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Abstract: Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled
growth and spread of abnormal cells. While cancer can be challenging and life-altering, advances
in research and development have led to the identification of new promising anti-cancer targets.
Telomerase is one such target that is overexpressed in almost all cancer cells and plays a critical
role in maintaining telomere length, which is essential for cell proliferation and survival. Inhibiting
telomerase activity can lead to telomere shortening and eventual cell death, thus presenting itself as a
potential target for cancer therapy. Naturally occurring flavonoids are a class of compounds that have
already been shown to possess different biological properties, including the anti-cancer property. They
are present in various everyday food sources and richly present in fruits, nuts, soybeans, vegetables,
tea, wine, and berries, to name a few. Thus, these flavonoids could inhibit or deactivate telomerase
expression in cancer cells by different mechanisms, which include inhibiting the expression of hTERT,
mRNA, protein, and nuclear translocation, inhibiting the binding of transcription factors to hTERT
promoters, and even telomere shortening. Numerous cell line studies and in vivo experiments have
supported this hypothesis, and this development could serve as a vital and innovative therapeutic
option for cancer. In this light, we aim to elucidate the role of telomerase as a potential anti-cancer
target. Subsequently, we have illustrated that how commonly found natural flavonoids demonstrate
their anti-cancer activity via telomerase inactivation in different cancer types, thus proving the
potential of these naturally occurring flavonoids as useful therapeutic agents.

Keywords: telomerase; anti-cancer; natural flavonoids; luteolin; hTERT

1. Introduction

Irreversible impairment of cellular homeostasis triggers the heterogeneous disease
called cancer. Uncontrolled cell growth and differentiation, in addition to the loss of
apoptotic functions, leads to cancer progression [1]. In 1989, telomerase was investigated in
the transformed cervical carcinoma cell line [2]. Telomerase is a unique reverse transcription
enzyme that connects tandem repeats at the 3′ ends of chromosomes, which produce the
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telomeres and reimburse the loss of those telomeric sequences. By using an RNA template,
this enzyme adds nucleotide repeats to telomeres, thereby compensating for the loss of
DNA replication and providing karyotype stability [3]. In about 85–90% of cases, telomerase
is predominantly expressed in tumor cell lines and human tumors and is responsible for
maintaining telomere length [4–6]. The main role of this enzyme is telomere capping
and responding to DNA damage [7,8]. Telomerase plays a crucial role in cancer cell
development and is generally observed in most cancer cells. Therefore, the inhibition and
activation of telomerase are essential for the cancer regulation (activation or suppression)
mechanism [9]. During malignancy, telomerase ensures indefinite cell proliferation and can
act as a preferred target for drug development in cancer therapy [10–12].

A rising trend in the incidence of cancer has been consistently observed, and it is a
chief contributor to mortality at the global level. The number of new cancer cases reported
annually is speculated to increase to 29.5 million by 2040. By the same time, cancer deaths
are predicted to be 16.4 million annually. Ranked from highest to lowest, the most common
cancer types include those of breast, lung, bronchus, prostate, colon and rectum, skin,
bladder, kidney, endometrium, thyroid, and liver [13]. Breast and lung malignancies are the
two most commonly occurring cancers worldwide, with a 12.5% and 12.2% contribution to
new cancer cases in 2020, respectively. These are followed by colorectal cancer, contributing
10.7% of new cases in 2020 [14]. In the present era, for the treatment of cancer, synthetic
compounds are commercially used as chemotherapeutic agents. However, most have
numerous side effects. Therefore, natural products are explored for their beneficial effects
as anti-cancer therapy [15–17]. Natural products are normally taken in human diets and as
functional foods that inhibit telomerase activity in cancer patients [18]. Plants synthesize a
wide array of bioactive secondary metabolites that are produced due to external stimuli,
such as environmental stress, and they offer a physiological function by providing structural
support to the plant itself, attracting pollinators, etc. Various metabolic pathways, such as
the shikimic acid, malonic acid, and mevalonic acid pathways, are involved in the synthesis
of secondary metabolites. More than 200,000 metabolites have been identified and are
majorly classified as nitrogen-containing, sulfur-containing, terpenes, and phenolics [19]
(refer to Figure 1). These metabolites have numerous pharmacological, nutraceutical, and
cosmetic applications. Many of these secondary metabolites possess anti-cancer activity
and have led to researchers screening these phytochemicals to develop novel agents for
effective anti-cancer benefits. For instance, paclitaxel, vincristine, homoharringtonine,
curcumin, resveratrol, and betulinic acid are some well-established anti-cancer agents [20].

Similarly, flavonoids are polyphenolic compounds synthesized as bioactive secondary
metabolites [21]. Their main sources are fruits and vegetables [22–24]. Flavonoids are clas-
sified as flavonols, flavanones, flavanols, flavones, anthocyanidins, as well as isoflavonoids
and are further divided into subgroups. Numerous studies at in vitro and in vivo levels
have confirmed the activity of flavonoids against various cancer cell lines [25–27]. The
numerous anti-cancer effects of flavonoids have been reported by different studies, such
as reactive oxygen species (ROS)-scavenging enzyme activities modulation, cell cycle ar-
rest participation, apoptosis, and cancer cell proliferation suppression [28,29]. Chemical
structure and hydroxyl group substitution of flavonoids are the major factors on which the
radical scavenging activity of the class of compounds is dependent. SAR studies suggest
the significant role of phenolic OH functional groups (their number and location), which
govern the anti-radical potential. The catechol structure in ring B, electron-donating prop-
erties, and offering as a radical target are the structural requirements for effective radical
scavenging activity. Even the 3-OH group in the C-ring enhances the antioxidant activity
of flavonoids [30]. Plant secondary metabolites play a crucial role in reducing telomerase
activity and inducing apoptosis. Numerous studies have shown that secondary metabolites
have the potential to inhibit telomerase activity and induce apoptosis [31,32].
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Thus, the main aim of this review is to present comprehensive details and put forward
the use of flavonoids as phytomedicine that inhibits telomerase activity, leading to cancer
prevention, and can be used as a target in the future for cancer therapy. As no literature
has emphasized both flavonoids and telomerase inhibition, this review will serve as a cue
to initiate detailed research for cancer therapy and give the readers a strong foundation
on the discussed topic. The review predominantly covers relevant data and information
from 2014–2023.

2. Telomerase as a Potential Target for Cancer Therapy

Carcinoma is often a hereditary disorder associated with aging that only becomes
visible when normal cells get the capacity to replicate immortally and amass genomic
instability. When cells divide repeatedly, telomere attrition causes chromosomal instability
and makes a substantial contribution to the genomic rearrangements that may lead to cancer.
The survival of cancer cells depends on telomeres, which are repeating “(TTAGGG) DNA–
protein complexes” near the ends of chromosomes. In the great majority of cancers, an
enzyme known as telomerase keeps them intact. “Telomere length (TL)” maintenance and
telomerase expression are regulated by epigenetic, posttranscriptional, and transcriptional
phenomena, and a thorough understanding of these mechanisms may lead to the discovery
of new biomarkers and therapeutic targets for the early diagnosis of disease, the assessment
of the prognosis of the condition, and the development of new treatments [8,33].

Since telomerase is present in most carcinoma cells, in addition to cancer stem or stem-
like cells, it has been a primary target for the production of potent anti-cancer treatments.
Additionally, telomerase expression is lower in normal human cells, particularly stem
cells, and they typically keep their telomeres longer than cancer cells do [34,35]. These
characteristics provide a benefit that assures a low risk of potential telomere shortening in
healthy cells. Anti-telomerase treatments’ primary goal is to selectively cause apoptosis
and cell death in cancer cells while minimizing the consequences for healthy cells [36,37].
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This objective has been attained via a variety of strategies, including the creation
of vaccinations, antisense oligonucleotides, and small-molecule antagonists that target
the human telomerase RNA component (hTR) or human telomerase reverse transcriptase
(hTERT). Even though Bryan and colleagues [38] observed an innovative telomerase in-
hibitor, BIBR1532, that adheres to the thumb domain of TERT and disrupts TERT–RNA
interaction (telomerase ribonucleoprotein assembly), resulting in the suppression of en-
zymatic activity, oligonucleotide imetelstat (GRN163L) appears to be the most promising
telomerase inhibitor. However, clinical studies for this substance have not yet advanced.

Furthermore, the advancement of G-quadruplex stabilizers and tankyrase inhibitors
(which play a significant role in WNT/β-catenin signaling, mitotic spindle formation,
and telomere function) and HSP90 inhibitors (which are involved in signaling pathways,
signal transduction, and protein breakdown), designed to target telomere and telomerase
construction, in addition to T-oligo (DNA oligonucleotide homologous to the telomere 3′

overhang region, which causes cytotoxic effects by inducing DDR), have also been explored
to selectively kill cancer cells [39].

In contrast, immune-based treatments that make use of dendritic cells (GRVAC1),
hTERT peptides (GV1001), or cryptic peptides (Vx-001) are now undergoing testing in
experimental studies. Imetelstat is the only anti-telomerase chemical that has been sub-
jected to comprehensive testing in investigational studies. Many anti-telomerase therapies,
including vaccines, are now undergoing various stages of clinical testing; nevertheless,
imetelstat is the only anti-telomerase agent that has been tested. Recently completed clinical
investigations targeting telomerase for cancer treatment are mentioned in Table 1.

Table 1. Recently completed clinical investigations targeting telomerase for cancer treatment.

Sr. No Title Study Type Participants Drug Used Phase Condition Status ClinicalTrials.gov
Identifier Reference

1

A Phase 1 Study
of Imetelstat, a

Telomerase
Inhibitor, in

Children with
Refractory or

Recurrent Solid
Tumors and
Lymphomas

Single
Group

Assignment

34
participants

Imetelstat
sodium I

Brain Tumor,
Lymphoma,
Lymphopro-

liferative
Disorder,

Small
Intestine
Cancer,

Solid Tumor

Complete
(October

2013)
NCT01273090 [40]

2

A Randomized
Phase II Study of

Imetelstat
(GRN163L) In
Combination

with Paclitaxel
(With Or Without
Bevacizumab) in

Patients With
Locally Recurrent

Or Metastatic
Breast Cancer

Randomized,
Parallel

Assignment

166
participants

Imetelstat
sodium

(300 mg/m2),
Bevacizumab

(15 mg/kg), and
Paclitaxel

(90 mg/m2)

II

Locally
Recurrent or
Metastatic

Breast
Cancer

Complete
(December

2012)
NCT01256762 [41]

3

A Phase II Trial
to Evaluate the

Activity of
Imetelstat

(GRN163L) in
Patients with

Essential Throm-
bocythemia or
Polycythemia

Vera Who
Require

Cytoreduction
and Have Failed
or Are Intolerant

to Previous
Therapy or Who
Refuse Standard

Therapy

Single
Group

Assignment

20
participants

Imetelstat
(9.4 mg/kg) II

Essential
Thrombo-
cythemia

Complete
(April
2015)

NCT01243073 [42]
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Table 1. Cont.

Sr. No Title Study Type Participants Drug Used Phase Condition Status ClinicalTrials.gov
Identifier Reference

4

A Phase II Trial
to Determine the

Effect of
Imetelstat

(GRN163L) on
Patients with

Previously
Treated Multiple

Myeloma

Non-
Randomized,

Single
Group

Assignment

13
participants

Imetelstat
(7.5 mg/kg,
9.4 mg/kg),

Lenalidomide

II Multiple
Myeloma

Complete
(November

2014)
NCT01242930 [43]

5

A Randomized
Phase II Study of

Imetelstat as
Maintenance

Therapy After
Initial Induction
Chemotherapy

for Advance
Non-small Cell

Lung Cancer
(NSCLC)

Randomized,
Parallel

Assignment

166
participants

Imetelstat
(9.4 mg/kg) and

Bevacizumab
II NSCLC

Complete
(September

2013)
NCT01137968 [44]

Telomerase has been regarded as an appealing target for the treatment for cancer
since it was discovered, over two decades ago, that the stimulation of such enzymes
in cancerous cells promotes immortalization through telomere expansion [45]. Natural
products can effectively modulate the different hallmarks of cancer cells through diverse
molecular mechanisms [46,47]. Numerous plants and their parts, such as leaves and fruits
and vegetables, may contain phytoconstituent molecules, called flavonoids, that have
significant uses in medical biochemistry. Flavonoids provide a variety of health advantages,
such as anti-inflammatory, antioxidant, anti-cancer, and anti-viral effects. Additionally,
they possess neuroprotective as well as cardioprotective properties [48].

Some flavonoids have a stunning array of biological uses and health-improving qual-
ities. They have drawn significant interest since their widespread use is supported by
several epidemiological investigations [49]. In addition, the activation of telomerase in pre-
cursor and stem cells, such as those that give rise to hematopoietic lineages, is a significant
source of adverse reactions brought on by treatments that target telomerase [50].

Furthermore, flavonoids have the potential to be used as telomerase inhibitors and
powerful candidates for suppressing the function of telomerase in order to stop the growth
of tumor cells and start the apoptotic process. There is a possibility that flavonoids such
as epigallocatechin gallate, morin, kaempferol, quercetin, luteolin, and apigenin might
be agents that suppress the action of telomerase. The telomerase-associated anti-cancer
activity of natural flavonoids is illustrated in Figure 2.

Despite the fact that telomerase offers a number of advantageous characteristics for
the progression of tumors, effective therapeutic treatments have been severely constrained
by problems with pre-clinical animal models, a lack of a high-resolution structure of human
telomerase, and adaptive pharmaceutical tolerance. Because they are dependent on the
progressive shortening of telomeres that occurs with every cellular division, therapeutic
interventions that are based on inhibiting the function of telomerase reverse transcriptase
require a prolonged period of intervention before the anti-tumor effects are imposed. This
is because of the nature of their mechanism. Because of this, it is possible that they cannot
be used as a first-generation treatment, and it also means that there is a greater chance of
resistant copies evolving and spreading.
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3. Flavanols—Epigallocatechin Gallate (EGCG) and Epicatechin Gallate (ECG)

Flavanols are a sub-class of flavonoids; when present in monomeric form, they are
often referred to as catechins, and their polymeric form is commonly called proanthocyani-
dins. The most studied and explored flavanols are catechin, epicatechin, epigallocatechin,
gallocatechin, and their gallate derivatives. These are found in high concentrations in
grapes (30–175 mg kg−1), green tea (100–800 mg kg−1), cocoa powder (c.1.4 g kg−1), choco-
late (460–610 mg kg−1), and various berries (10–100 mg kg−1) [51,52]. The structure of
EGCG involves three rings of aromatic nature—A, B, and D, which are linked to each
other via a pyran ring (ring C). Its numerous health benefits are often associated with
its structure. For example, its antioxidant activity is due to hydrogen transfer, which in-
volves the B- and/or D-rings. (Figure 3) EGCG exhibits a variety of activities, including
anti-inflammatory, anti-diabetes, anti-obesity, and anti-tumor activities [53].
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Figure 3. (a) Epicatechin gallate (IUPAC: [(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-
dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate), (b) epigallocatechin gallate (IUPAC: [(2R,3R)-
5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate).

EGCG is the constituent present in the highest quantity in green tea, and it is 70% of
the catechin constituent. Epidemiological data have shown that green tea intake provides
preventive and therapeutic actions against various chronic diseases, including cancer.
Additionally, cell culture and animal studies have proven their anti-cancer potential and
revealed different mechanisms of action, which exert the cancer-preventive effects of EGCG
and green tea [54]. EGCG has shown anti-cancer activity via telomerase inhibition activity
in numerous cancer cell line models, which are described below.
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Numerous studies have proven EGCG’s anti-telomerase activity in breast cancer cells.
EGCG and pEGCG, a novel pro-drug, have also inhibited the expression of hTERT, which is
the catalytic subunit of telomerase responsible for telomerase activation in the human breast
cancer cell model [55]. Similarly, EGCG and (−)-epigallocatechin (EGC) also downregulate
the gene expression of hTERT, which promotes T47D breast cancer cells [56]. Studies
have also reported the telomerase inhibition activity of MST-312, a chemical derivative of
EGCG, on different cancer cells. A decrease in telomerase activity, the induction of telomere
dysfunction, and growth arrest was observed in MDA-MB-231 and MCF-7 breast cancer
cells [57]. Similar results were shown in MCF-7 cells by Zhang et al. and his associates [58].
MST-312 also induced apoptosis and inhibited telomerase activity in acute promyelocytic
leukemia (APL) cells [59].

EGCG reduced telomerase activity in small lung cancer cells, and a decrease in caspase
-3 and -9 was observed, thus showing initiation of apoptosis. Additionally, an analysis
of SLCL cells indicated a cell cycle block in the S-phase [60]. EGCG has demonstrated
anti-cancer activity in Ec9706 and Eca109 esophageal carcinoma cells, where altering the
expression of caspase-3 protein and the telomerase activity level and membrane potential
of mitochondria led to apoptosis [61]. In a study involving the nasopharyngeal cancer cell
line CNE2, EGCG successfully decreased the mRNA and protein expression of hTERT and
c-Myc protein, the overexpression of which causes cancer [62].

In cervical cancer studies, EGCG inhibited the activity of telomerase and the growth
rate of endocervical (HEN-18) and ectocervical (HEC-18) cells [63]. Further, both OMC-4
and TMCC-1 cervical adenocarcinoma cell lines had their telomerase activity suppressed
when exposed to EGCG, as determined by the telomeric repeat amplification protocol
assay [64]. Cervical adenocarcinoma cells seemed to respond well to a combination of EGCG
and retinoic acid, which caused apoptosis and stopped telomerase activity [65]. Another
combination of EGCG and sulforaphane also induced apoptosis by downregulating hTERT
and BCL-2 IN ovarian paclitaxel-resistant cancer cells [66]. EGCG and EGC have inhibited
carcinoma cell growth by repressing hTERT transcription [67]. EGCG has significantly
inhibited telomerase expression and has shown cytotoxic effects in 1321N1 and U87-MG
glioma cells, where it also acts in conjugation with tamoxifen and cisplatin [68].

These studies (summarized in Table 2) demonstrate EGCG’s telomerase-inhibiting
activities and suggest that it can function as a potent anti-cancer agent against diverse
malignancies, as discussed above. Further detailed research is warranted to investigate its
role in different types of cancer.

Table 2. Summary of the use of EGCG in different cell lines.

Flavonoid Cell Line Dose Results Reference

EGCG and pEGCG

MCF-7 and
MDA-MB-231 breast

cancer cell lines.
MCF10A cell line
(normal control)

Apoptosis induction
and hTERT inhibition:

EGCG (40 µmol/L) and
pEGCG (20 µmol/L)

Inhibition of cell
proliferation:

EGCG (60 µmol/L)
pEGCG (40 µmol/L)

pEGCG demonstrated higher
potency compared to EGCG in the
inhibition of cell proliferation and

apoptosis induction in breast cancer
cell lines.

Inhibition of hTERT was also shown
in both cell lines.

[55]

EGCG T47D breast cancer cells 80 µM
A significant decrease in hTERT

gene expression causing apoptosis
was observed.

[56]

MST-312
(derivative of

EGCG)

MCF-7 and
MDA-MB-231 breast

cancer cell lines
0–10 µM

Reduction in telomerase activity,
growth arrest, and induction of

telomere dysfunction was observed
in both cell lines, while reduced

expression of TRF2 (telomere
protective protein) in MDA-MB-231

cells.

[57]
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Table 2. Cont.

Flavonoid Cell Line Dose Results Reference

MST-312 APL cells 0.5,1, and 2 µM

Caspase mediated apoptosis, arrest
in G2/M-phase of the cell cycle of
APL cells. Along with telomerase
inhibitory activity, NF-κB activity

was also suppressed.
Additionally, hTERT, Bcl-2, survivin,

Mcl-1, and c-myc genes
were downregulated.

[59]

EGCG SCLC cells (H69 and
H69VP) 70 µM

50–60% Reduction in telomerase, 50
and 70% reduction in caspase 3 and

9, respectively, and block in the
S-phase of the cell cycle was

observed.

[60]

EGCG Eca109 and Ec9706 100, 200, or 300 mg/L

EGCG produced apoptosis, reduced
the mitochondrial membrane

potential, and raised the expression
of caspase-3 and led to the inhibition

of telomerase.

[61]

EGCG
Nasopharyngeal

carcinoma cell line
CNE2

100, 200 µg/mL,

Prevented CNE2 cells from
proliferating, caused cell cycle block,
apoptosis of the cells was promoted,
and downregulation of the mRNA

and protein expression of hTERT as
well as c-Myc protein.

[62]

EGCG HEC-18, HEC-18T,
HEN-18, HEN-18S 100 µM

Growth inhibition greater than 90%
and induction of apoptosis was

observed in HEC-18 and HEN-18.
Telomerase was inhibited in all

4 cells.

[63]

EGCG OMC-4 and TMCC-1 50 and 100 µM

Growth and telomerase inhibition,
induction of apoptosis and pKi-67
suppression was observed in both

cell lines.

[64]

EGCG and Retinoic
Acid HeLa and TMCC-1 EGCG: 100 µM

RA: 1 µM

Combination treatment caused
inhibition of telomerase, induction

of apoptosis and prevented
cell proliferation.

[65]

EGCG and
Sulforaphane

SKOV3-ip1 and
SKOV3TR-ip2 cells

20 mmol/L EGCG and
10 mmol/L SFN

Combination treatment led to
ovarian cancer cell inhibition, arrest

in cell cycle phase G2/M and S,
induction of apoptosis and DNA
damage, reduction in hTERT and

DNA methyltransferase 1

[66]

EGCG and EGC
H1299, OECM-1, SAS,
WRO, SK-Hep-1, and

Hep-3B cells
10–40 µM

EGCG and EGC caused apoptosis
and suppressed hTERT mRNA and

promoter activity.
[67]

EGCG, Cisplatin,
and Tamoxifen

1321N1 and U87-MG
cells

EGCG (100 µM)
Cisplatin (up to 50 µM)

Tamoxifen (up to 20
µM)

Telomerase suppression activity was
observed in both glioma cell lines

when used in combination.
[68]
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4. Flavones—Apigenin and Luteolin
4.1. Apigenin

Apigenin (Figure 4) is a commonly found flavonoid belonging to the sub-class of
flavones. It is found in significant amounts in fruits, vegetables, and beverages that are
derived from plants, such as chamomile (3000 to 5000 µg/g), beer, red wine, onion, and
parsley (45,035 µg/g), etc. It commonly occurs in apigenin-7-O-glucoside and different
acylated derivatives in its natural source. Chemically, it is named 4′,5,7, -trihydroxyflavone,
and structurally, it exists in the pure form of yellow needles [69,70].
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Numerous biological properties attributed to apigenin have been reported, which
include anti-inflammatory, anti-proliferative, antioxidant, and anti-carcinogenic properties.
A screening investigation has reported that 160 different human cellular targets have been
identified, demonstrating its anti-cancer activity. Furthermore, different mechanisms have
also been established, supporting its anti-cancer therapeutic potential [71]. It also modulates
some signaling pathways that play a role in cancer. Apigenin’s activity against cancer
has been demonstrated in numerous in vitro cancer cells and in vivo animal models [72].
However, its mechanism of suppressing or inhibiting telomerase activity is not clearly
known. Some studies have only been performed to show this activity.

Apigenin (100 µM) prevented cell growth, and telomerase activity was significantly
diminished in leukemia cells, which further led to apoptosis [73]. The human telomerase
reverse transcriptase (hTERT) is crucial in giving human malignant neuroblastomas im-
mortality. Apoptosis up to 70% was induced in both SK-N-DZ and SK-N-BE2 cell lines;
in addition, greater than 90% cell invasion inhibition was observed in malignant neurob-
lastoma cell lines (SK-N-DZ, SKN-BE2, SH-SY5Y, and IMR-32) [74]. The combination of
apigenin (100 µM) and cisplatin was experimented with in triple-negative breast cancer
(TNBC) MDA-MB-231 and HCC1806 cells. Concomitant to the combination’s telomerase
inhibitory activity, downregulation of HTERT was also observed in both cells. Hsp90, p23,
and other proteins that are important components of telomerase were also controlled by
this combination [74]. Based on these findings, we can suggest that apigenin could be a
potential telomerase inhibitor, warranting more studies and research.

4.2. Luteolin

Luteolin (3,4,5,7-tetrahydroxy flavone) is another member of the sub-class of flavones,
which is found in various dietary sources such as carrots, celery, olive oil, peppermint,
rosemary, oregano, etc. It occurs naturally in its glycosylated form [75–78]. Two benzene
rings (A and B) connected to an oxygen-containing pyrane ring (C) define the structure
of the compound. (Refer Figure 5) The double bond between carbon atoms 2 and 3 and
the four hydroxyl groups at positions 3′, 4′, 5, and 7 may all contribute to luteolin’s
biological activity. Luteolin is believed to have several pharmacological actions, such
as hepatoprotection, neuroprotection, and anti-cancer and anti-inflammatory properties,
amongst others [79]. Its anti-cancer property is effective against different types of cancer,
such as lung, glioblastoma, prostate, colon, pancreatic, and breast cancers [80].
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Luteolin (10 and 30 µM) treatment causing S-phase cell cycle arrest was observed in
MDA-MB-231 cells, followed by apoptosis. This effect was reported because of luteolin’s
ability to suppress the expression of hTERT by reducing telomerase levels and the inhibition
of the phosphorylation of NF-κB inhibitor α and c-Myc [81]. In-silico studies have also
been reported, describing luteolin’s telomerase inhibition activity. Structural modifications
were implemented in luteolin analogs and screened for their binding affinity to tankyrase
II, which is an enzyme essential for telomere sustenance; 3 out of 15 analogs were reported
to have comparable docking stores with luteolin [82]. Thus, this suggests that structural
modifications could be key to developing active analogs, on which experimental studies
should be conducted.

In conclusion, few experimental studies have demonstrated luteolin’s ability to inhibit
telomerase and the related process; thus, its efficacy is unclear. To utilize luteolin to its
utmost potential, detailed studies are required. With more trials, we will be able to further
identify new cancer types where luteolin shows its telomerase-inhibiting activity.

5. Flavonols—Quercetin, Kaempferol, and Morin
5.1. Quercetin

The flavonoid known as quercetin (3, 3′, 4′, 5, 7-pentahydroxyflavone) is a common
substance that may be found in a wide variety of botanical and dietary sources. Propolis,
along with other nutritious foods such as vegetables and fruits, particularly tea, apple
(4.01 mg/100 g), broccoli (13.7 mg/100 g), and onion (45 mg/100 g), as well as red wine
(3.16 mg/100 g), includes a significant amount of a flavonol called quercetin glycoside.
Quercetin glycosides make up most of the total flavonoids in propolis. This substance
has the presence of five hydroxyl groups at positions 3, 5, 7, 3′, and 4′ of the flavonoid
(Figure 6) and is one of the characteristics that distinguish it as a unique substance [83–85].
A dietary additive is one possible use for quercetin. It has been shown that quercetin has a
number of favorable benefits on human health, including anti-cancer properties, protection
for the cardiovascular system, and anti-inflammatory activities. It is capable of acting as an
anti-diabetic, anti-viral, anti-allergic, and anti-ulcer agent. Among its beneficial benefits are
anti-infective, immuno-modulator, anti-hypertensive, and gastro-protective properties [86].

Investigations have shown that quercetin has qualities that are anti-cancer as well as
those that inhibit the proliferation of cancer-causing cells and promote apoptosis. Quercetin
is an established autophagy modulator that reduces cellular proliferation by causing cellular
growth inhibition and cell migration and, ultimately, suppresses the growth of cancer cells
by arresting the cell cycle. This is accomplished by inhibiting cell division during the colony
formation stage [87,88]. Quercetin has been shown in a number of experiments to have
substantial applications in the cancer treatment process as well as in the management of
the disease. This is accomplished through quercetin’s ability to block telomerase activity
and induce cell death [89–91].
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Medications with estrogen receptor beta ligands, such as tamoxifen and quercetin,
inhibit development and telomerase functioning in colorectal cancer. This is accomplished
by preventing the tumor from dividing further [92]. According to the findings of a research
paper that was published in 2001 by Choi et al., quercetin (20 µM) causes inhibition
of growth in MCF-7 cell lines via two separate pathways. In the first place, quercetin
(up to 20 µM) stops the cell cycle by causing a brief deposition in the M-phase, which
is then accompanied by a stoppage in the G2-phase. Secondly, quercetin (20 µM) causes
cell death [93].

Interestingly, the strategy that is connected with quercetin generating cytotoxic potency
and apoptosis effects was identified in the human promyelocytic leukemia cell line (HL-60)
and human lung cancer cell line by Kang and Seung-Eun [94]. They discovered that giving
quercetin in greater quantities (up to 100 µM) entirely stopped cell growth when it was
administered to the cells. In a study that was conducted in an identical fashion, Lee et al.
(2006) detected the enhanced arrestation of the G2/M-phase of cell division, cell death,
and DNA fragmentation in human leukemic monocyte lymphoma cells when quercetin
was supplied to the cells. Regarding the investigation that was conducted on the effects of
quercetin on apoptosis, Kou and Gibellini et al. discovered that quercetin (100–500 µM), in
a dose-dependent manner, induces the arrest of cellular division at many phases, promotes
cell death, and blocks the development of multiple cancerous cells [94,95]. Quercetin’s
anti-carcinogenic and medicinal activities were also investigated in a number of in vivo
experiments, which led to the discovery of the mechanisms underlying these benefits [96].

In addition, epidemiological research has found that consistent use of quercetin at
doses ranging from 1.01 to 31.7 mg per day might lower the incidence of ovarian cancer [97].
In addition, investigations conducted both in vivo and in vitro revealed that quercetin
had anti-cancer properties by preventing the revascularization and formation of tumors,
arresting cells in the cell cycle, and triggering cell death [98,99]. Synergistic effects of
quercetin and epigallocatechin gallate (EGCG) have been shown to have anti-tumor activity.
These properties include the stimulation of the tumor suppression gene (p53), suppression
of the cellular division pathway, caspase-induced apoptosis, and overexpression of death
receptor-5 [100]. Avci et al. (2011) have demonstrated that quercetin (up to 100 µM) has
apoptotic properties and anti-proliferative potency on cancer cells, including acute T-cell
lymphoblastic leukemia, acute promyelocytic leukemia, and chronic myeloid leukemia [90].
It has been shown via this research that quercetin is an effective medicinal substance for
the management of leukemia since it lowers the amount of telomerase activity as well as
the amount of apoptosis-mediated cell death. In addition, quercetin inhibits the growth
of numerous carcinoma cell lines. These cancer cell lines include those of the breast [101],
laryngeal [102], nasopharyngeal [103], colon [104], and brain [105].

It has been shown via a number of studies involving cancer cell lines that quercetin
has the capability of inhibiting the functioning of telomerase and inducing apoptosis
(programmed cell death). Based on these findings, quercetin may have an impact that is
anti-carcinogenic when it works via this particular route.
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5.2. Kaempferol

Kaempferol is one of the aglycone flavonoids that are most frequently found in a
glycoside state. It is a yellow chemical, and it is a kind of tetrahydroxyflavone where
4-OH moieties are situated at positions 3, 5, 7, and 4′ (Figure 7) [106]. The phytochem-
ical kaempferol may be present in a variety of plant components, including vegetables,
flowers, fruits, leaves, and seeds [107]. It has been shown that kaempferol and its glyco-
side analogs exhibit effects that are anti-tumor, anti-bacterial, antioxidant, anti-diabetic,
anti-inflammatory, and neuroprotective. Kaempferol also has neuroprotective and cardio-
protective properties [108].
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According to the findings of epidemiological research, high consumption of kaempferol
is connected with a lower risk of developing a variety of cancers, including cancers that
may occur in organs such as the skin, liver, colon, ovary, pancreas, stomach, and blad-
der [109,110]. Within this framework, the use of kaempferol and associated applications in
cancer treatment are garnering a significant amount of interest from the scientific commu-
nity [109]. The majority of successful attempts in preventing cancer may be attributed to
raising the rates of apoptosis, which works to suppress the development of cancer cells [111].
In fact, kaempferol is capable of inhibiting numerous cancer cells by inducing cell death,
cell cycle inhibition at the G2/M-phase, the reduced expression of signal-transduction
pathways, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and the expression of
epithelial–mesenchymal transition (EMT)-related markers (N-cadherin, E-cadherin, Snail,
and Slug) [112,113].

Kaempferol also stimulates the initiation of cysteine proteases involved in cell death
commencement and implementation—caspases-3, -7, and -9 and poly (ADP-ribose) poly-
merase (PARP) [114]. As a result, kaempferol prevents the aggregation of reactive oxygen
species (ROS) that are engaged in the progression of carcinoma. It has also been shown that
kaempferol may prevent the formation of new blood vessels, in addition to its potential to
maintain the vitality of regular cells [115].

5.3. Morin

Morin is a polyphenol component that was first identified from a species of the
Moraceae family, including mulberry figs and old fustic (Chlorophora tinctoria). The
chemical formula for morin is 3,5,7,2′,4′-pentahydroxyflavone, which can be found in
Figure 8. In previous research, it was demonstrated that morin (100 and 200 µM) inhibits
the growth of a broad range of tumor cells in nude mice, particularly oral squamous cell
carcinoma, leukemia, and COLO205 colorectal cancer cells [116].

Furthermore, the anti-cancer action of morin (50 µmol/L) is conducted via the sup-
pression of transcription factors NF-B and STAT3 as well as the genes that are controlled
by those transcriptional regulators. Through the stimulation of SHP1 protein tyrosine
phosphatase, morin (50 µM) is able to block the phosphorylation mechanism of STAT3 at
tyrosine-705 in tumor cells [117,118]. Its telomerase activity has also been seen when used
in combination with MST-312. It is elaborated on in the subsequent sections.
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6. Combinatorial Studies with Flavonoids and MST312

MST-312 and quercetin: Quercetin is a naturally occurring flavonoid that has been
shown to have anti-proliferative effects against many different types of cancer. In addition
to its impact on telomere shortening, the telomerase inhibitor MST-312 has been shown
to have an anti-proliferative effect on many different types of cancer cells. Nevertheless,
the therapeutic advancement of these substances is restricted since they have a poor
absorption rate and are hazardous at greater dosages. In this work, we investigate the
synergistic capability of their interaction in cancer cells, which might lead to a reduction in
the therapeutic dose of these chemicals. This could be beneficial in the treatment of various
cancers. According to our findings, MST-312 and quercetin display a potent synergism
in ovarian cancer cells. When compared to treatment with either drug alone or with a
vehicle, therapy with MST-312 and quercetin together increases the expression of DNA
degradation and enhances apoptosis more so than treatment with either compound alone.
In addition to this, we investigated the impact that these chemicals have on the rate of
development of normal ovarian surface epithelial cells (OSEs). It is important to note that
the combination of MST-312 and quercetin did not have any detectable effect on OSEs.
This co-treatment selectively impacts cancer cells and decreases the effective dose of both
medications; therefore, these discoveries have substantial implications for future efforts
toward increasing the effectiveness of cancer therapies [119].

Morin and MST-312: One of the malignancies that are diagnosed most often across the
globe is colorectal cancer, also known as CRC. In most cases, the malignant CRC that has
already undergone metastasis in the advanced stage is resistant to the treatment that is now
available and has a dismal outlook. However, effective targeted treatment for patients with
metastatic colorectal cancer is not yet well established. We have conducted experiments
to test the idea that a combination therapy consisting of the flavonoid morin and the
telomerase inhibitor MST-312 might decrease the characteristics of cancer stem cells (CSCs).
CD133/CD44 subpopulation profiling, the tumorsphere formation test, the cell invasion
assay, and the wound healing assay were all carried out so that we could describe the CSC
phenotype. In this study, the additive effects of the combination therapy of morin and
MST-312 for 5-FU (5-fluorouracil) effectiveness in human colorectal cancer are investigated.
In conclusion, the combination therapy of morin and MST-312 was successful in further
enhancing the effectiveness of 5-FU and in chemo-sensitizing the 5-FU-resistant human
colorectal cancer cells. When taken as a whole, the results of our research indicate that a
new targeted treatment that combines the flavonoid morin with the telomerase inhibitor
MST-312 may be able to enhance the prognosis of cancer patients [120].

7. Conclusions

Recent research has demonstrated telomerase as a potential target for anti-cancer
therapy. Telomerase could work as a biomarker due to its presence in cancer cells and its
absence in normal, unaffected cells. Thus, inhibiting telomerase and preventing cancer
growth have been recently studied. Efforts have been made to develop synthetic telomerase
inhibitors that can prevent telomerase expression in cancerous cells. However, in order
to reduce side effects, many natural substances with numerous biological properties have
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often been tried for their telomerase suppression activity. As a major class of polyphenols,
flavonoids are one group of compounds with anti-cancer properties. Due to this, their
telomerase inactivation mechanism has been studied and experimented on. Thus, we
conclude that common flavonoids, as described in this review, have successfully inhibited
telomerase and its protein expression, thus demonstrating anti-tumor action in in vitro cell
line studies and in in vivo studies to some extent.

8. Future Perspectives

Certain challenges need to be addressed to make progress in this area. A fully known
relationship between cancer and telomerase is yet undiscovered, thus preventing us from
fully exploiting the use of flavonoids via this mechanism. Another limitation is that
the effects of these substances are only on selected cancer types, thus suggesting that
more research needs to be carried out in this field before using them for the therapeutic
management of cancer. Similarly, more and more flavonoids should be tested and identified
in order to learn more about the intricate relationship between the flavonoid mechanism
and telomerase. Nevertheless, flavonoids’ possible role as telomerase inhibitors is an
interesting field of investigation as anti-cancer therapy, and more research in this direction
may lead to the development of novel treatment strategies that can specifically target
telomerase activity in the malignant cells.
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