target common disease pathology such as the one between T2D and AD.
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In this study, we first show that diseases that share drugs also tend to share biological pathways
and hypothesize that these pathways can be targeted to exploit novel drug repurposing opportunities.
We introduce PxEA, a method based on (i) pathways that are proximal to diseases and (ii) the ranking
of the pathways targeted by a drug using the topology information encoded in the human interactome.
We show that PxEA picks up whether drugs target specifically the pathways associated with a disease
or common pathways shared across various conditions. We observe that many anti-inflammatory
drugs are not specific to the condition they are used for and likely to target pathways involved in the
autoimmune endophenotypes.

To further explore shared disease mechanisms for repurposing drugs, we use PxEA and rank
drugs for their therapeutic potential in targeting the common disease pathology between T2D and AD.
We identify orlistat, a semisynthetic derivative of lipstatin that inhibits lipase—a pancreatic enzyme
that breaks down fat—as the top repurposing candidate. Orlistat inhibits hydrolysis of triglycerides,
which in turn, reduces the absorption of monoaclglycerides and free fatty acids [34]. Recent evidence
indicates that perturbations in unsaturated fatty acid metabolism are tightly coupled to neuritic plaque
and neurofibrillary tangle formation in AD patients [35]. Thus, orlistat might help slowing down the
plaque and tangle formation due to its effect on the fatty acid metabolism. Targeting of fatty acid
metabolism for improving the cognitive performance presents a novel therapeutic approach and is
further supported by experiments in mouse models [36].

PxEA can suggest rather counter-intuitive repositioning opportunities such as the use of
clenbuterol, an asthmatic drug, in the treatment of metabolic and neurodegenerative diseases such as
T2D and AD. In fact, the potential use of clenbuterol in these diseases is not too far fetched: it enhances
cognitive performance in aging rats and monkeys [37], improves memory deficit in mice [38], and
reduces the insulin resistance in obese rats [39]. On the flip side, while PxEA provides a cellular
network based perspective to recommend drugs, it does not take into account dosage-related effects
of drugs, potential adverse events, or the genetic background of the patients. For instance, practolol,
a beta-adrenergic antagonist that stands out among the T2D-AD candidates, has been withdrawn
from the market due to its high toxicity, limiting its potential therapeutic use in the clinical setting.
Despite the limitations of PxEA, such as the incompleteness in the drug target, disease and pathway
genes, lack of consideration of dosage-related effects or genetic heterogeneity, we believe PxEA is the
first step towards achieving endopharmacology, that is, targeting endophenotypes involved across
multiple diseases.

4. Materials and Methods

4.1. Protein Interaction Data and Interactome-Based Proximity

To define a global map of interactions between human proteins, we obtained the physical protein
interaction data from a previous study that integrated various publicly available resources [16].
We downloaded the supplementary data accompanying the article to generate the human protein
interaction network (interactome) containing data from MINT [40], BioGRID [41], HPRD [42],
KEGG [43], BIGG [44], CORUM [45], and PhosphoSitePlus [46]. We used the largest connected
component of the interactome in our analyses, which covered 141,150 interactions between
13,329 proteins (represented by ENTREZ gene ids).

Network-based proximity is a graph theoretic approach that incorporates the interactions of a
set of genes (i.e., disease genes or drug targets) with other proteins in the human interactome and
contextual information as to where the genes involved in pathways reside with respect to the original
set of genes [7]. To quantify interactome-based proximity between two gene sets (such as drug targets,
pathway genes or disease genes), we used the average shortest path length from the first set to the
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nearest protein in the second set following the definition in the original study [7]. Accordingly, the
proximity from nodes S to nodes T in a network G(V, E), is defined as

d(S, T) =
1
‖S‖ ∑

u∈S
min
v∈T

d(u, v)

where d(u, v) is the shortest path length between nodes u and v in G. We then calculated a z-score
based on the distribution of the average shortest path lengths across random gene sets Srandom and
Trandom (drandom(S, T) = d(Srandom, Trandom)) as follows:

z(S, T) =
d(S, T)− µdrandom(S,T)

σdrandom(S,T)

where µdrandom(S,T) and σdrandom(T,S) are the mean and the standard deviation of the drandom(S, T),
respectively, obtained using 1000 realizations of random sampling of gene sets that match the original
sets in size and degree. We refer to the pathways that are significantly proximal (z ≤ −2) to a disease
as the pathway span of the disease throughout text.

Note that, instead of average shortest path distances, one can also use random-walk
based distances to calculate proximity between gene sets [26]. However, random walks in the
networks are inherently biased towards high-degree nodes [47,48] and require additional statistical
adjustment [26,48]. Sampling based on size and degree matched gene sets has been shown to be robust
against data-incompleteness in the interactome and in the known pathway annotations [7,48].

To investigate the effect of noise in the pathway data, following the procedure proposed in [49],
we created a synthetic pathway data set, in which we defined pathways using a certain percentage k of
known disease genes in T2D and AD (k = 10, 25, 50, 75, 90). Hence, for each value of k, we created
10 groups of genes, containing a random sampling of k% of the T2D-associated genes. We repeated the
procedure using the AD-associated genes, yielding 100 gold standard pathways (10 for each disease
across 5 different values of k) that were subsets of the known disease genes. For each gold standard
pathway, we then generated so called control pathway, that is, randomly selected group of genes in the
interactome that match the size of the gold standard pathway under consideration. Next, we assessed
the shortest path distance based proximity between the gold standard pathways and the disease genes
(proximity of the gold standard T2D pathways to the T2D disease genes and of the gold standard AD
pathways to the AD disease genes) and compared it to the proximity of the control pathways to the
same disease genes. We also calculated the proximity using random walk scores as proposed in a
previous study [50]. We used the random walk implementation in GUILD software package [51] with
the default parameters. As one would expect, the gold standard pathways were significantly more
proximal (z ≤ −2) to the disease genes than the control pathways using both proximity calculation
approaches (Figure 6). On the other hand, the shortest path distance based proximity distinguished
better the overlap between the gold standard pathway genes and the disease genes by providing lower
values than the random walk based proximity as the noise in the pathway information decreased
(higher values of k in the gold pathways).
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Figure 6. Effect of noise in the pathway data on the random walk and shortest path based proximity
calculation. To assess the robustness of the interactome-based proximity in regards to noise in the
pathway data, we generated synthetic gold standard pathways containing a certain proportion (k%) of
the known disease genes in T2D and AD (see text for details). We compared the proximity between these
gold standard pathways and the disease genes to the proximity between the control pathways (random
groups of gene in the interactome) and the disease genes. The proximity values using random walk
and the shortest path for increasing k values are shown for the control and gold standard pathways.

4.2. Disease-Gene, Drug and Pathway Information

We compiled genes associated with nine autoimmune disorders listed in Table 4 using
disease-gene annotations from DisGeNET [52]. We downloaded curated disease-gene associations
from DisGeNET that contained infromation from UniProt [53], ClinVar [54], Orphanet [55], GWAS
Catalog [56] and CTD [57]. To ensure that the disease-gene associations were of high confidence,
we kept only the associations that were also provided in a previous large-scale analysis of human
diseases [16].

We retrieved drug target information from DrugBank for 1489 drugs in the version 5.0.6 of the
database [58], 1466 of which had at least a target in the interactome. UniProt ids from DrugBank were
mapped to ENTREZ gene ids using UniProt id mapping file (retrieved on October 2017). We used
drug indication information from Hetionet (compound treats or palliates disease edges) that compiled
data from publicly available resources [27]. We focused on 78 drugs that were indicated for nine
autoimmune disorders above. We created a subset of drugs used for two or more of the autoimmune
disorders, yielding 25 drugs across seven conditions (there were no indications for celiac disease, and
the two drugs used for Graves’ disease were not used in any other disease).

The ENTREZ gene ids of the proteins involved in biological pathways were taken from the
version 5.0 of MSigDB curated gene sets [59]. In our analysis, we used 674 Reactome [60] pathways
and the genes associated with these pathways in the MSigDB.
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Table 4. Disease-gene associations for the nine autoimmune disorders used in this study.

Disease # of Genes Genes
celiac disease 11 IL21 CCR4 HLA-DQA1 BACH2 RUNX3 ICOSLG SH2B3 CTLA4 MYO9B ZMIZ1 ETS1

Crohn’s disease 19 DNMT3A IL12B IRGM IL10 CCL2 FUT2 SMAD3 TYK2 ATG16L1 BACH2
IL2RA NKX2-3 PTPN2 NOD2 TAGAP MST1 DENND1B IL23R ERAP2

diabetes mellitus, IL10 GLIS3 HLA-DQA1 HLA-DRB1 PTPN22 SLC29A3 INS BACH2 CLEC16A
insulin-dependent 18 PAX4 HLA-DQB1 IL2RA CD69 IL27 HNF1A CTSH SH2B3 C1QTNF6
Graves’ disease 4 RNASET2 CTLA4 FCRL3 TSHR
lupus erythematosus, IKZF1 CFB RASGRP3 PDCD1 RASGRP1 DNASE1 HLA-DRB1 PTPN22 ETS1 TNIP1
systemic FCGR2B TNFSF4 IRF5 C2 PRDM1 PXK TLR5 TREX1 TNFAIP3 SLC15A4 PHRF129

HLA-DQA1 STAT4 ITGAX ITGAM BLK C4A BANK1 CR2

multiple sclerosis 15 CD58 CD6 IRF8 HLA-DQB1 CBLB HLA-DRA KIF1B IL2RA
TNFSF14 VCAM1 IL7R HLA-DRB1 CD24 TNFRSF1A PTPRC
IL12B TNIP1 LCE3D IL13 IL23R TYK2 HLA-DQB1 HLA-C FBXL19psoriasis 15 ERAP1 TRAF3IP2 TNFAIP3 TNF REL NOS2

rheumatoid arthritis 23 MIF CD40 ANKRD55 HLA-DRB1 PTPN22 RBPJ IL2RA AFF3 CCL21 REL SLC22A4 CCR6
IRF5 SPRED2 CTLA4 PADI4 TNFAIP3 NFKBIL1 HLA-DQA2 STAT4 IL6 BLK TRAF1
IL12B JAK2 ICOSLG IL1R2 LSP1 CXCR2 IL10 IL7R CXCR1 DAP NKX2-3 CARD9 GNA12ulcerative colitis 24 IRF5 PRDM1 HNF4A CCNY SLC26A3 FCGR2A IL23R IL17REL MST1 TNFSF15 CDH3

4.3. Genetic, Phenotypic and Functional Relationships across Diseases

To identify relationships across disease pairs (autoimmune diseasome), we used the similarities
between diseases in terms of the genes and symptoms they share. We assessed the significance of the
overlap between genes (or symptoms) associated with two diseases using Fisher’s exact test. An alpha
value of 0.05 was set to deem the connections significant (two-sided test p ≤ 0.05). The disease
symptom information was taken from a previous study based on text mining of PubMed abstracts [61].
In this study, the number of times a symptom appears in a PubMed abstract was adjusted by the
frequency of the symptom in the whole corpus using time frequency-inverse document frequency
approach (TF-IDF). To ensure that the disease-symptom associations are of high quality, we considered
associations with TF-IDF score higher than 3.5 as suggested in the original study.

Comorbidity relationships across diseases were inferred using data from medical insurance claims,
where we assessed whether two diseases occurred more often in the same patient compared to the
rest using the relative risk score [62]. Relative risk score relies on the relative occurrence frequencies
of diseases across patients, adjusting for the prevalence of the diseases. We mapped the ICD9 codes
to MeSH identifiers using the annotations provided by Disease Ontology [63] and we considered the
disease pairs with a relative risk score higher than 1 as potential commorbidity links.

To identify pathways enriched in diseases, we used the significance (i) of the overlap between
the pathway and disease genes assessed by a one-tailed Fisher’s exact test and (ii) of the proximity
between the pathway and disease genes in the interactome. We considered the pathways that had
p ≤ 0.05 and z ≤ −2, respectively, as the pathways that were enriched in a given disease using the
two approaches. The pathway information was taken from Reactome and the proximity was calculated
as explained above.

4.4. PxEA: Proximal Pathway Enrichment Analysis

Toward the goal of pathway level characterization of the common pathology of diseases and
to evaluate the therapeutic potential of drugs based on their impact on the common pathways,
we developed Proximal pathway Enrichment Analysis (PxEA), a novel method that scores drugs based
on the proximity of drug targets to pathway genes in the interactome. PxEA uses a GSEA-like running
sum score [28], where the pathways are ranked with respect to the proximity of drug targets to the
pathways and each pathway is evaluated to see whether or not it appears among the pathways of
interest (e.g., common pathways between two diseases). Given D, the pathways ranked with respect to
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their proximity to drug targets, pi, the pathway in consideration within D, and C, the set of pathways
of interest, the running score is defined as follows [64]:

ES(D, C) = ∑
pi∈D

Xi

where,

Xi = {

√
|D|−|C|
|C| , i f pi ∈ C

−
√

|C|
|D|−|C| , otherwise

To calculate p-values for the case study, we repeat the procedure above 10,000 times, shuffling
randomly D to calculate the expected enrichment score ES(Drandom, C). We then calculate the p-value
for the enrichment using

P =
|ES(D, C) < ES(Drandom, C)|

10, 000

The p-values were corrected for multiple hypothesis testing using Benjamini-Hochberg procedure [65].

4.5. Implementation Details and Code Availability

We used the toolbox Python package for running PxEA, available at github.com/emreg00/toolbox.
The proximity was calculated using networkx package that implements Dijkstra’s shortest path
algorithm. The statistical tests were conducted in R (www.R-project.org) and Python (www.python.org).
The network visualizations were generated using Cytoscape [66] and the plots were drawn using
either Seaborn python package [67] or ggplot2 R package [68].
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