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Abstract: An Ugi–Zhu three-component reaction (UZ-3CR) coupled in a one-pot manner to a cascade
process (N-acylation/aza Diels–Alder cycloaddition/decarboxylation/dehydration) was performed
to synthesize a series of pyrrolo[3,4-b]pyridin-5-ones in 20% to 92% overall yields using ytterbium
triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules
were evaluated in vitro against breast cancer cell lines MDA-MB-231 and MCF-7, finding that com-
pound 1f, at a concentration of 6.25 µM, exhibited a potential cytotoxic effect. Then, to understand
the interactions between synthesized compounds and the main proteins related to the cancer cell
lines, docking studies were performed on the serine/threonine kinase 1 (AKT1) and Orexetine type 2
receptor (Ox2R), finding moderate to strong binding energies, which matched accurately with the
in vitro results. Additionally, molecular dynamics were performed between proteins related to the
studied cell lines and the three best ligands.

Keywords: breast cancer; docking; MCRs; Ugi–Zhu; Pyrrolo[3,4-b]pyridin-5-ones; MDA-MB-231;
MCF-7; molecular dynamics

1. Introduction

Breast cancer is the most common invasive neoplasm and the leading cause of death in
women worldwide. According to the World Health Organization, 2.5 million new cases and
685,000 deaths were reported worldwide in 2020 [1]. Furthermore, it has been described that
90% of cancer deaths are associated with metastasis, and breast cancer cells spread mainly to
secondary sites such as the bones, lungs, liver, brain, and lymph nodes [2]. One of the most
common and widely accepted classifications of breast cancer is related to the expression of
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) [3,4]. According to this classification, breast cancer has been divided
into six main subtypes: luminal A, luminal B, basal-like or triple-negative breast cancer
(TNBC), basal-epithelial, normal-like, and claudin-low breast cancer [3,5]. Currently, the
molecular characteristics of breast cancer have allowed the use of different cellular models
as a first approach in the research of alternative or complementary treatments in breast
cancer therapy, where cell lines such as MCF-7 (luminal subtype A) and MDA-MB-231
(TNBC subtype) are frequently used [6], for instance, in the present work.

Thus, to investigate the possible therapeutic effects of the synthesized pyrrolo[3,4-
b]pyridin-5-ones 1a–1k, molecular docking assays were performed using 20 protein targets
related to breast cancer: Serine/Threonine-protein kinase AKT (AKT1), Troponin cardiac
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muscle (cTn), Cytochrome P450 2C9 (CYP2C9), Cytochrome P450 3A4 (CYP3A4), MAP ki-
nase p38 alpha (p38α), Cathepsin S (CTSS), Cyclin-dependent kinase 2/cyclin A (Cdk2/CA),
Insulin-degrading enzyme (IDE), Cyclin-dependent kinase 2/cyclin E (Cdk2/CE), Cyclin-
dependent kinase 4 (CDK4), Mitogen-activated protein kinase 8 (MAPK8), Cathepsin L
(CTSL), Serotonin 6 receptor (5-HT6), Dual specificity protein phosphatase 3 (DUSP3),
GTPase Kras (KRAS), MAP kinase-activated protein kinase 3 (MAPK3), Metabotropic
glutamate receptor 2 (mGluR2), Ghrelin receptor (ghrelinR), Histamine H3 receptor (H3),
and Orexin-2 receptor (Ox2R). The best hits were confirmed using molecular dynamics
(MD). Based on available information, there are no prior investigations into the potential of
this compound series to target AKT1 [7,8] and Ox2R [9,10] as the main proteins relating to
breast cancer. Compounds 1f, 1h, and 1k bind efficiently to catalytic sites of the two specific
target proteins implicated in the proliferation of breast cancer cells. As a result, it can be
observed that compounds 1f, 1h, and 1k possess advantageous structural characteristics,
rendering them highly promising molecules with prospective therapeutic applications in
antineoplastic treatments for breast cancer.

2. Results and Discussion
2.1. Synthesis

Multicomponent reactions are privileged synthetic tools due to the high atom economy
observed when assembling polyheterocyclic cores in a one-pot manner [11]. Within MCRs,
an elegant variation of the Ugi three-component reaction (U-3CR) called the Ugi–Zhu
reaction (UZ-3CR) has been extensively developed in our research group to synthesize a
broad variety of polyheterocyclic pyrrolo[3,4-b]pyridin-5-ones [12].

Thus, to achieve pyrrolo[3,4-b]pyridin-5-ones 1a–1k, a one-pot process was performed
by coupling an UZ-3CR to a cascade sequence: aza Diels–Alder/N-acylation/aromatization
(decarboxylation/dehydration). In some of our previous reports, it was found that toluene
and ytterbium triflate were the best solvent and catalyst, respectively, to perform this pro-
cess [13,14]. Thus, it was necessary to synthesize isocyanoacetamides from racemic pheny-
lalanine in three steps as reported by Zhu and co-workers: (1) amino acid N-formylation,
(2) peptidic coupling, and (3) Ugi-type dehydration [15]. With isocyanides in hand, and ac-
cording to the Ugi–Zhu process, the reaction between aldehydes 2 and amines 3 yielded the
imines 4, which were activated with Lewis acid catalysts to promote α-nucleophilic attack
by α-isocyanoacetamides 5. Then, through a non-prototropic chain-ring tautomerization,
5-aminooxazoles 6 were afforded. Thus, addition of maleic anhydride (7) promoted an
aza Diels–Alder cycloaddition followed by the N-acylation/decarboxylation/dehydration
cascade process to give the products 1a–1k in moderate to good yields (20–92%) (Scheme 1).
It is worth highlighting that only three small molecules (two molecules of water and one
molecule of CO2) were released in all synthetic processes, demonstrating the process’s high
atom economy under ecofriendly conditions.

2.2. Anticancer Activity

The effect of compounds 1a–1k was evaluated on cell viability by MTT assays of
two breast cancer cell lines, the triple-negative cell line MDA-MB-231 and the HER2-
positive breast cancer line MCF-7. Results show that in the MDA-MB-231 cell line, the
compounds that significantly decrease cell viability at lower concentrations are 1f (6.25 µM)
and 1d (25 µM), whereas compounds 1b, 1e, 1h, and 1i decrease cell viability at 50 µM.
Compounds 1c, 1g, 1j, and 1k decrease viability starting at 100 and 200 µM. Interestingly,
no significant decrease was observed for compound 1a in MDA-MB-231 breast cancer cells
(Figures 1 and 2).
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Figure 1. Effect of compounds 1a–1k on cell viability of MDA-MB-231 cells. The MDA-MB-231 cell
line was exposed to 0, 6.25, 12.5, 25, 50, 100, and 200 µM of the chemical compounds for 48 h. The
graphs are representative of the % cell viability concerning the control and are representative of three
independent experiments. Statistical significance was calculated by ANOVA and Dunnett, ±SD with
values of * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 indicating statistical significance.



Pharmaceuticals 2023, 16, 1562 5 of 29
Pharmaceuticals 2023, 16, x FOR PEER REVIEW5 of 31 
 

 

 103 

Figure 2. Effect of compounds 1a-k on the cell viability of MDA-MB-231 cells. Representative phase 104 
contrast microscopy images of MDA-MB-231 tumor cells. The cells were treated with different con- 105 
centrations of the chemical molecules (0, 6.25, 12.5, 25, 50, 100, and 200 μM) or vehicle (DMSO) for 106 
48 h. Images of morphological changes were taken at 48 h with a 10× objective. 107 

Figure 2. Effect of compounds 1a–1k on the cell viability of MDA-MB-231 cells. Representative
phase contrast microscopy images of MDA-MB-231 tumor cells. The cells were treated with different
concentrations of the chemical molecules (0, 6.25, 12.5, 25, 50, 100, and 200 µM) or vehicle (DMSO)
for 48 h. Images of morphological changes were taken at 48 h with a 10× objective.
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In particular, in the MCF-7 breast cancer cell line, compound 1i decreased cell viability
at 50 µM, 1h at 100 µM, and 1b, 1c, 1d, 1g, 1j, and 1k at 200 µM. However, compounds 1a,
1e, and 1f had no significant effect on cell viability.

When photographs were taken of MCF-7 cells treated with different concentrations
of the compounds 1a–1k, effects were observed only at 100 and 200 µM with 1b, 1c, 1e,
1g, 1h, 1i, 1j, and 1k (Figures 3 and 4). Interestingly, unlike MDA-MB-231 cells, where we
observed effects from low concentrations, the effects in the MCF-7 cell line were seen only
at high concentrations.
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Figure 3. Effect of chemical compounds 1a–1k on cell viability of MCF-7 cells. The MCF-7 cell
line was exposed to 0, 6.25, 12.5, 25, 50, 100, and 200 µM of the compounds for 48 h. The graphs
are representative of the % cell viability concerning the control and are representative of three
independent experiments. Statistical significance was calculated by ANOVA and Dunnett, ±SD with
values of * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 considered statistically significant.



Pharmaceuticals 2023, 16, 1562 7 of 29
Pharmaceuticals 2023, 16, x FOR PEER REVIEW7 of 31 
 

 

 122 

Figure 4. Effect of chemical compounds 1a-k on cell viability of MCF-7 cells. Representative bright- 123 
field microscopy images of MCF-7 tumor cells. Cells were treated with different concentrations of 124 
the chemical molecules (0, 6.25, 12.5, 25, 25, 50, 100, and 200 μM) or vehicle (DMSO) for 48 h. Images 125 
of the morphological changes at 48 h were taken with a 10× objective on an inverted microscope. 126 

 127 

Figure 4. Effect of chemical compounds 1a–1k on cell viability of MCF-7 cells. Representative bright-
field microscopy images of MCF-7 tumor cells. Cells were treated with different concentrations of the
chemical molecules (0, 6.25, 12.5, 25, 25, 50, 100, and 200 µM) or vehicle (DMSO) for 48 h. Images of
the morphological changes at 48 h were taken with a 10× objective on an inverted microscope.
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With the data obtained from the cell viability assays of the breast cancer cell lines
MDA-MB-231 and MCF-7, the IC50 values were determined for all synthesized compounds
with ranges from 0 to 200 µM. Of all the compounds tested, the lowest IC50 doses in
MDA-MB-231 cells were for compounds 1f, 1i, and 1d (Table 1). Interestingly, no significant
effects were observed with any compound in the MCF-7 breast cancer cell line. These
data suggest that compound 1f has the most anticancer activity and that it is specific for
MDA-MB-231 triple-negative breast cancer cells.

Table 1. IC50 of the different compounds in MCF-7 and MDA-MB-231 breast cancer cells.

Compound MCF-7
IC50 (µM)

MDA-MB-231
IC50 (µM)

1a −2432.33696 114.998827

1b 277.07712 89.7144132

1c 554.323499 117.833333

1d 331.476877 67.8459821

1e 753.2345013 77.5989269

1f 753.234501 14.8518557

1g 158.183608 68.6064836

1h 109.624029 75.5411255

1i 123.0212854 59.4034271

1j 159.288991 96.820554

1k 187.18081 117.33474

The importance of assessing cell viability in MDA-MB-231 and MCF-7 cancer cells
treated with different concentrations of compounds 1a–1k is due to the presence in their
chemical structure of the pyrrolo[3,4-b]pyridin-5-one series, which is a fused-type poly-
heterocyclic system and is an aza-analogue of the isoindoline-1-one core [16]. Isoindolin-1-
one has been described as the structural core of several natural and synthetic anticancer
agents [17]. Moreover, in various recently published works, isoindolin-1-one related het-
erocyclic compounds have been tested against cancer cell lines [18–21]. In this sense, it
was likely that the compounds could have biological activity by decreasing viability of
mammary cancer cells +ER and +PR, and TNBC cells. Interestingly, in our study, the
compounds tested had different effects depending on the cell line. Indeed, it was found
that the compound with the highest biological activity in TNBC MDA-MB-231 cells was 1f,
decreasing cell viability from the lowest concentration used (6.25 µM). According to the
structural substituents of all molecules, compound 1f is the only one with sulfur atoms in
its structure. Different studies have reported that sulfur is present in many compounds
with biological activities, including anticancer properties, because it decreases cell prolifer-
ation and, therefore, metastasis in various cancer cell lines such as prostate cancer, murine
colorectal cancer, and lung carcinoma [22,23].

On the other hand, an analysis was also performed with compounds 1a–1k using
the SwissTargetPrediction (Ver. 2019) and PASS-Protein-Target (Ver. 2.0) platforms. It
was found that compound 1f may interact with proteins such as PI3K, which is a key
regulator in growth, progression, survival, metabolism, protein synthesis, and angiogenesis
of breast cancer; likewise, it can also participate in the risk of resistance to endocrine
therapy and chemotherapy [24]. MAPKs are another essential family of proteins related
to tumor progression [25,26]. Likewise, 1f can interact with CDK4, one of the regulatory
proteins of cell cycle progression [27]. Indirectly, it can also interact with hypoxia-inducible
factor-1-α (HIF-1-α), which facilitates the adaptation of cancer cells to hypoxic conditions,
allowing tumor cells to survive during metabolic stress and enter a prolonged state of
tumor dormancy [28].
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2.3. In Silico Studies
2.3.1. Multi-Target Molecular Docking

The use of molecular docking simulations with organic compounds as inhibitors
against numerous proteins is well known and often applied in both industrial and labora-
tory contexts. The purpose of these simulations is to minimize temporal intervals, decrease
costs, and optimize research endeavors [29–31]. In the present investigation, molecular
docking and MD techniques were used to ascertain and to authenticate inhibitors tar-
geting diverse protein targets. A screening method was performed to identify possible
protein targets for the compounds 1a–1k using SwissTargetPrediction and PASS-Protein-
Targets [32–35]. A total of 20 potential targets were identified in this study (Table S2,
electronic Supplementary Material), each with a probability (P) greater than 0.8. Among
these protein targets, 15 were found to be water-soluble proteins, including AKT1 (PDB-ID:
5KCV), CYP2C9 (PDB-ID: 1R9O), CYP3A4 (PDB-ID:8EXB), p38α (PDB-ID: 6SFI), CTSS
(PDB-ID: 2FRA), Cdk2/CA (PDB-ID: 2R3F), Cdk2/CE (PDB-ID: 7E34), IDE (PDB-ID: 6EDS),
CDK4 (PDB-ID: 2W9Z), MAPK8 (PDB-ID: 5IU2), CTSL (PDB-ID: 8C77), DUSP3 (PDB-ID:
3F81), MAPK3 (PDB-ID: 3FHR), KRAS (PDB-ID: 7SCX), and cTn (PDB-ID 4Y99). Addition-
ally, five membrane proteins were identified as potential targets, namely 5-HT6 (PDB-ID:
7XTB), mGluR2 (PDB-ID: 7EPF), ghrelinR (PDB-ID: 7NA8), H3 (PDB-ID: 7F61), and Ox2R
(PDB-ID: 6TPN).

A thorough target analysis demonstrates that pyrrolo[3,4-b]pyridin-5-one could inter-
act with a significant number of proteins implicated in cancer-related disorders. In this
context, it is plausible that compounds 1a–1k may exhibit inhibitory properties akin to
those observed in antineoplastic drugs. Therefore, these compounds may be identified as
potential candidates for utilization in breast cancer therapy.

Breast cancer, a prominent contributor to female cancer-related mortality, frequently
exhibits metastatic tendencies, disseminating across several anatomical sites. The primary
aim of the computational research performed herein is to ascertain efficient approaches for
identifying molecules exhibiting optimal binding possesses, utilizing docking scores as a
basis for the evaluation. The task of determining the appropriate conformation of a ligand–
protein complex in a computational molecular framework is accompanied by difficulties
related to different docking techniques [36–42]. To investigate this matter, compounds
1a–1k were subjected to individual docking simulations against each of the 20 possible
protein therapeutic targets. The procedure encompassed the application of three scoring
functions, afterwards followed by the re-evaluation of docking through the utilization of
Autodock Vina. The findings unveiled a spectrum of interaction score energy values for
all compounds, ranging from −7.00 to 12.00 kcal/mol (Table S3). The docking clusters are
depicted in Figure 5A, wherein the lower-left quadrant contains the most advantageous
binding pose. These poses are chosen based on the lowest root mean square deviation
(RMSD), lowest energy score, and high cluster populations.

Then, predictions were made regarding the ADMETox characteristics of compounds
1a–1k. This analysis involved the utilization of models that incorporate medicinal chem-
istry features, pharmacokinetics, drug likeness, and toxicity profiles. The analysis was
performed using machine-learning techniques included in Protox-II and SwissADME. In
the methodology for performing MD simulations, we opted for molecules that demon-
strated favorable docking scores, desirable drug-like characteristics (Table S4), and low
IC50 values. As a result, compounds 1f, 1h, and 1k were found to meet these criteria and
demonstrated the highest positive rankings upon evaluation against the therapeutic targets
Ox2R and AKT1.

AKT1 has been identified as a crucial regulator of key aspects of cancer and metastasis,
resulting in a growing interest in its potential as a therapeutic target [43,44]. In addition,
the OX2R receptor, which exhibits an absence of expression in healthy cells but is present
in breast cancer cells, has emerged as a highly promising contender for targeted cancer
therapy. The complete investigation of its possible significance in cancer cells must be
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undertaken. A thorough comprehension of these functions may be pivotal for advancing
breast cancer therapy [10,45,46].
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The main structure of AKT1 (UniProt: P31749) consists of two structural domains
(Figure S24): the first encompasses a Pleckstrin Homology (PH) domain, spanning residues
6 to 105. The second domain includes residues 150 to 447 and is characterized by a
conserved kinase domain. The N-Lobe (residue 144 to 230) and C-Lope motifs (residue
230 to 444), along with the G-loop (residue 157 to 162) and the activation loop (residue 350
to 360), come together to form this kinase domain. Our research primarily investigated
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the allosteric cavity generated between the PH and kinase domains. The presence of
an allosteric pocket can confer benefits to our compounds in relation to AKT1 [44]. The
utilization of an allosteric pocket provides a distinctive advantage over ATP-competitive
inhibitors. Ox2R (UniProt: O43614) is composed of seven helical transmembrane segments
(TM1 to TM7) that are interconnected by three intracellular loops (ICL1 to ICL3) and three
extracellular loops (ECL1 to ECL3). The Ox2R variant with a truncated intracellular loop 3
(ICL3) was employed in this investigation (Figure S25), and the Ox2R target was constructed
using the structural data provided by Asada et al. in 2022 (PDB-ID: 7XRR).

According to the docking results (Table S3) the compounds 1f, 1h, and 1k had
the highest evaluation with the lower interaction score energy of −9.933, −9.217, and
−10.59 kcal/mol, respectively, when evaluated against Ox2R. Similarly, these compounds
achieved scores of −10.938, −11.930, and −11.185 kcal/mol, respectively, when assessed
against AKT1. The findings from in silico molecular coupling investigations targeting
AKT1 indicate that compounds 1f, 1h, and 1k have potential as tyrosine kinase allosteric in-
hibitors (AKT1-aIs). In the same manner, the aforementioned compounds exhibit inhibitory
properties towards Ox2R, a GPCR receptor that is uniquely expressed in breast cancer cells
and not in non-tumor cells [10,46], indicating that Ox2R has significant potential as a target
for cancer treatment. Figure 5B displays the best docking pose inside the active sites of
AKT1 and Ox2R with a conformational plasticity in the pocket. To date, our research has
shown the potential of compounds 1f, 1h, and 1k as viable candidates with pro-apoptotic
and antiproliferative properties, with notable low IC50 values. The ADMETox evaluation
(Table S4) of compound 1f revealed that it exhibits favorable characteristics compared
to compounds 1h and 1k. Furthermore, compound 1k displayed a higher toxicity than
compound 1h. However, it is crucial to emphasize that compound 1k exhibits the most
advantageous MCF-7/MDA-MB-231 IC50 ratio, which is valued at 1.59. The importance
of this ratio lies in its capacity to enable the identification of compounds that have the
potential to operate as anticancer agents, capable of affecting both cell lines at a lower
dosage. In this way, 1f has been evaluated and classified as a Class V chemical, indicating
that it has the potential to cause damage if ingested, with an LD50 that falls within the
range of 2000 to 5000 mg/kg, indicating moderate toxicity. Furthermore, it exhibits a high
level of absorption in the gastrointestinal tract, complies with Lipinski’s rule of five, and
does not penetrate the blood–brain barrier. In contrast, it is possible for the compounds 1h
and 1k to overcome this barrier and be categorized as Class III drugs, which are specifically
identified as “toxic if consumed” (50 < LD50 ≤ 300). Regarding the ligand endpoints target-
ing toxicity, nuclear receptors, and stress pathways, it is projected that all three compounds
will exhibit inactivity.

Figure 5A illustrates clustering graphs that indicate distinct groupings for each protein–
ligand system. Each point within the graphs represents an individual cluster. The figure
shows a magnified depiction of the energy scores that are optimally positioned in relation
to the RMSD of the clusters with the highest population. Significantly, the interactions
of 1f, 1h, and 1k with AKT1 and Ox2R demonstrate a strong correlation between scoring
energy and RMSD, suggesting a substantial binding affinity. Figure 5B depicts the spatial
arrangements of 1f, 1h, and 1k within the cavities of the Ox2R and AKT1 target proteins.
The energy scores associated with each molecule are presented alongside their respective
orientations. The atom–ligand pairs are visually distinguished by color, as carbon is shown
as gray, nitrogen as blue, oxygen as red, and sulfur as yellow. The region surrounding
the ligands within the pocket is primarily characterized by hydrophobic properties, as
indicated by the blue color. Conversely, the remaining surface of the pocket exhibits polar
characteristics, represented by the orange color. Nevertheless, the depth of the pocket is of
such a magnitude that it poses a considerable challenge in terms of visualizing the entirety
of its surface. By directing attention only to the pocket region, a more distinct exterior
perspective can be achieved.
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2.3.2. Molecular Dynamic Simulation Studies of 1f, 1h, and 1k on AKT1 and Ox2R

Thus far, it has been established that compounds 1f, 1h, and 1k demonstrate positive
binding scores with AKT1 and Ox2R target proteins, together with moderately hazardous
IC50 values at experimentally determined inhibitory dosages. To determine the accurate
conformations of the ligands and examine the impact of conformational alterations on side
chains during recognition processes, as well as to obtain a deeper understanding of the
interaction energies and mechanisms that govern the interactions between ligands and the
target proteins, a series of three individual simulations (replicas) were performed for each
ligand/protein system. Each simulation had a duration of 100 ns. To ensure the represen-
tativeness of the population for energy calculations, we combined the final 80 ns of each
replica. Following that, we conducted a clustering analysis to categorize conformational
states that exhibited similarity in the simulations and so minimize structural variation.

The RMSD findings, as depicted in Figures 6 and 7, indicate that the simulations attain
stability starting from 20 ns, apart from one of the three replicas performed for the 1f/AKT1
system (Figure 6, blue line), 1k/AKT1 system (Figure 6, red line), and 1h/Ox2R system
(Figure 7, green line). This observation suggests that these replicas may have experienced
either a lack of stabilization or demonstrated more significant variations in comparison
to the remaining two replicas. In this context, it is shown that systems incorporating the
AKT1 protein exhibit RMSD values below 4 Å, while systems containing Ox2R demonstrate
RMSD values below 3.5 Å (Table S5). Consequently, all trajectories were incorporated into
the clustering procedure. Similar trends were detected in a ligand RMSD study, akin to
those observed in protein RMSD analysis. As illustrated in Figure 6, compound 1k exhibits
fluctuations that are correlated with those of AKT1. Compound 1f displays an imbalance
noticed in the final 20 ns that matches with the sudden increase in the protein RMSD.
With respect to the second replica of 1f/Ox2R, as seen by the blue line in Figure 7, it is
evident that 1f experiences a displacement, which is likely attributable to a rotating motion
occurring within the binding site. No ligand RMSD systems surpassed 3 Å. Hence, despite
the presence of noticeable visual variations in certain replicas, the ligands consistently
maintained their position within the binding pockets. It is worth mentioning that there
is an observable association between the movements of ligands within the cavity and
the mechanical motions of the protein. This implies the presence of a useful stimulus–
response relationship.

The graphical representations (Figure 6) within the study illustrate the protein–RMSD
(alpha-carbon), ligand–RMSD, root mean square fluctuations (RMSf), and normalized
distribution of the radius of gyration (Rgyr) across a simulated time period of 100 ns in each
replicate of every one of the systems. The replicates are distinguished by distinct colors,
with replicate 1 represented by blue, replicate 2 denoted by red, and replicate 3 indicated
by green. To minimize the possibility of incorrect interpretation, the first graph for each
descriptor is provided with axis labels. The central region of the diagram illustrates the
AKT1 target protein’s structure using cartoon representations. Additionally, the 1h ligand
has been added into the allosteric binding pocket.

Minor alterations were detected in the variations of individual amino acid’s RMSf. In
the context of AKT1 (Figure 6), it is seen that the linking-loop connecting the PH domain
to the kinase domain displays significant oscillations, with a maximum amplitude of
25 Å. This suggests that the linking-loop has the capacity to assume many conformations,
including open, closed, or intermediate states (Movie S1, see page S60 on Supplementary
Material) during the interaction with AKT1-aIs, which may have the capacity to modulate
cell signaling downstream. Regarding Ox2R, the RMSf demonstrates the stability of the six
transmembrane helices and the occurrence of high-rate oscillations in the interconnecting
loops (Movie S2). Nevertheless, the analysis of TM5 reveals slight fluctuation variations in
two replicas during the interaction of Ox2R with 1f. The limited extent of variations seen
in the remaining systems implies a state of inactivity that maintains stability throughout
oscillations in MD. Nonetheless, it is worth noting that all three systems display alterations
in the structure of TM5, TM6, TM7, and H8 (Figure S26). Moreover, the results demonstrate
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that compounds 1f, 1h, and 1k exhibit an influence on the conformational alterations
occurring in the sidechains of the active pockets, interdomain linking loops in AKT1, and
the transmembrane domains (TMs) in Ox2R. These findings may offer a possible rationale
for the observed lowered IC50 values.
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and 1k with the Ox2R receptor.

Regarding the acquired data, Rgyr is a metric utilized to assess the protein’s dynamic
behavior, specifically its changes in structural compactness, which can be interpreted as
expansions or contractions in its total globular size. Figures 6 and 7 illustrate the varying
Rgyr values observed for the AKT1 and Ox2R structures, exhibiting oscillations within the
range of 21.5 to 22.0 Å for both systems (Table S5).
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The internal graphics (Figure 7) illustrate the protein–RMSD (α-carbon), ligand–RMSD,
RMSf, and normalized distribution of Rgyr across a simulated time of 100 ns in each replicate
of every system. The replicates are distinguished by their respective colors, with blue
representing replicate 1, red representing replicate 2, and green representing replicate 3.
To minimize the possibility of incorrect interpretation, the first graph for each descriptor
is provided with axis labels. The central region of the diagram illustrates the Ox2R target
protein’s structure in cartoon representations, whereby a 1k ligand has been introduced
into the active pocket.

Into two AKT1 replicas, there is an observed phenomenon of a widened distribution
of the population bell curve or the presence of two distinct populations. This observation
cannot be attributed to a denaturation state. One instance illustrating this behavior is
replica 2 (Figure 6, red line) pertaining to ligand 1f, wherein the observed variations arise
from the movements of the linking-loop (Movie S1) between PH and kinase domains. The
observed variations could potentially be attributed to the allosteric dynamics of inhibited
AKT1. In the context of Ox2R, the population oscillations observed for Rgyr are shown to
be constant and similar between replicates. Nevertheless, the systems undergo the most
sudden alterations when Ox2R encounters ligand 1f. Within this particular setting, it is
possible that ligand 1f elicits disturbances in the dynamic “breathing” fluctuations of Ox2R.
These perturbations may align with its function as an inhibitor in the process of Ox2R
inactivation, thereby suppressing its signaling functions.

2.3.3. Binding Free Energy 1f, 1h, and 1k

The MD simulations were employed to understand the binding interactions between
the compounds (1f, 1h, and 1k) with target proteins (AKT1 and Ox2R) [47–49]. Hence, the
computational method known as MM/GBSA was employed to calculate the interaction
binding energy between compounds 1f, 1h, and 1k and the proteins AKT1 and Ox2R. This
method is recognized for its cost-effective nature [50–52]. The clustering analysis was
performed on the three concatenated replicates across the final 80 ns of each simulation. Fol-
lowing the clustering approach, the cluster with the highest population, which accounted
for at least 75% of the combined simulation dataset consisting of 1800 randomly selected
structures, was further analyzed using the MM/GBSA method.

Based on the computed interaction energies, it can be inferred that the complexes
involving putative compounds 1f, 1h, and 1k exhibit stabilization mostly due to non-polar
contributions (Table 2), when interacting with the protein therapeutic targets. In the context
of AKT1, compound 1f was observed to bind to the allosteric pocket with an interaction
energy of −18.48 kcal/mol. Comparatively, the similarity compounds 1h and 1f exhibited
interaction energies of −19.50 and −26.42 kcal/mol, respectively. Regarding the Ox2R
inhibitor, it was observed that compound 1f had a binding affinity of −14.26 kcal/mol
towards the active site. Similarly, compounds 1h and 1k displayed binding affinities of
−23.62 and 23.06 kcal/mol, respectively. The interaction energy of both systems was found
to exhibit contributions from Van der Waals (vdW) forces ranging from 45 to 55 kcal/mol.
In contrast, the electrostatic contributions varied from −5 to −25 kcal/mol. These results
suggest that the vdW contributions were more energetically advantageous in comparison
to the electrostatic contributions (Table 2).

The positive contribution of the polar interaction energy presents a drawback in the
interaction process due to its positive contribution, which varies from 35 to 55 kcal/mol
(Table 2). Within this framework, the non-polar nature of ligands 1f, 1h, and 1k gives rise to
the possibility of transitory electron shifts. These shifts lead to the formation of temporary
dipoles and play a crucial role in determining the attractive forces between the side chains
of the pocket targets and the inhibitors. The compounds under investigation possess
a chemical composition characterized by a substantial electron count, rendering them
very susceptible to polarization. This inherent property, in conjunction with hydrophobic
interactions, provides a plausible explanation for the inhibitors’ affinity towards the binding
sites associated with the AKT1 and Ox2R targets. Our findings demonstrate that ligands
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1f and 1k prefer acting as allosteric inhibitors of AKT1. Additionally, ligand 1h may be
suggested as an inhibitor (inverse agonist) of Ox2R.

Table 2. Binding interaction energies for potential inhibitors targeting AKT1 and Ox2R.

Contributions of Binding Interaction Energy (kcal/mol)

Inhibitor EvdW EELE EGB ESURF GApolar Gpolar Total

AKT1

1f −51.85
(±1.92)

−20.35
(±1.96)

60.17
(±3.17)

−6.44
(±0.46)

−72.20
(±3.04)

53.73
(±2.89)

−18.48
(±1.56)

1h −45.38
(±1.83)

−10.11
(±1.32)

42.04
(±2.37)

−6.05
(±0.50)

−55.49
(±3.92)

36.00
(±3.10)

−19.5
(±0.38)

1k −54.5
(±2.31)

−7.88
(±0.66)

42.70
(±2.30)

−6.74
(±0.50)

−62.39
(±2.50)

35.97
(±3.93)

−26.42
(±0.73)

Ox2R
1f −46.71

(±1.99)
−15.97
(±1.3)

54.37
(±2.36)

−5.95
(±0.40)

−62.68
(±3.82)

48.41
(±4.33)

−14.26
(±0.26)

1h −44.55
(±2.09)

−26.08
(±1.77)

53.22
(±3.84)

−6.21
(±0.370)

−70.63
(±3.15)

47.01
(±4.90)

−23.62
(±1.20)

1k −48.87
(±2.71)

−24.26
(±1.22)

56.38
(±3.08)

−6.31
(±0.56)

−73.13
(±2.01)

50.07
(±2.78)

−23.06
(±1.12)

Inhibitors with negative values signify heightened substrate interactions with the targets.

In addition, an analysis was conducted to decompose the energy of the interaction by
residue (Table S6). This analysis aimed to discover the specific residues involved in the
interaction process that contribute a significant energy value of more than 0.5 kcal/mol
within a 5 Å radius from the surface of the ligand. In the case of AKT1, the residues GLN93,
TRP94, and VAL284 made notable contributions (Figure 8). Specifically, for residue GLN93,
the calculated energy values were −2.69 kcal/mol, −1.22 kcal/mol, and −1.12 kcal/mol
for the compounds 1f, 1h, and 1k, respectively. Similarly, for residue TRP94, the energy
values were −3.64 kcal/mol, −2.60 kcal/mol, and −3.67 kcal/mol for the 1f, 1h, and 1k
inhibitors, respectively. Lastly, for residue VAL284, the energy values were −2.02 kcal/mol,
−1.48 kcal/mol, and −2.11 kcal/mol for the 1f, 1h, and 1k inhibitors, respectively. TRP94
present the most advantageous interaction energies among the three compounds (Figure 8).
These include π-stacking-type interactions with the neighboring thiophene attached to
the nitrogen atom of the pyrrolo[3,4-b]pyridin-5-one nucleus, hydrogen bonding with
the oxygen of the pyrrolo[3,4-b]pyridin-5-one nucleus, and hydrophobic interactions for
ligand 1f.

A comparable phenomenon was noted while examining the behavior of ligand 1h
(Figure 8). However, in this case, the indole group of TRP94 exhibited a specific orien-
tation that facilitated the formation of π-stacking and perpendicular contacts between
the pyrrolo[3,4-b]pyridin-5-one nucleus and the benzene substituent. Moreover, it was
observed that ligand 1k exclusively formed π-stacking interactions with the pyrrolo[3,4-
b]pyridin-5-one nucleus. Similarly, ligands 1f and 1h exhibited significant interactions
with the amino acid residue LYS282, which subsequently displayed strong interactions
with neighboring residues within the kinase domain, including VAL284, TYR286, and
ARG287 (Figure 8). These four residues hold significant importance in the activation
process of AKT1.

The bar graphs depicted in Figures 8 and 9 showcase the interactions governing the
recognition process for AKT1 and Ox2R between compounds 1f, 1h, and 1k, respectively.
Additionally, both display the residence periods of these interactions, measured in snap-
shots, and rated by the Protein-Ligand Interaction Profiler (PLIP). The horizontal axis
of the graphs reflects residue counts, while the vertical axis corresponds to population
percentages. Each bar represents the average interaction type. The inset of the graphs
illustrates the interaction energy (measured in kcal/mol) between the substrate and each
possible inhibitor. Specifically, it focuses on residues located within a 5 Å radius of the
binding allosteric site. Following this, a two-dimensional heatmap illustrates the interac-
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tions of AKT1 and Ox2R with compound interactions. The heatmap was generated using
snapshots obtained from the representative structure of the most populated cluster, and the
interactions were evaluated using Discovery Studio. The fingerprint map illustrates the
predominant interactions between AKT1 residues and the compounds, with a particular
focus on the preservation of TRP94 and LYS282 π-stacking, hydrophobic, and π–cation in-
teractions. Similarly, it highlights the interactions between Ox2R residues and compounds,
with a particular focus on preserving LYS2526.58, TYR2687.31, and PHE2717.34 π-stacking,
hydrophobic, and π–cation contacts throughout the 100 ns MD production simulations for
compounds 1f, 1h, and 1k. At some point, a 3D inhibitor spatial conformation is presented
for each complex. Figures 8 and 9 illustrate the spatial arrangement of the compounds
within the allosteric pocket of AKT1 and the active pocket of Ox2R.
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Figure 8. Main interactions between the protein target AKT1 and compounds 1f, 1h, and 1k. These
interactions are represented by the following arrangements: (A) 1f, (B) 1h, and (C) 1k. Color coding:
The interactions are visually depicted using circles containing residue names and lines indicating their
spatial arrangement. The interaction colors are consistent across both the bar chart and the 2D maps.
Green indicates hydrogen bonding interactions, while blue represents hydrophobic interactions.
Purple is used for π-stacking interactions, and red is employed for π–cation interactions. The atom–
ligand pairs are visually differentiated based on their respective colors. Carbon is represented by the
color gray, nitrogen by blue, oxygen by red, and sulfur by yellow.
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Figure 9. Main interactions that occur between the protein target Ox2R and compounds 1f, 1h, and
1k. These interactions are represented by the following arrangements: (A) 1f, (B) 1h, and (C) 1k.
Color coding: The interactions are visually depicted using circles containing residue names and
lines indicating their spatial arrangement. The interaction colors are consistent across both the
bar chart and the 2D maps. Green indicates hydrogen bonding interactions, while blue represents
hydrophobic interactions. Purple is used for π-stacking interactions, and red is employed for π–
cation interactions. The atom–ligand pairs are visually differentiated based on their respective colors.
Carbon is represented by the color gray, nitrogen by blue, oxygen by red, and sulfur by yellow.

The activation of the ATP binding site is conditioned upon conformational changes in
the AKT1 activation loop. This modification occurs exclusively when the phosphorylated
activation loop interacts with specific residues (LYS282, VAL294, TYR286, or ARG287) situ-
ated within the kinase domain. In light of this, we have put forth a hypothesis suggesting
that the binding of compounds 1f and 1h to the allosteric site could potentially impede
ATP binding. The interaction between residues LYS282, VAL294, and TYR286 within the
activation loop is hindered by the presence of 1f and 1h. Hence, the strategic placement of
compounds 1f and 1h, which exhibit advantageous energy values as indicated in Table 2, at
the allosteric site will impede the dephosphorylation process of the activation loop. As a re-
sult, inactivation of AKT1 downstream signaling would show reduced efficacy. Compound
1k, which demonstrated the most substantial interaction energy of −26.42 kcal/mol with
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AKT1, exhibited comparable interaction patterns to inhibitors 1f and 1h. However, it also
displayed a broader energy distribution, engaging a larger number of residues (Figure 8.
This collective effect resulted in a favorable increase in interaction energy, thereby pro-
moting inhibition. In addition, the hydrophobic residues, including LEU278 and THR305,
play a significant role in the hydrophobic interaction energy within the allosteric site of
AKT1. The simulation results demonstrate that ligands 1f, 1h, and 1k (Figure 8) exhibit
several conformations, indicating their potential interactions with residues such as ASN67,
ASN68, GLN93, and TRP94 in the PH motifs, as well as GLN217, LEU224, and THR225 in
the N-Lobe, and LEU278, LYS282, VAL 284, and TYR286 in the C-Lobe.

The interactions in Ox2R did not correspond with the results presented by Nagahara et al.
in 2015 regarding the regulation of Ox2R via specific residues Thr1112.60, Asp1152.64,
His3507.38, and Tyr3547.42 (referred to as the agonistic tetrad) [53]. Nevertheless, a previous
investigation conducted by Heifetz et al. in 2013 underscored the significance of TYR2687.31

(TYR3177.38 in its native form as Ox2R) in facilitating the activation of OX2R by orexin
peptide A [54]. In this context, it is observed that compounds obstructed the TYR2687.31

interactions; Figure 9. Compound 1f predominantly engages with the side chains of the
amino acids TRP841.58, LYS2526.58, TYR2687.31, and PHE2717.34 (Figure 9). These inter-
actions are characterized by respective binding energy contributions of −1.23 kcal/mol,
−0.52 kcal/mol, −1.79 kcal/mol, and −1.17 kcal/mol (Table S6). Compound 1h exhibits
a prominent interaction with the side chains of amino acids LYS2526.58, TYR2687.31, and
PHE2717.34, resulting in binding energy contributions of −0.91 kcal/mol, −1.65 kcal/mol,
and−2.44 kcal/mol, respectively. 1k predominantly forms associations with the side chains
of amino acids TYR2687.31 and PHE2717.34, resulting in binding energy contributions of
−1.57 kcal/mol and −1.63 kcal/mol, respectively.

The energy increase experienced by each residue is primarily determined by the spe-
cific contact exerted by each ligand (Figure 9). Regarding this matter, residue PHE2717.34

facilitates a hydrophobic contact and a π-stacking interaction with ligand 1f. The π-stacking
interaction is observed between TYR2687.31 and the thiophene group attached to the nitro-
gen atom of the pyrrolo[3,4-b]pyridin-5-one nucleus. The consistency of this interaction
is observed across all inhibitors, with the sole difference being the way in which residue
PHE2717.34 is accommodated on the pyrrolo[3,4-b]pyridin-5-one nucleus. This adjustment
is contingent upon the orientation of the inhibitors, as illustrated in Figure 9. In the instance
of LYS2526.58, it mostly engages in hydrogen bonding and π–cation interactions, either with
the pyrrolo[3,4-b]pyridin-5-one core of 1f or the amino pyridine substituent of 1h. In the
present context, the observed variability in energy contributions pertaining to ligand 1h
may provide insights into the factors underlying the more favorable interaction energy
between inhibitor 1h and Ox2R, as opposed to AKT1.

Given the significant involvement of the amino acid TYR2687.31 in the activation
mechanisms of Ox2R, as well as its apparent inhibition by ligands 1f, 1h, and 1k through
favorable interactions, it can plausibly be suggested that these ligands have the potential
to interfere with the interactions between transmembrane helices 5 (TM5) and 6 (TM6).
The potential intermembrane contact described may give rise to an inhibitor outcome due
to the interconnected inward motion of TM5 and TM6 helices, which is also associated
with the activation of Ox2R [50–57]. Therefore, it can be postulated that the three inhibitors
could disrupt the connections between transmembrane helices. In a manner analogous
to the simulations performed for compounds 1f, 1h, and 1k with AKT1, the simulations
undertaken to explore the inhibition of Ox2R reveal that compounds 1f, 1h, and 1k assume
several conformations and display noteworthy interactions with TM6 and TM7 (Figure S26).

3. Materials and Methods
3.1. Synthesis
3.1.1. General Information, Instrumentation, Software, and Chemicals

1H and 13C nuclear magnetic resonance (NMR) spectra were acquired on a Bruker
AMX Advance III spectrometer (500 MHz, Fällande, Uster, Switzerland). The solvent used
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for NMR experiments was deuterated chloroform (CDCl3). Chemical shifts are reported
in parts per million (δ/ppm). Coupling constants are reported in Hertz (J/Hz). Internal
reference for NMR spectra was tetramethylsilane (TMS) at 0.00 ppm. Multiplicities of
the signals are reported using the standard abbreviations: singlet (s), doublet (d), triplet
(t), quartet (q), and multiplet (m). NMR spectra were analyzed using the MestReNova
software (Ver. 12.0.0-20080). Infrared (IR) spectra were acquired on a Perkin Elmer 1600
spectrometer (Norwalk, CT, USA) using the attenuated total reflectance (ATR) method.
The maximum absorbance peaks are reported in reciprocal centimeters (νmax/cm−1). IR
spectra were analyzed using the Report Builder software (Ver. 2.01). High-resolution
mass spectroscopy (HRMS) spectra were acquired by electrospray ionization (ESI) on a
Micro-TOF II spectrometer Bruker Daltonics GmbH (Bremen, Germany). HRMS samples
were injected directly (Apollo source) and analyzed by time-of-flight method (TOF). HRMS
spectra were analyzed using the Compass analysis software (Ver. 1.5, Flex Control and
Flex Analysis by Bruker Daltonics, Inc.). Microwave-assisted reactions were performed in
closed-vessel mode on a CEM Discover SP MW-reactor (Matthews, North Carolina, CA,
USA). Reaction progress was monitored by thin-layer chromatography (TLC) and the spots
were visualized under ultraviolet (UV) light (254 or 365 nm). Flash columns packed with
oxide aluminum in a 0.063–0.200 mm mesh particle size were used to purify the products.
Mixtures of hexanes (Hex) and ethyl acetate (EtOAc) in 1:1 or 1:2 (v/v) proportion were
used to run TLC, aluminum oxide columns, and to measure the retention factor (Rf) values
(using the same mobile phase for all the experiments). All starting reagents and solvents
were used as received (without further purification, distillation, or dehydration). Chemical
structures were drawn using the ChemDraw Professional software (Ver. 15.0.0.106, Perkin
Elmer Informatics, Cambridge, MA, USA). The purity for all synthesized products (>95%)
was assessed by NMR.

3.1.2. Synthesis and Characterization of the Pyrrolo[3,4-b]pyridin-5-ones 1g–1k

General procedure (GP): The corresponding aldehydes 2 (1.0 equiv.) and the amines
3 (0.1 mmol, 1.0 equiv.) were placed in a sealed CEM Discover microwave reaction tube
(10 mL) and diluted in toluene (1.0 mL). Then, the mixture was stirred and heated using
microwave irradiation (65 ◦C, 100 W) for 5 min, and ytterbium(III) triflate (0.03 equiv.) was
added. The mixture was stirred and heated using microwave irradiation (65 ◦C, 100 W) for
5 min, and then the corresponding isocyanides 5 (1.2 equiv.) were added. The new mixture
was stirred and again heated using microwave irradiation (70 ◦C, 150 W) for 15 min, and
then maleic anhydride (7) (1.4 equiv.) was added. Finally, the reaction mixture was stirred
and heated using microwave irradiation (80 ◦C, 150 W) for 15 min. Then, the solvent
was removed to dryness under vacuum. The crude was extracted using dichloromethane
(3 × 25.0 mL) and Na2CO3 (aq.) (3 × 25 mL), and then washed with brine (3 × 25 mL). The
organic layer was dried using anhydrous Na2SO4, filtered, and concentrated to dryness
under vacuum. The new crude was purified by aluminum oxide column chromatography
using mixtures of hexanes (Hex) and ethyl acetate (EtOAc) in 1:1 (v/v) proportions as a
mobile phase to isolate the corresponding pyrrolo[3,4-b]pyridin-5-ones 1g–1k.

2-benzyl-3-(diethylamino)-7-(pyridin-3-yl)-6-(pyridin-3-ylmethyl)-6,7-dihydro-5H-pyrrolo[3,4-
b]pyridin-5-one (1g)

According to the GP, 3-Pyridinecarboxaldehyde (100.0 µL), 3-Picolylamine (107.0 µL),
ytterbium(III) triflate (19.0 mg), N,N-diethyl-2-isocyano-3-phenylpropanamide (289.0 mg),
and maleic anhydride (143.0 mg) were reacted together in toluene (1.0 mL) to afford 1g
(27.0 mg, 22%) as a yellow oil; Rf = (Hex–AcOEt = 1:1, v/v); FT-IR (ATR) νmax/cm−1 1693
(C = O); 1H NMR (500 MHz, CDCl3): δ 8.65 (dd, J = 4.8, 1.7 Hz, 1H), 8.56 (dd, J = 4.8, 1.7 Hz,
1H), 8.51 (d, J = 2.4 Hz, 1H), 8.47 (d, J = 2.4 Hz, 1H), 7.92 (s, 1H), 7.62–7.59 (m, 1H), 7.41–7.37
(m, 1H), 7.33–7.30 (m, 1H), 7.29–7.26 (m, 1H), 7.19–7.13 (m, 5H), 5.38 (d, J = 15.3 Hz, 1H),
5.31 (s, 1H), 4.32 (d, J = 14.0 Hz, 1H), 4.17 (d, J = 14.0 Hz, 1H), 4.00 (d, J = 15.2 Hz, 1H), 3.03
(q, J = 7.1 Hz, 4H), 0.97 (t, J = 7.1 Hz, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ 167.4, 164.1,
158.7, 150.2, 149.6 (2), 149.3, 146.9, 139.2, 136.1, 135.3, 132.2, 131.2, 128.9 (2), 127.9 (2), 125.9,



Pharmaceuticals 2023, 16, 1562 21 of 29

125.7, 123.8, 123.7, 122.8, 62.3, 47.6 (2), 41.7, 39.8, 12.0 (2) ppm; HRMS (ESI+): m/z calcd for
C29H29N5O [M + H]+ 464.2450, found 464.2445.

2-benzyl-3-(piperidin-1-yl)-6-(pyridin-3-ylmethyl)-7-(pyridin-4-yl)-6,7-dihydro-5H-pyrrolo[3,4-
b]pyridin-5-one (1h)

According to the GP, 4-Pyridinecarboxaldehyde (100.0 µL), 3-Picolylamine (106.0 µL), yt-
terbium(III) triflate (19.0 mg), 2-isocyano-3-phenyl-1-(piperidin-1-yl)propan-1-one (300.0 mg),
and maleic anhydride (141.0 mg) were reacted together in toluene (1.0 mL) to afford 1h
(25.0 mg, 20%) as a yellow oil; Rf = (Hex–AcOEt = 1:1, v/v); FT-IR (ATR) νmax/cm−1 1694
(C = O); 1H NMR (500 MHz, CDCl3): δ 8.62–8.60 (m, 2H), 8.53 (dd, J = 4.8, 1.7 Hz, 1H),
8.42–8.40 (m, 1H), 7.84 (s, 1H), 7.56–7.53 (m, 1H), 7.23 (ddd, J = 7.8, 4.8, 0.9 Hz, 1H), 7.17–7.12
(m, 5H), 7.10–7.08 (m, 2H), 5.40 (d, J = 15.2 Hz, 1H), 5.18 (s, 1H), 4.23 (d, J = 13.9 Hz, 1H),
4.12 (d, J = 13.9 Hz, 1H), 3.91 (d, J = 15.2 Hz, 1H), 2.82–2.78 (m, 4H), 1.75–1.69 (m, 4H),
1.62–1.57 (m, 2H) ppm; 13C NMR (125 MHz, CDCl3): δ 167.6, 162.7, 157.9, 150.5 (2), 149.8,
149.6, 149.4, 144.6, 139.1, 136.2, 132.1, 128.8 (2), 128.1 (2), 126.1, 123.8, 123.3, 122.9, 122.6 (2),
63.3, 54.2 (2), 41.8, 39.7, 26.3 (2), 23.9 ppm; HRMS (ESI+): m/z calcd for C30H30N5O [M +
H]+ 476.2437, found 476.2445.

2-benzyl-3-(piperidin-1-yl)-7-(pyridin-2-yl)-6-(pyridin-3-ylmethyl)-6,7-dihydro-5H-pyrrolo[3,4-
b]pyridin-5-one (1i)

According to the GP, 2-Pyridinecarboxaldehyde (100 µL), 3-Picolylamine (108 µL),
ytterbium(III) triflate (19 mg), 2-isocyano-3-phenyl-1-(piperidin-1-yl)propan-1-one (306 mg),
and maleic anhydride (144 mg) were reacted together in toluene (1.0 mL) to afford 1i
(115 mg, 92%) as a yellow oil; Rf = (Hex–AcOEt = 1:1, v/v); FT-IR (ATR) νmax/cm−1 1691
(C = O); 1H NMR (500 MHz, CDCl3): δ 8.58 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.46 (dd, J = 4.8,
1.7 Hz, 1H), 8.41–8.39 (m, 1H), 7.87 (s, 1H), 7.61–7.57 (m, 2H), 7.24–7.19 (m, 2H), 7.17–7.06
(m, 3H), 7.05–7.01 (m, 1H), 5.46 (s, 1H), 5.20 (d, J = 15.1 Hz, 1H), 4.22 (d, J = 13.6 Hz, 1H),
4.20–4.16 (m, 2H), 2.81–2.75 (m, 4H), 1.74–1.65 (m, 4H), 1.61–1.53 (m, 2H) ppm; 13C NMR
(125 MHz, CDCl3): δ 167.5, 162.2, 158.3, 155.4, 149.9, 149.8, 149.6, 148.9, 139.4, 136.9, 136.3,
132.7, 128.8 (2), 128.0 (2), 125.9, 123.8, 123.5, 123.4, 123.4, 123.0, 66.2, 54.2 (2), 42.1, 39.8, 26.3
(2), 23.9 ppm; HRMS (ESI+): m/z calcd for C30H30N5O [M + H]+ 476.2442, found 476.2445.

2-benzyl-3-(diethylamino)-7-(pyridin-2-yl)-6-(pyridin-3-ylmethyl)-6,7-dihydro-5H-pyrrolo[3,4-
b]pyridin-5-one (1j)

According to the GP, 2-Pyridinecarboxaldehyde (100 µL), 3-Picolylamine (108 µL),
ytterbium(III) triflate (19 mg), N,N-diethyl-2-isocyano-3-phenylpropanamide (291 mg), and
maleic anhydride (144 mg) were reacted together in toluene (1.0 mL) to afford 1j (90 mg,
74%) as a yellow oil; Rf = (Hex–AcOEt = 1:1, v/v); FT-IR (ATR) νmax/cm−1 1692 (C = O);
1H NMR (500 MHz, CDCl3): δ 8.60 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.47 (dd, J = 4.8, 1.7 Hz,
1H), 8.41 (dd, J = 2.3, 0.8 Hz, 1H), 7.88 (s, 1H), 7.61 (dddd, J = 7.7, 5.1, 2.7, 1.8 Hz, 2H), 7.23
(ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.19 (ddd, J = 7.9, 4.8, 0.8 Hz, 1H), 7.14–7.11 (m, 5H), 7.03 (d,
J = 7.8, 1.0 Hz, 1H), 5.47 (s, 1H), 5.22 (d, J = 15.1 Hz, 1H), 4.25 (d, J = 13.9 Hz, 1H), 4.23–4.17
(m, 2H), 2.97 (q, J = 7.1 Hz, 4H), 0.92 (t, J = 7.1 Hz, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ
167.5, 163.6, 158.4, 155.3, 149.9, 149.8, 148.9, 146.7, 139.4, 136.8, 136.3, 132.6, 129.5, 128.9 (2),
127.8 (2), 125.8, 123.5, 123.4, 122.9, 66.2, 47.7 (2), 42.1, 39.8, 12.0 (2) ppm; HRMS (ESI+): m/z
calcd for C29H30N5O [M + H]+ 464.2445, found 464.2545.

2-benzyl-7-(pyridin-2-yl)-6-(pyridin-3-ylmethyl)-3-(pyrrolidin-1-yl)-6,7-dihydro-5H-pyrrolo[3,4-
b]pyridin-5-one (1k)

According to the GP, 2-Pyridinecarboxaldehyde (100 µL), 3-Picolylamine (108 µL),
ytterbium(III) triflate (19 mg), 2-isocyano-3-phenyl-1-(pyrrolidin-1-yl)propan-1-one (288
mg), and maleic anhydride (144 mg) were reacted together in toluene (1.0 mL) to afford 1k
(110 mg, 91%) as a yellow oil; Rf = (Hex–AcOEt = 1:1, v/v); FT-IR (ATR) νmax/cm−1 1693
(C = O); 1H NMR (500 MHz, CDCl3): δ 8.57 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.45 (dd, J = 4.8,
1.7 Hz, 1H), 8.41 (dd, J = 2.3, 0.8 Hz, 1H), 7.67 (s, 1H), 7.58 (dd, J = 7.6, 1.8 Hz, 2H), 7.23–7.09
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(m, 5H), 7.05–7.02 (m, 2H), 7.01 (d, J = 7.8 Hz, 1H), 5.44 (s, 1H), 5.19 (d, J = 15.1 Hz, 1H), 4.24
(d, J = 5.5 Hz, 2H), 4.18 (d, J = 15.2 Hz, 1H), 3.20–3.09 (m, 4H), 1.92–1.82 (m, 4H) ppm; 13C
NMR (125 MHz, CDCl3): δ 167.7, 156.4, 155.6, 155.1, 149.7, 149.6, 148.8, 146.1, 139.4, 136.7,
136.1, 132.6, 128.3 (2), 127.9 (2), 125.7, 123.5, 123.3, 123.1, 122.8, 118.5, 66.0, 51.8 (2), 42.0, 41.5,
25.0 (2) ppm; HRMS (ESI+): m/z calcd for C29H28N5O [M + H]+ 462.2298, found 462.2288

3.2. Anticancer Activity
3.2.1. Reagents

Culture Dulbecco’s Modified Eagle Medium (DMEM) was purchased from Sigma-
Aldrich (St Louis, MO, USA), antibiotics/antimycotics GIBCO® (5240-062). MTT (M2128)
was purchased from Sigma-Aldrich (St Louis, MO, USA).

3.2.2. Cell Culture

The MCF-7 and MDA-MB-231 breast cancer cells lines were obtained from ATCC (Man-
assas, VA), and were cultured in DMEM/F12 medium (50:50, V:V; Sigma-Aldrich, St Louis,
MO, USA) with 5% fetal bovine serum (FBS) and 1% antibiotic (penicillin G/streptomycin,
Gibco, Waltham, MA, USA). Cells were maintained in a humidified atmosphere with 5%
CO2 at 37 ◦C. The MCF-7 and MDA-MB-231 breast cancer cells were serum-deprived for
24 h before treatment.

3.2.3. Cell Viability Assays

Viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium
bromide) assay. A quantity of 2 × 104 cells were seeded and grown overnight in a 96-
well plate. Treatments with the synthesized compounds were performed by employing
different concentrations ranging from 6.25 to 200 mM. After 24 h and 48 h of treatment,
0.5 mg/mL MTT was added to each well and incubated at 37 ◦C for 4 h, protected from
light. Formazan crystals were dissolved in DMSO, and absorbances were measured at
570 nm in a MultiskanTM GO microplate spectrophotometer (ThermoScientific, Waltham,
MA, USA). The percentage of cell viability was calculated as the ratio of optical densities of
the control and experimental groups.

3.2.4. Statistical Analysis

The results are presented as the mean ± SD. Data were analyzed statistically by one-
way ANOVA, and comparisons were performed by Dunnett’s multiple comparison test. A
statistical probability of p < 0.05 was considered significant.

3.3. In Silico Studies
3.3.1. ADME and Tox Properties

The assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (AD-
METox) characteristics was carried out. The assessment of ADMETox characteristics was
conducted using the SwissADME (Ver. 2017) [58] and ProTox-II (Ver. 2021) [59] tools. The
predictions were conducted using support vector machine (SVM) and machine learning
techniques, respectively. Multiple criteria were evaluated, including gastrointestinal ab-
sorption, permeability across the blood–brain barrier, potential as a substrate or inhibitor of
P-glycoprotein, inhibition of the cytochrome family, and suitability for artificial synthesis.

3.3.2. Target Selection and Active Pocket Determination

The process of selecting targets for ligands 1a–1k was conducted via SwissTargetPre-
diction (Ver. 2019) [60] and PASS-Protein-Target (Ver. 2.0) [61], which are computational
systems that use a machine learning approach. The therapeutic targets that were selected
for further investigation were those that had the greatest likelihood and significance in
relation to breast cancer. A total of 20 proteins (Table S2) with known structures in the
Protein Data Bank (PDB) https://www.rcsb.org/ (accessed on 8 February 2023) [62] were
chosen for the virtual screening procedure. The active pocket was identified using the

https://www.rcsb.org/
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Ligand Designer program [63], available on the publicly accessible CHARM-GUI [64]. The
G-LoSA method was used to identify the appropriate active site, as indicated by a GA-score
greater than 0.9 (Table S2).

3.3.3. Ligand Optimization

The ligands 1a–1k underwent a geometric complete geometry optimization, accompa-
nied by a frequency calculation in Gaussian 09 (Table S7). This optimization was conducted
without any limitations to get the structures that had the lowest energy [36,65]. The opti-
mization procedure used the B3LYP/6-31+g(d) basis set and approach, adding a solvent
model based on the density of charge (SMD). The optimum shape was achieved in condi-
tions of high moisture. After the production of output xyz files, the ligands were subjected
to processing using Discovery Studio [66]. The first stage of this process was the con-
version of the ligand files into SDF format, followed by the addition of polar hydrogens.
Following that, the ligands underwent processing using the Meeko program (available at
https://github.com/forlilab/Meeko) (accessed on 10 August 2023) to produce pdbqt files.
These files were then combined using the ADFR software package (Ver. 1.0) [67].

3.3.4. Homology Modeling and Docking Simulations

The process of modeling missing segments in the crystallographic proteins was carried
out using SwissModel (Table S8) [68]. The crystallographic structures of the proteins
were used as templates, and the modeling was performed by considering the GMQE and
QMEANDisCo values, both of which were required to be greater than 0.9. The assessment of
model integrity was conducted using Molprobity [69] and VERIFY3D [70]. The elucidated
proteins were used as targets for molecular docking [42]. The non-protein components
that were found in the crystallographic structures were eliminated from the receptor.
Subsequently, the structure was subjected to minimization using the YASARA server [71]
in an aqueous environment with a solvent shell of 6 Å. Additionally, the pKa values of
the amino acids were estimated at a pH of 7.4. The minimization process was terminated
when the energy exhibited an improvement of less than 0.0119 kcal/mol (0.05 kJ/mol) and
200 steps in the steepest descent method.

Autodock Vina version 1.2.5 [72] was used for the purpose of molecular docking.
Distinct grid centers and sizes were established for each target protein (Table S2). The
docking simulations were conducted autonomously with three distinct force fields: AD4,
Vina, and Vinardo. A total of 13,860 independent docking experiments were conducted,
where each of the 11 ligands was docked 20 times to each of the 20-target proteins, using
the three different force fields. To assess the reliability of the docking outcomes and the
prediction of the active site, a crystallographic ligand was submitted to blind docking over
two proteins of twenty target proteins. The calculated RMSD values were found to be
3.18 Å for the water-soluble protein MAPK8 (PDB-ID: 5IU2) and 5.57 Å for the membrane
protein ghrelinR (PDB-ID: 7NA8). The superposition of the blind docking is depicted in
Figure S27 [73–76].

To improve the accuracy of the docking analysis, the ligands were subjected to a
redocking procedure and subsequently classified using a clustering, with a cutoff of 0.5 Å.
The ligands selected for subsequent MD analyses were those with binding scores that
were one standard deviation below the mean and belonged to the most densely populated
clusters [42].

3.3.5. Molecular Dynamics Simulations

The molecular complexes that displayed the most favorable energy scores and ex-
hibited the lowest IC50 values were chosen for subsequent MD simulations using the
GROMACS program [77]. The protonation states of each protein were modified to con-
form to the physiological pH using the propKa tool [78] available on the PDB2PQR
website (https://server.poissonboltzmann.org/) (accessed on 14 August 2023). The con-
struction of input files was carried out with the Input Generator CHARMM-GUI [79].

https://github.com/forlilab/Meeko
https://server.poissonboltzmann.org/
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The CHARMM36m force field [80] was used for the simulations. The Ligand Reader
and Modeler CHARMM-GUI suite [81] was used in conjunction with CGenFF to get the
ligand parameters.

The orthorhombic cell, with a thickness of 15 Å, was used to enclose each system.
TIP3P water molecules were employed to surround the cell and, to neutralize the system’s
charge, 0.15 M NaCl was introduced. A total of eighteen systems were constructed, with
nine of them using AKT kinases (AKT1), while the other nine systems included the Orexin-2
receptor (Ox2R). The systems underwent a sequential process, which included an initial
minimization phase consisting of 10,000 iterations using the steepest descent method.
This was followed by two subsequent phases of MD simulations, with the first phase
lasting 10 ns and conducted in the NVT ensemble, and the second phase lasting 20 ns
and conducted in the NPT ensemble. These MD simulations were performed to achieve
system equilibration. Following that, MD simulations lasting 100 ns were conducted. In
the case of AKT1 systems, a timestep of 4 femtoseconds was used together with Hydrogen-
Mass-Repartitioning (HMR) [82]. Conversely, for Ox2R, a timestep of 2 femtoseconds was
utilized. The use of periodic boundary conditions (PBC) and Particle-Mesh-Ewald (PME)
was employed for the treatment of electrostatic interactions. Inside the NPT ensemble, the
temperature coupling was performed using the velocity rescale method, and the pressure
coupling was performed using the Parrinello–Rahman method. The system was maintained
at a temperature of 310.15 K and a pressure of 1 bar.

The simulation of Ox2R, a membrane protein, using the parameters established by
Marrink et al. (2014) [83] and Im et al. (2022) [84], specifically designed for a human
plasma membrane. The lipid content of the inner leaflet was found to be composed
of 3-palmitoyl-2-oleoyl-d-glycero-1-phosphatidylcholine (POPC), 1-palmitoyl-2-linoleoyl-
phosphatidylcholine (PLPC), 1-palmitoyl-2-arachidonyl-phosphatidylethanolamine (PAPE),
3-palmitoyl-2-oleoyl-d-glycero-1-phosphatidylethanolamine (POPE), sphingomyelin (SSM),
n-stearoyl-sphingomyelin (NSM), and cholesterol (CHL1) in a ratio of 16:22:3:3:11:11:4:37,
respectively. On the other hand, the outer leaflet exhibited a lipid composition consisting
of POPC, PLPC, PAPE, POPE, phosphatidylinositol (POPI), 1-palmitoyl-2-arachidonyl-
phosphatidylserine (PAPS), 3-palmitoyl-2-oleoyl-d-glycero-1-phosphatidic acid (POPA),
SSM, NSM, and CHL1 in a ratio of 7:11:12:14:5:11:1:5:5:29. The construction of the asymmet-
ric mammalian plasma membrane with 203 was carried out with the Membrane Builder
suite [85] inside the CHARMM-GUI.

The MD simulations were carried out in triplicate, with each run being independent.
The simulations encompassed three distinct ligands (1f, 1h, and 1k) and two target proteins
(AKT1 and Ox2R), yielding a total of six systems, each with three replicas. The total time of
the overall simulation effort was 1.8 µs. The trajectory analysis was conducted using the
MDAnalysis software (Ver. 2.6.1) [86], and the pictures were displayed using Chimera [87].

3.3.6. Binding Free Energy

The molecular mechanics generalized Born surface area (MM/GBSA) approximation
was used to obtain the interaction energy [88–90]. The gmx_MMPBSA program, which
is derived from AMBER’s MMPBSA.py [91,92], was used to calculate the interactions
energies of MM/GBSA. The GB approximation is a computational method that efficiently
incorporates solvation effects into molecular interactions. A clustering study was conducted
by concatenating the three replicas for each system, with the objective of calculating the
interaction energy. The clustering analysis was conducted on the equilibrated segment
of the simulation, which spanned 240 ns and consisted of 2400 frames. The clustering
analysis was conducted utilizing the GROMACS cluster program, with a cutoff value of
2.0 Å [93,94], specifically targeting α-carbons to guarantee the inclusion of a minimum of
75% of the structures in the first cluster.

The binding free energy (∆G binding) was determined according to the equation:

∆Gbinding = Gcomplex −
(

Gprotein + Gligand

)
(1)
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Calculation of free energy value G:

G = EMM + Gsolv − TSMM (2)

where:

• ∆Gbinding: represents the binding free energy.
• Gcomplex: is the energy of the complex.

• Gprotein: in complex is the energy of the protein in the complex.
• Gligand: in complex is the energy of the ligand in the complex.
• 〈G〉 denotes the calculated free energy value.
• EMM stands for the molecular mechanics energy.
• Gsolv is the solvation energy.
• T represents the temperature.
• SMM refers to the average molecular mechanics entropy.

Since entropy was not calculated during the experiment, the reported binding free
energies only show the enthalpic part of the binding free energy [42]. To examine the
protein–ligand interactions, we used the PLIP version 2.2.2 [95,96]. The Ballesteros number-
ing scheme, developed by Ox2R, was implemented using the online platform available at
https://gproteindb.org/residue/residuetable (accessed on 8 February 2023) [97].

4. Conclusions

The investigation of molecules potentially possessing pharmacological properties that
may effectively engage multiple protein receptors offers a promising strategy for addressing
sophisticated medical problems, such as breast cancer. The pharmaceutical compounds
synthesized for the present study exhibited interesting properties and numerous benefits,
including the abilities to enhance therapeutic efficacy through synergistic interactions
with various targets, enhance safety profiles, and decrease required dosages. Then, com-
puter simulations were performed to enhance the progress of multi-target molecules for
the treatment of cancer and accelerate the identification and progression of innovative
therapeutic treatments.

Interestingly, of all compounds evaluated here, compound 1f showed the greatest
potential as a viable and promising candidate for cancer treatment in triple-negative breast
cancer, exhibiting the lowest IC50 at 14.8 mM and morphological changes, indicative of
decreased cell viability in the triple-negative breast cancer cell line MDA-MB-231. Never-
theless, there is a dearth of comprehension around the precise pathways through which 1f
exhibits its antineoplastic properties, underscoring the imperative for additional investiga-
tion in the realm of cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16111562/s1, (1) workflow, (2) structures of compounds in vitro
assayed, (3) spectra of all new compounds (1H NMR, 13C NMR, HRMS and FT-IR, (4) in silico study
details (docking data and molecular dynamics), and (5) supplementary references.
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