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Abstract: The multistep synthesis of novel bis-terephthalthioamides based on methyl esters of amino
acids (AAs) was proposed using conventional heating and microwave-assisted approaches. In fact, the
comparative case study on the thionation of new symmetrical diamides with Lawesson’s reagent (LR)
was performed. The microwave-accelerated small-scale methodology was successfully employed on
the whole pathway from substrates (Gly, Ala, Val, Tyr, Ser) to products (symmetrical dithioamides of
terephthalic acid), resulting in significantly reduced reaction time, energy requirements, and slightly
increased reaction yields when compared to conventional heating. Moreover, the intermolecular
similarity of novel terephthalic acid derivatives was estimated in the multidimensional space (mDS)
of the structure/property-related in silico descriptors using principal component analysis (PCA) and
hierarchical clustering analysis (HCA). The distance-oriented structure/property distribution was
also correlated with the experimental lipophilic data.

Keywords: thioamides; terephthalic acid; thionation; microwave-accelerated synthesis;
bis-terephthalthioamides

1. Introduction

Amino acids (AAs) play a crucial role in many vital processes of living organisms;
therefore, (bio-)transformation of AAs seems attractive from the point of the ‘rational
production of properties’ in medicinal chemistry [1–4]. The incorporation of AAs, either
natural or their derivatives (e.g., esters or amides), as components of the parent (pro-)drugs
is basically regarded as a patient-friendly approach on the route from structures to ADMET-
tailored properties [5,6]. Due to their low toxicity, AAs can also be attractive drug carriers
for poorly absorbed curative agents on the pathway from the place of administration to
the site of interaction. In fact, the carboxylic/amine substituents attached to α-carbon are
usually the linkers of the parent drug that abolish the zwitterionic form [7]. In practice,
AA-drug linkage chemistry is well established in producing clinically used therapeutic
agents (e.g., L-Val-gemcitabine) [8–10].

Due to the unique chemical character of α-AAs, they hold the permanent interest of
the scientific community, which can be illustrated by the number of reports published in the
field of medicinal/pharmaceutical chemistry, as shown in Figure 1. Hence, the extensive
database screening of the Reaxys repository was performed to identify the hits, where the
name of the selected α-AAs (R = Gly, Ala, Tyr, Ser, Val) was queried in the title or abstract
of the papers published in the last two decades (from 2000 to 2022). Generally, the constant
growth in the number of publications related to α-AAs has been recorded in the period of
the last 20 years, with visible ‘peaks’ of interest reached during the SARS-CoV-2 pandemic.
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Naturally, the indicated ‘wavy’ trends in the α-AA-related scientific activity can partially
correlate with the extensive efforts of academia and industry to deliver new antiviral drugs.
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Terephthalic acid (TPA) is an essential dicarboxylic intermediate massively manu-
factured commercially; therefore, the environmental fate and/or potential biological 
routes of TPA in living organisms, including adsorption, (bio)transformation, and excre-
tion, need to be examined in detail [11,12]. Moreover, in vitro metabolic studies have re-
vealed that TPA is basically a non-genotoxic/mutagenic chemical at normal doses with 
pretty low toxicity (LD50 > 5000 mg/kg by oral administration) [13]. Interestingly, the 
successful conversion of poorly water-soluble antifungal itraconazole (ITR) into the 
multi-component solid phase (cocrystals) was conducted using TPA as an aromatic 
coformer [14,15].  

The poly(ester amide) containing α-AA-based motifs is of great interest as an at-
tractive material in the biomedical field and tissue engineering [16]. In fact, the formation 
of the amide bond is among the most prevalent transformations incorporated in the 
large-scale production of active pharmaceutical ingredients (APIs) in medicinal chemis-
try [17,18]. In the bioactive molecules (e.g., proteins, DNA, or RNA), nature itself has 
encoded the unique features of the amide bond, its high stability towards various reac-
tion conditions (e.g., pH, temperature), and its ability to form resonating structures and 
characteristic spatial atomic distribution, which hinder the free atom rotations within the 
HN-C=O motif [19,20].  

Overall, organosulfur compounds are valued in pharmacology as antitumor, anti-
microbial, anti-HIV, and chemoprotective agents against a variety of carcinogenic or 
toxic factors [21–23]. The single-atom substitution of the carbonyl oxygen in an amide 
bond with sulfur (HN-C=S) is generally regarded as an isosteric replacement to produce 
more potent and stable molecules with modified bioactive potency (e.g., the antibacterial 
activity) [24,25]. Although amides and thioamides are somewhat similar structurally to 
each other, these two species vary noticeably in their chemical and physical proper-
ties—thioamides are more polar with a more decisive dipole moment [26]. The conver-
sion of the amide-containing compounds into thioamides can also improve the ADMET 
properties [27–29]. The site-specific oxoamide→thioamide modification of proteolytically 
sensitive amide bonds in the peptide backbone is a widespread synthetic practice com-
monly used to specify the spatial distribution, stability, and functional properties of 
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Terephthalic acid (TPA) is an essential dicarboxylic intermediate massively manufac-
tured commercially; therefore, the environmental fate and/or potential biological routes of
TPA in living organisms, including adsorption, (bio)transformation, and excretion, need to
be examined in detail [11,12]. Moreover, in vitro metabolic studies have revealed that TPA
is basically a non-genotoxic/mutagenic chemical at normal doses with pretty low toxicity
(LD50 > 5000 mg/kg by oral administration) [13]. Interestingly, the successful conversion
of poorly water-soluble antifungal itraconazole (ITR) into the multi-component solid phase
(cocrystals) was conducted using TPA as an aromatic coformer [14,15].

The poly(ester amide) containing α-AA-based motifs is of great interest as an attractive
material in the biomedical field and tissue engineering [16]. In fact, the formation of the
amide bond is among the most prevalent transformations incorporated in the large-scale
production of active pharmaceutical ingredients (APIs) in medicinal chemistry [17,18]. In
the bioactive molecules (e.g., proteins, DNA, or RNA), nature itself has encoded the unique
features of the amide bond, its high stability towards various reaction conditions (e.g., pH,
temperature), and its ability to form resonating structures and characteristic spatial atomic
distribution, which hinder the free atom rotations within the HN-C=O motif [19,20].

Overall, organosulfur compounds are valued in pharmacology as antitumor, antimi-
crobial, anti-HIV, and chemoprotective agents against a variety of carcinogenic or toxic
factors [21–23]. The single-atom substitution of the carbonyl oxygen in an amide bond with
sulfur (HN-C=S) is generally regarded as an isosteric replacement to produce more potent
and stable molecules with modified bioactive potency (e.g., the antibacterial activity) [24,25].
Although amides and thioamides are somewhat similar structurally to each other, these
two species vary noticeably in their chemical and physical properties—thioamides are more
polar with a more decisive dipole moment [26]. The conversion of the amide-containing
compounds into thioamides can also improve the ADMET properties [27–29]. The site-
specific oxoamide→thioamide modification of proteolytically sensitive amide bonds in the
peptide backbone is a widespread synthetic practice commonly used to specify the spatial
distribution, stability, and functional properties of peptides, respectively. As a matter of
fact, the validity of thioamide-based compounds was confirmed in medicinal applications
(see Figure 2), revealing the bioactive potential of the thioamide motif (e.g., second-line
antituberculosis and leprosy drugs) [30–34].
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In practice, the direct sulfurization of the carbonyl group using a preformed S2− 
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pretreatment of the carbonyl motif is frequently needed with the concurrent production 
of inseparable intermediates [36]. It was revealed that the specified reaction conditions, 
the choice of reducing agent, and the nature of the solvent are crucial factors of the thio-
nation procedure. As shown in Scheme 1, easy-to-handle elemental sulfur (S8) was re-
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[37].  
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Figure 2. Thioamide-based approved therapeutic agents according to DrugBank database.

The principal objective of the presented study was the conceptual design and practical
synthesis of the symmetrical α-AA-based (R = Gly, Ala, Val, Tyr, Ser) dithioamides of tereph-
thalic acid using the conventional heating (method I) as well as the microwave-accelerated
approach (method II). It was revealed that both methods yielded comparatively at each
stage of the proposed three-step procedure. A noticeably reduced reaction time (from days
to minutes) in the microwave-supported approach makes the method an attractive and
eco-friendly alternative to the lengthy methodology of conventional heating. Following
the common practice, the intermolecular similarity of novel terephthalic acid derivatives
was estimated in the multidimensional space (mDS) of the structure/property-related in
silico descriptors using principal component analysis (PCA) and hierarchical clustering
analysis (HCA), respectively. Moreover, the distance-oriented property distribution for the
new series of compounds was correlated with the experimental TLC and HPLC lipophilic
data. Finally, the molecular structure of methyl 2-({4-[(1-methoxy-3-methyl-1-oxobutan-2-
yl)carbamothioyl]phenyl}methanethioamido)-3-methylbutanoate (5d) was determined via
single-crystal X-ray diffraction.

Mini-Review of Thionating Reagents

A vast range of thionating agents, including elemental sulfur (S8), phosphorus deca-
sulfide (P4S10), and Lawesson’s reagents (C14H14O2P2S4), have been used (either alone or
in combination with additives) in the synthesis of organosulfur compounds.

In practice, the direct sulfurization of the carbonyl group using a preformed S2−

agent is notably cumbersome due to odor, toxicity, and stability issues [35]. Moreover,
pretreatment of the carbonyl motif is frequently needed with the concurrent production of
inseparable intermediates [36]. It was revealed that the specified reaction conditions, the
choice of reducing agent, and the nature of the solvent are crucial factors of the thionation
procedure. As shown in Scheme 1, easy-to-handle elemental sulfur (S8) was reduced in situ
to S2− in the presence of hydrochlorosilanes (as a reducing agent) and a suitable amine in
order to generate the corresponding thioamides with acceptable yields [37].
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The effective deoxygenation of carbonyls into the corresponding thiocarbonyls by
means of crystalline solid phosphorus decasulfide (P4S10) was first introduced at the end
of the XIX century [38]. P4S10 was successfully employed in 1878 to convert amides to
thioamides by Hofmann [39,40]. It is suggested that the dimeric form of phosphorus
decasulfide dissociates into corresponding monomers (phosphorus pentasulfide, P2S5),
especially in the reactions conducted under refluxing solvents, as presented in Scheme 2.
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A large excess of thionating reagent and lengthy reaction time were required in the
environment of the boiling solvent (e.g., benzene, toluene, xylene, THF, CS2, CH3CN,
or pyridine) to form thio-compounds [41,42]. Unfortunately, greenish-gray to yellow
flammable crystals of P4S10 decompose rapidly on contact with water or even with at-
mospheric moisture, producing the odorous hydrogen sulfide (H2S) gas and phosphoric
acid (H3PO4), respectively. Moreover, thionation of amides using P4S10 alone generates
highly condensed polythiophosphates (see Scheme 3) as potential electrophiles (similarly
to P4O10) that might promote unwanted side reactions of the carbonyl and thiocarbonyl
compounds [43].
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In recent years, new approaches that combine the conventional thionating reagents
with additives (catalysts on a solid support) or novel techniques (microwave irradiation)
have appeared in order to increase the product yields, simplify the purification processes,
and/or optimize the reaction time/cost-consumption, respectively. A substantial improve-
ment in P4S10 performance in thionation was reported, where the addition of hexamethyld-
isiloxane (Me3SiOSiMe3, HMDO) noticeably enhanced the utility of P4S10 in sulfurization
of the carbonyl-based derivatives [44,45]. In particular, dichloromethane (CH2Cl2) was
recommended as a useful solvent for the thionation of amides with the P4S10/HMDO
combination; however, benzene can be applied at reflux temperature as well. Regrettably,
the detailed mechanism of the beneficial impact that HMDO exerted on most of the P4S10-
mediated thionations is not clear—these two components did not react directly with each
other; therefore, a new, more effective thionating agent was not formed [46]. It is suggested
that P4S10 first reacted with the carbonyl substrate and P4S10-derived intermediate, which
subsequently reacted with HMDO to produce non-polar, soluble by-products (supposedly
trimethylsilylated phosphates or thiophosphates) [47]. The presence of HMDO in the reac-
tion environment probably converts potent electrophiles (condensed polythiophosphates)
to innocuous silylated phosphates [39]. Actually, a simple hydrolytic workup or passage
through silica gel can be employed to separate the undesired phosphorus-containing by-
products during the purification process; however, the use of HMDO makes the method
pretty cost-consuming [48].

The usability of the alumina-encapsulated P4S10 reagent (P4S10/Al2O3) as a solid-
supported thionating agent in acetonitrile solvent (CH3CN) was investigated in the syn-
thesis of long-chain thioamides and thioketones [44,48,49]. As the smooth reaction of
amides/ketones with P4S10 proceeded, Al2O3 scavenged yield-lowering by-products
formed in the course of thiocarbonylation, increasing the yield considerably [48]. It was
noticed that the majority of by-products were anchored to the alumina; therefore, a sim-
ple filtration could be applied at the purification stage, omitting a cumbersome aqueous
workup on the path to pure products. Furthermore, P4S10/Al2O3-mediated thionation
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of amides was effectively supported by microwave irradiation, which significantly short-
ened the reaction time (from approximately 6÷10 h to 5 min at a power of 60W) with a
comparable yield achieved under conventional heating [49].

In recent years, the 1,3,2,4-dithiadiphosphetane-2,4-disulfide family with the charac-
teristic -P2S2- ring (see Scheme 4) has displaced P4S10 as the alternative thionating agent
of choice in organic chemistry [50]. Technically, 2,4-bis(p-methoxyphenyl)-1,3,2,4-dithiadi-
phosphetane-2,4-disulfide, a slightly yellow amorphous solid, was first synthesized by
Lecher et al. in 1956 [51], but its versatile thionating potential was unraveled and popu-
larized globally by a Swedish chemist, Sven-Olov Lawesson in 1978; therefore it is widely
known as Lawesson’s reagent (LR) [52]. In solution, decomposition of the unique –P2S2–
ring to 2 symmetric monomers was proposed; therefore, LR could coexist in equilibrium
with more reactive dithiophosphine ylide, as illustrated in Scheme 4.
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As a matter of fact, the reactive monomeric form of the LR agent (4-methoxyphenylphos-
phine disulfide) has never been isolated or observed spectroscopically due to the high
electrophilicity of the phosphorus center in RPE2 species (R = aryl/alkyl, E = O/S), where
self-aggregation to cyclic or linear polymeric compounds was observed [53]. It is assumed
that both mesomeric structures (shown in Scheme 4) can interact easily with carbonyls,
alcohols, or heterocycles [54]. The reactivity of carbonyl derivatives in thionation by LR was
ranked in the following order: amides > ketones > esters [55]. It was observed that the amide
carbonyls could be selectively thionated with LR in the presence of esters and/or lactone
groups [56]. The commonly accepted mechanism of carbonyls sulfurization consists of two
steps (see Scheme 5) involving:

• A concerted cycloaddition of a reactive monomeric form of LR and the carbonyl-
containing derivative to generate a four-membered thiaoxaphosphetane
intermediate (1)

• A cycloreversion forming the corresponding thiocarbonyl analogue (2) and phenyl-
(thioxo)phosphine oxide (3).
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The driving force of S→O substitution is the thermodynamic stability of the P=O
bond formed in the product (3). In fact, the P–O bonds are stronger compared to their P–S
counterparts; therefore, the formation of the thionated product seems privileged. On the
whole, the mechanism of thiocarbonylation using the LR agent resembles the Wittig reaction
with the formation of a phosphorus-based four-membered Wittig-like ring intermediate (1).

The worldwide popularity of LR in organic chemistry stems primarily from its mar-
keted accessibility, the simplicity of its application, and the mild reaction conditions with
high yields obtained in the shortened reaction time, especially while the synthesis is per-
formed under solvent-free microwave irradiation (an economical and environmentally
friendly methodology) [25]. Unluckily, the thio-substitution of carbonyl oxygen using LR
under typical operational conditions has been criticized due to its propensity to form some
stable heterocyclic intermediates and/or undesired (by-)products, particularly in the dry
conditions of the aromatic hydrocarbon solvents at elevated temperatures [45,57]. Hence,
the separation/purification of the reagent-derived (by-)products using simple extractive
methods (e.g., filtration or distillation) seems to be an awkward task. In consequence,
column chromatography on silica gel has to be employed. Due to the relatively high molec-
ular weight of LR (MW = 404.47 g/mol), a fairly long chromatographic column should
be applied, which makes the procedure unwieldy for anything but small-scale laboratory
preparation [25,45]. The low-weighted molecular products can only be distilled directly
from the reaction mixture. On the other hand, a range of alternative, high-boiling solvents
(e.g., benzyl benzoate) was applied to the solid-phase parallel synthesis of thioamides [43].
The optimized, column-free thionation of amides in ethylene glycol solvent was proposed
for scaling up the LR-based workup procedure [58]. Contrary to esters, the thionation of
amides can be effectively accomplished in the environment of the anhydrous THF at room
temperature [46]. Moreover, the microwave-accelerated thionating of amides improved
noticeably not only the yields but significantly reduced the reaction time and simplified the
workup and purification method [49]. Even the unique structural construction of the LR
agent was modified by the introduction of fluorous ponytails in order to refine the isolation
protocol of amide thionation, including the exclusion of the chromatographic columns [59].
The replacement of the methyl motif in the methoxy substituent (-OCH3) with a fluorous
ponytail –(CH2)4(CF2)6F in the fluorous LR analogue (f -LR) increased the thioamide yields
since a simple filtration (solid-phase extraction) was applied in the purification of the final
reaction products.

It is still an open question whether LR is superior to P4S10 as a versatile thionating
agent. LR has undoubtedly become an indispensable reagent for ‘sulfur’ chemistry with
diverse applications for converting a range of oxo to thio functional groups, including
some new classes of heterocycles, as shown in Figure 3. Having weighed up the pros and
cons, the incorporation of sulfur atom(s) with the LR agent is currently favored by organic
chemists, mainly due to better reaction yields obtained [25].

Pharmaceuticals 2023, 16, 984 7 of 19 
 

 

It is still an open question whether LR is superior to P4S10 as a versatile thionating 
agent. LR has undoubtedly become an indispensable reagent for ‘sulfur’ chemistry with 
diverse applications for converting a range of oxo to thio functional groups, including 
some new classes of heterocycles, as shown in Figure 3. Having weighed up the pros and 
cons, the incorporation of sulfur atom(s) with the LR agent is currently favored by or-
ganic chemists, mainly due to better reaction yields obtained [25].  

 
Figure 3. Selected organosulfur families prepared with Lawesson’s reagent. 

In order to develop ‘green’, eco-friendly sulfur transfer agents, the solid supports, as 
well as the ionic liquids, are being profoundly scrutinized. The detailed description of the 
other thionating agent is beyond the scope of this paper.  

2. Results and Discussion 
2.1. Design and Dithioamide Synthesis 

Conceptually, the multistep synthesis of the symmetrical α-AA-based (R = Gly, Ala, 
Val, Tyr, and Ser) dithioamides of terephthalic acid was proposed using the conventional 
heating (method I) as well as the microwave-accelerated approach (method II). In fact, a 
comparative study on thionation yields of diamides with LR agent under conventional 
heating and microwave irradiation was conducted. The microwave-assisted methodol-
ogy was successfully employed on the whole pathway from substrates (α-amino acids) to 
products (dithioamides of terephthalic acid) with a noticeably reduced reaction time/cost, 
simplified purification protocol, and increased reaction yields when compared to the 
older approach (method I). The small-scale treatment of the selected α-AA-based dia-
mides of terephthalic acids using LR under microwave-aided conditions proceeded 
smoothly with satisfactory yields of the final products. The symmetrical dithioamides of 
terephthalic acid (5a–5e) were generated in a three-step synthesis, as illustrated in 
Scheme 6. In the first step, the primary amino and carboxylic moieties of the selected 
α-amino acid (1) were protected by a reaction with methyl alcohol and thionyl chloride to 
form an amino acid methyl ester hydrochloride (2). In the second step, involving amide 
bond formation, the reaction of α-AA-based methyl ester hydrochloride with the com-
mercially available terephthalic acid dichloride (3) produced a series of symmetrical 
diamides (4). To protect the acid-sensitive amide functional group, trietyloamine was 
added to the methylene chloride (DCM) solvent. Finally, the sulfurization of the selected 
diamides was conducted with an LR agent in order to form the corresponding dithio-
amides (5). The final products were purified using column chromatography with a mix-
ture of dichloromethane and ethyl acetate, respectively. 

Figure 3. Selected organosulfur families prepared with Lawesson’s reagent.



Pharmaceuticals 2023, 16, 984 7 of 18

In order to develop ‘green’, eco-friendly sulfur transfer agents, the solid supports, as
well as the ionic liquids, are being profoundly scrutinized. The detailed description of the
other thionating agent is beyond the scope of this paper.

2. Results and Discussion
2.1. Design and Dithioamide Synthesis

Conceptually, the multistep synthesis of the symmetrical α-AA-based (R = Gly, Ala,
Val, Tyr, and Ser) dithioamides of terephthalic acid was proposed using the conventional
heating (method I) as well as the microwave-accelerated approach (method II). In fact, a
comparative study on thionation yields of diamides with LR agent under conventional
heating and microwave irradiation was conducted. The microwave-assisted methodology
was successfully employed on the whole pathway from substrates (α-amino acids) to
products (dithioamides of terephthalic acid) with a noticeably reduced reaction time/cost,
simplified purification protocol, and increased reaction yields when compared to the older
approach (method I). The small-scale treatment of the selected α-AA-based diamides of
terephthalic acids using LR under microwave-aided conditions proceeded smoothly with
satisfactory yields of the final products. The symmetrical dithioamides of terephthalic acid
(5a–5e) were generated in a three-step synthesis, as illustrated in Scheme 6. In the first step,
the primary amino and carboxylic moieties of the selected α-amino acid (1) were protected
by a reaction with methyl alcohol and thionyl chloride to form an amino acid methyl ester
hydrochloride (2). In the second step, involving amide bond formation, the reaction of
α-AA-based methyl ester hydrochloride with the commercially available terephthalic acid
dichloride (3) produced a series of symmetrical diamides (4). To protect the acid-sensitive
amide functional group, trietyloamine was added to the methylene chloride (DCM) solvent.
Finally, the sulfurization of the selected diamides was conducted with an LR agent in order
to form the corresponding dithioamides (5). The final products were purified using column
chromatography with a mixture of dichloromethane and ethyl acetate, respectively.
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In an attempt to transform the oxo substituents (>C=O) of the symmetric diamides to
the thio-functionalized (>C=S) counterparts, the unsubstituted (a), branched-chain (b,d),
aromatic (c), and polar (d) α-AAs were selected as the substrates of the presented case
study (see Scheme 6). In order to compare both methods quantitatively, exactly the same
amounts of the substrates/solvents were used; however, the reaction time and the source of
energy varied considerably. Obviously, the identical purification procedure was employed
in both methods. Based on the reaction output (see Table 1), the microwave-accelerated
synthetic route of the chosen α-AA-based dithioamides of terephthalic acid (5a-5e) yielded
comparatively to the conventional reaction pathway. As a whole, at each stage of the
(sub-)products (2), (4), and (5), the formation under microwave irradiation (method II)
achieved yields slightly better compared to the older, traditional practice with the elongated
reaction/heating time (method I).

Table 1. The yields of (sub-)products in the synthesis of dithioamides of terephthalic acid under
conventional heating (method I) and microwave-aided conditions (method II), expressed as the mean
value (n = 2 experiments) [60–63].

Yield (%)
Method I Method II

L.p. R 2 a 4 a 5 a t a (h) 2 b 4 b 5 b t b [min]

1a -H 70% 53% 75% 38 85% 56% 78% 9
1b -CH3 83% 64% 60% 38 87% 65% 71% 9
1c -CH2C4H6OH 66% 58% 62% 38 70% 58% 65% 9
1d -CH(CH3)2 90% 84% 42% 38 92% 41% 45% 9
1e -CH2OH 73% 59% 48% 38 82% 63% 43% 9

a conventional heating; b microwave irradiation; t—time of synthesis.

A significantly reduced reaction time (from days to minutes) and low energy re-
quirements in the microwave-supported procedure compared to the traditional source
of heating make the approach an attractive, resource/cost-optimized alternative to the
lengthy methodology under conventional heating.

2.2. Similarity-Oriented Property Evaluation

The clustering tendency of the descriptor-driven data can be investigated by tracing
the (dis)similarities between objects (molecules 4a–4e, 5a–5e) in the multidimensional
variable space [64]. Hence, the distance-related property assessment was performed using
Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) on the
pool of 2757 descriptors generated by Dragon 6.0 software. The software-based data were
organized into matrix X10×2757 with rows representing objects (compounds 4a–4e, 5a–5e)
and columns representing numerical parameters (descriptors). The resulting matrix was
centered and standardized because the calculated parameters differ considerably. The
number of relevant principal components (PCs) was specified, taking into account the
percentage of the modeled data variance. The first four PCs describe 92.1% of the total data
variance, while the first two PCs account for 76.3%, respectively. The scoreplot with the
projection of the corresponding diamides (4a–4e) and dithioamides (5a–5e) of terephthalic
acid on the plane PC1 vs. PC2 color-coded according to Lipinski’s rule-of-5 (Ro5) violations
is presented in Figure 4.

Not surprisingly, the diamides and the corresponding dithioamides of terephthalic
acid are grouped together. Interestingly, Gly-, Ala-, and Ser-based molecules 4,5(a,b,e)
are clustered together along the first principal component (PC1 > 0), while Tyr-containing
4,5(c) and Val-based 4,5(d) compounds are separated from the remaining ones. Moreover,
the structural dissimilarity between molecules 4,5(c) and 4,5(d) is also observed along the
second principal component (PC2), where Tyr-containing compounds ‘break’ Lipinski’s
Ro5 rule (MW > 500).
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ble space; therefore, the results are represented as a dendrogram generated in the Eu-
clidean-based distance with the Ward linkage algorithm—the OX axis illustrates the or-
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defined by PC1 and PC2. Colors code the violations of Ro5 rule.

Generally, the exploratory HCA approach produces the sub-optimal clustering pattern
of objects that is largely dependent on the clusters’ linkage procedure employed [65]. In-
depth interpretability of the multidimensional data is hampered in the original variable
space; therefore, the results are represented as a dendrogram generated in the Euclidean-
based distance with the Ward linkage algorithm—the OX axis illustrates the order of objects
or parameters, while the OY axis presents the dissimilarity. The dendrogram presented in
Figure 5 confirms our previous PCA findings (see Figure 4), where Tyr-containing molecules
(cluster C) and Val-based ones (cluster A) differ from the rest of the objects (cluster B).
Color-coded vectors of the experimental lipophilic data (TLC-based Rmo and HPLC-based
logk) show that the molecules of cluster B are mainly characterized by lower values of Rmo
and logk parameters, respectively.
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2.3. ClogP Approximation and Empirical Lipophilicity Investigation

The approximation of the numerical clogP values for the investigated set of diamides
(4a–4e) and dithioamides (5a–5e) of terephthalic acid was conducted using a range of in
silico logP predictors, including AlogPS, Molinspirations, Osiris, HyperChem 7.0, Sybyl-X,
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MarvinSketch 15, ACD/ChemSketch 2015, Dragon6.0, Kowwin, and XlogP3. Moreover,
the experimental investigation of the lipophilicity profile was performed using thin-layer
chromatography (TLC) and high-performance liquid chromatography (HPLC), respectively.
The theoretically estimated partition coefficients (clogP) were (inter-)correlated with each
other and cross-compared with the empirically specified Rmo (TLC) and logk (HPLC)
parameters, as shown in Figure 6.
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A relatively good correlation (ranging from r = 0.60 to r = 0.81) between the generated
clogP and the empirical Rmo value was revealed for all engaged clogP estimators, with
r > 0.80 recorded for ChemSketch and HyperChem programs. A slightly worse correlation
(r = 0.6÷0.7) was recorded between the calculated clogP and the experimental logk values.
Despite some variations in clogP values, probably resulting from different computational
algorithms (atom/fragment- or descriptor-based) implemented in the software and/or
the training data used at the training step, a satisfactory inter-correlation between clogP
predictors (r > 0.90) was noticed as well.

3. Materials and Methods
3.1. General Methods

All reagents and solvents were purchased from Sigma-Aldrich, Chempur, Fluka, Avan-
tor Performance Materials Poland S.A., and Thermo Fisher Scientific, respectively. Melting
points were determined on an apparatus Stuart SMP10. Solvents were evaporated using a
rotary evaporator IKA RV 10. Microwave-assisted syntheses were performed in RM800PC
microwave laboratory reactor from Plazmatronika (Wroclaw, Poland) with monomode
cavity, magnetic stirrer, and external IR temperature measurements. 1H-NMR spectra
were recorded on a Bruker Avance 400 MHz spectrometer using DMSO-d6, CDCl3-d6,
and 13C-NMR. Spectra were recorded on a Bruker Avance 101 MHz spectrometer using
DMSO-d6 and CDCl3-d6. The chemical shifts (δ) are given in ppm, and multiplicities
are given as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). The values
of the coupling constants (J) are reported in hertz (Hz). IR spectrum Spektrometr FT-IR,
SpectrumOne, Perkin Elmer was used. High-resolution mass spectra were measured using
a high-performance liquid chromatograph Dionex UltiMate®® 3000 (Thermo Scientific,
Waltham, MA, USA) coupled with an LTQ Orbitrap XLTM Hybrid Ion Trap-Orbitrap
Fourier Transform Mass Spectrometer (Thermo Scientific) equipped with a HESI II (heated
electrospray ionization) source in the positive mode.
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3.2. Synthesis of Dithioamides
3.2.1. Method I: Conventional Procedure

A suspension (100 mmol) of the selected α-amino acids (AAs = Gly, Ala, Tyr, Val,
and Ser) in 90 mL of anhydrous methanol was stirred with a magnetic stirrer under a
reflux condenser and cooled in an ice bath to a temperature not exceeding −5 ◦C, and
then thionyl chloride was added dropwise (250 mmol). Next, a homogeneous mixture was
magnetically stirred overnight. After stirring, the solvent was evaporated in a vacuum,
and a crude product was washed with diethyl ether, filtered through a Büchner funnel, and
then dried over anhydrous calcium chloride. Then, the product was recrystallized using
anhydrous methanol and filtered with active carbon. In the next step, the suspension of
(20 mmol) amino acid methyl ester hydrochloride in 80 mL anhydrous dichloromethane
was stirred with a magnetic stirrer and cooled in an ice bath below 0 ◦C, then 59.3 mmol
of triethylamine was added dropwise, and the mixture was stirred for 20 min. Next, a
suspension of (11.1 mmol) terephthalic acid dichloride in 30 mL dichloromethane was
added dropwise, and the mixture was magnetically stirred for 2 h. Then, the solvent was
evaporated in a vacuum, and the crude product was recrystallized using 200 mL of distilled
water. Next, the mixture of (2.14 mmol) Lawesson’s reagent in 100 mL tetrahydrofuran
at room temperature was added to the appropriate diamide. The reaction mixture was
heated at the boiling point of the solvent for 24h. When the mixture was cooled to room
temperature, the solvent was evaporated in a vacuum, and the product was purified on the
column chromatography using dichloromethane: ethyl acetate (5:1) as the eluent.

3.2.2. Method II: Microwave-Accelerated Procedure

A suspension (100 mmol) of the selected α-amino acids (AAs = Gly, Ala, Tyr, Val, and
Ser) in 50 mL of anhydrous methanol was cooled in an ice bath to −5 ◦C, and then thionyl
chloride was added dropwise (250 mmol). Next, a homogeneous mixture was exposed to
microwave irradiation for 4 min. In the next step, the reaction mixture was transferred
to an ultrasonic bath (30 ◦C, 15 min). Then, the solvent was evaporated in a vacuum,
and a crude product was washed with diethyl ether, filtered through a Büchner funnel,
and then dried over anhydrous calcium chloride. Next, the product was recrystallized
using anhydrous methanol and filtered with active carbon. In the next step, the mixture
of amino acid methyl ester hydrochloride (3.38 mmol) and (3.38 mmol) terephthalic acid
dichloride in triethylamine and dichloromethane was exposed to microwave irradiation for
2 min. After that, the reaction mixture was transferred to an ultrasonic bath (30 ◦C, 10 min).
Then, the solvent was evaporated in a vacuum, and a crude product was washed with
distilled water and filtered through a Büchner funnel. Next, the mixture of the product
and Lawesson’s reagent (1:1 mmol) in tetrahydrofuran and dichloromethane was exposed
to microwave irradiation for 3 min. When the mixture cooled to room temperature, the
reaction mixture was transferred to ultrasonic bath (30 ◦C, 15 min). Then, the solvent was
evaporated in a vacuum, and the product was purified on the column chromatography
using dichloromethane: ethyl acetate (5:1) as the eluent.

The chemical structures of the novel intermediates (symmetrical diamides 4c–4d) and
the final products (symmetrical dithioamides 5a–5e) were characterized by 1H-NMR and
13C-NMR spectra (see Supplementary Materials). The melting points for new molecules
were recorded as well.

1. methyl 3-(4-hydroxyphenyl)-2-[(4-{[3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2yl]carba-
moyl}phenyl)formamido]propanoate (4c) Mp 185 ◦C, 1H-NMR (400 MHz, DMSO) δ: 7.91
(s, 4H), 7.62- 7.40 (m, 8H), 6.83 (d, 2H), 4.31–3.96 (m, 2H), 3.83(d, 4H), 2.88 (s, 2H), 1.45
(s, 6H); 13C-NMR (101 MHz, DMSO) δ: 172.2, 166.6, 157.4, 133.4, 131.2, 128.25, 115.9,
53.8, 51.9, 40.6; 21.34;

2. methyl 2-({4-[(1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl]phenyl}formamido)-3-methyl-
butanoate (4d) Mp 115 ◦C, 1H-NMR (400 MHz, DMSO) δ: 7.88 (s, 4H), 6.69 (d, 2H),
4.78 (ds, 2H), 3.79 (s, 6H), 2.29 (m, 2H), 1.01 (dd, 12H); 13C-NMR (101 MHz, DMSO) δ:
172.68, 166.52, 137.10, 127.57, 57.69, 52.52, 31.78, 19.13; 18.13;
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3. methyl 3-hydroxy-2-({4-[(3-hydroxy-1-methoxy-1-oxopropan-2-yl)carbamoyl]phenyl}formami-
do)propanoate (4e) Mp 169 ◦C 1H-NMR (400 MHz, DMSO) δ: 8.08 (d, 2H), 7.73 (s, 4H),
4.14 (dd, 4H), 3.82 (s, 2H), 3.44 (s, 2H), 2.51 (s, 6H), 13C-NMR (101 MHz, DMSO) δ:
167.45, 132.06, 128.01, 67.89, 52.33, 45.76, 38.56;

4. methyl 2-({4-[(2-methoxy-2-oxoethyl)carbamothioyl]phenyl}methanethioamido)acetate (5a)
Mp 86 ◦C, 1H-NMR (400 MHz, CDCl3)) δ: 8.40 (s, 2H), 7.81 (s, 4H), 4.60 (d, 4H), 3.84
(s, 6H); 13C-NMR (101 MHz, CDCl3) δ: 206.45 (C=S), 169.55 (C=O), 143.03, 126.99,
52.83, 47.58; IR (KBr) υ/cm−1: 3310, 1714, 1533, 1488, 1227, 1113; HR-MS: [M + H]+:
calculated 341.425240 m/z, found 341.06986 m/z;

5. methyl 2-({4-[(1-methoxy-1-oxopropan-2-yl)carbamothioyl]phenyl}methanethioamido)propan-
oate (5b) Mp 174 ◦C, 1H-NMR (400 MHz, CDCl3) δ: 7.89 (s, 2H), 7.88 (s, 4H), 4.40 (t, 2H),
3.94 (d, 6H), 3.86 (s, 6H); 13C-NMR (101 MHz, CDCl3) δ: 197.29 (C=S), 171.54 (C=O),
135.27, 113.81, 67.88, 41.53, 37.55; IR (KBr) υ/cm−1: 3303, 1734, 1523, 1433, 1221, 1123;
HR-MS: [M + H]+ C14H16N2O4S: calculated 369.47840 m/z, found 369.42786 m/z;

6. methyl 3-(4-hydroxyphenyl)-2-[(4-{[3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl]carba-
mothioyl}phenyl)methanethioamido]propanoate (5c) Mp 170 ◦C, 1H-NMR (400 MHz,
DMSO) δ: 7.83 (d, 2H), 7.59 (s, 4H), 7.23–7.06 (m, 4H), 6.93–6.74 (m, 4H), 4.42
(s, 2H), 2.64–2.22 (m, 4H), 2.05 (2H), 1.55 (s, 6H); 13C-NMR (101 MHz, DMSO) δ:
190.74 (C=S), 165.68 (C=O), 136.32, 112.43, 62.45, 57.83, 54.67, 39.97, 37.12, 25.31, 14.90;
IR (KBr) υ/cm−1: 3303, 1734, 1523, 1433, 1221, 1123; HR-MS: [M + H]+: calculated
553.66910 m/z, found 553.56812 m/z;

7. methyl 2-({4-[(1-methoxy-3-methyl-1-oxobutan-2-yl)carbamothioyl]phenyl}methanethioamido)-
3-methylbutanoate (5d) Mp 160 ◦C, 1H-NMR (400 MHz, D2O) δ: 8.10 (d, 2H), 7.91 (s, 4H),
4.82 (dd, 2H), 3.78 (s, 6H), 2.30 (m,2H), 1.02 (t, 12H); 13C-NMR (101 MHz, D2O) δ: 190.71
(C=S), 167.58 (C=O), 137.12, 125.60, 57.78, 52.60, 32.05, 19.13, 18.25; IR (KBr) υ/cm−1:
3275, 1717, 1532, 1412, 1215, 1157; HR-MS: [M + H]+: calculated 425.58470 m/z, found
425.58482 m/z;

8. methyl 3-hydroxy-2-({4-[(3-hydroxy-1-methoxy-1-oxopropan-2-yl)carbamothioyl]phenyl}me-
thanethioamido)propanoate (5e) Mp 179 ◦C, 1H-NMR (400 MHz, DMSO) δ: 8.49 (d, 2H),
7.88 (s, 4H), 4.02 (s, 2H), 3.91–3.06 (m, 2H), 2.51 (s, 6H), 2.12–1.80 (m, 2H), 1.72– 1.15
(m, 2H); 13C-NMR (101 MHz, DMSO) δ: 190.74 (C=S), 157.83 (C=O), 54.67, 39.97, 25.31,
14.90, 14.5; IR (KBr) υ/cm−1: 3402, 3286, 1584, 1432, 1316, 1128; HR-MS: [M + H]+:
calculated 402.48570 m/z, found 402.39668 m/z.

3.3. X-ray Crystallography

X-ray analysis not only confirmed the structure of the final products determined by
spectroscopic methods but also showed their spatial structure in the solid phase. Via crys-
tallization from chloroform:ethanol (1:1 (v/v)), obtaining a single crystal of the derivative
5d was possible. The X-ray structure of the derivative 5d is shown in Figure 7, while its
crystal data and structure refinement are given in Table 2.
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Table 2. Crystal data and structure refinement for molecule 5d.

Formula C20H28N2O4S2
Formula weight 424.56

Temperature 295(2) K
Crystal system Triclinic

Space group P-1
Unit cell dimensions a = 7.7129(8) Å α = 69.793(6)◦

b = 8.9094(6) Å β = 67.042(8)◦

c = 9.5907(6) Å γ = 85.614(7)◦

Volume 568.20(8) Å3

Z 1
Density (calculated) 1.241 mg/m3

Absorption coefficient 0.261 mm−1

F(000) 226
Crystal size 0.320 × 0.160 × 0.080 mm

Theta range for data collection 3.49 to 25.24◦

Index ranges −9 ≤ h ≤ 10, −11 ≤ k ≤ 11, −12 ≤ l ≤ 13
Reflections collected 5465

Independent reflections 4381 [R(int) = 0.0288]
Data/restraints/parameters 2660/0/130

Goodness-of-fit on F2 1.048
Final R indices [I > 2σ(I)] R1 = 0.0496, wR2 = 0.1073

R indices (all data) R1 = 0.0841, wR2 = 0.1289
Largest diff. peak and hole 0.265 and −0.220 e.Å−3

The selected bond lengths and angles are summarized in Table 3.

Table 3. Lengths of bonds and angles (Å) of molecule 5d.

S1–C4 1.654(2) C8–C10 1.524(3)
O1–C6 1.202(2) O2–C6 1.327(3)
O2–C7 1.445(3) N1–C4 1.334(3)
N1–C5 1.450(3) C1–C2 1.387(3)

C1–C3_a 1.379(3) C2–C4 1.488(3)
C2–C3 1.390(3) C5–C6 1.516(3)
C5–C8 1.539(3) C8–C9 1.519(4)

C6–O2–C7 115.87(17) C4–N1–C5 123.96(18)
C5–N1–H1 118.00 C4–N1–H1 118.0

C2–C1–C3_a 120.9(2) C1–C2–C3 118.51(18)
C3–C2–C4 121.17(18) C1–C2–C4 120.3(2)

C1_a–C3–C2 120.58(18) S1–C4–C2 122.06(16)
S1–C4–N1 123.40(16) N1–C4–C2 114.5(2)
N1–C5–C8 109.24(18) N1–C5–C6 108.93(14)
C6–C5–C8 110.80(16) O1–C6–C5 124.2(2)
O2–C6–C5 111.55(15) O1–C6–O2 124.1(2)
C9–C8–C10 111.29(18) C5–C8–C9 110.02(18)
C5–C8–C10 111.3(2)

3.4. Experimental Lipophilicity Specification
3.4.1. TLC-Based Lipophilicity Determination

The lipophilic studies were performed on the chromatographic plates for RP-TLC
analysis purchased from Merck (Darmstadt, Germany): TLC Silica gel 60 RP-18 F254S. The
lipophilicity determination of the investigated compounds was carried out on chromato-
graphic plates 10 × 10 cm developed using mobile phases (50 mL) that were prepared
by mixing the respective amounts of the organic modifier methanol and water. In the
case of the organic modifier, concentrations (volume fraction, v/v) varied in a range from
0.60 to 1.00 in constant steps of 0.10. Using glass capillaries, 5 drops of compounds were
applied on the same chromatographic plates. Chromatography was performed in a classical
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developing chamber, which was previously saturated with mobile phase vapors for 30 min.
The migration distance was 7.0 cm, which takes about 20 min for the complete development
of the chromatographic plates. Next, the plates were dried at room temperature (23 ± 1 ◦C)
and visualized in UV light (λ = 254 nm). All analyses were repeated in triplicate in order to
calculate the averaged values of RF (retardation factor) that were subsequently converted
into RM values.

3.4.2. HPLC-Based Lipophilicity Determination

For chromatographic analysis, stock solutions (50 µg/mL) of each test sample were
prepared in acetonitrile (LiChrosolv®, Merck, Darmstadt, Germany). Chromatographic
measurements were performed using the ACQUITY UPLC I-Class system (Waters) with a
Xevo G2-XS QTof, ESI + detector, and an auxiliary PDA detector (λ = 254 nm). ACQUITY
UPLC BEH C18 columns, 130 Å, 1.7 µm, 2.1 mm × 100 mm (Waters Corp.) were used for
separation, operating at 35 ◦C, flow of 0.35 mL/min, and sample injection of 1 µL. The
retention behavior of the analytes as a function of the mobile phase composition range
(acetonitrile, LiChrosolv®, Merck + 0.01% HCOOH—water, LiChrosolv®, Supelco + 0.01%
HCOOH) was tested. The concentration of acetonitrile, expressed as v/v by volume, varied
from 0.25 to 0.50 in constant steps of 0.05. HCOONa solution (20 µg/mL) was used as a
reference substance. The components of the analyte were identified on the basis of the
monoisotopic masses of molecular ions [M + H]+ determined with an error of <5 ppm.
Capacity factors k were calculated according to the formula k = (tR − tD)/tD, where tR is the
retention time of the solute, and tD is the dead time obtained using an unretained analyte.
Each experiment was repeated three times. Logk, which was calculated from the capacity
factor k, was used as the lipophilicity index, converted to the logP scale.

3.4.3. X-ray Crystallography

The X-ray data for colourless crystal thioamides was obtained at 120 K using a
Gemini A Ultra (firmy Oxford Diffraction) with a CCD detector, using MoKα radiation
(λ = 0.71073 Å). The data collection and reduction were realized using the SCALE3 AB-
SPACK software package (CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.37.35g). All
hydrogen atoms were found in the difference Fourier maps and refined using a riding model
with C–H = 0.95 Å for (CH)aromatic and 0.98 Å for (CH3), and with Uiso(H) = 1.2 Ueq(CH)
and 1.5 Ueq(CH3). The N–H and O–H hydrogen atoms were refined using a similar manner
with the AFIX 43 and AFIX 83 instruction, respectively. The graphics were drawn, and
additional structural calculations were performed using Olex2 SHELXS and SHELXL.

Crystallographic data have been deposited with the Cambridge Crystallographic Data
Centre under CCDC deposition number: 1060923. Copies of this information may be
obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK
(fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

In summary, the multistep synthesis of the novel α-AA-based dithioamides of tereph-
thalic acid was proposed using conventional heating (method I) as well as the microwave-
assisted approach (method II). A comparative study on thionation yields of the symmetrical
diamides with Lawesson’s reagent (LR) under conventional heating and microwave irradi-
ation was conducted. The microwave-accelerated methodology was successfully employed
on the whole pathway from the chosen substrates (Gly, Ala, Val, Tyr, and Ser) to prod-
ucts (α-AA-based dithioamides of terephthalic acid) with a significantly reduced reaction
time, energy requirements, and slightly increased reaction yields when compared to the
older approach (method I). It should be emphasized that the small-scale treatment of the
selected α-AA-based diamides of terephthalic acids using LR under microwave-supported
conditions proceeded smoothly with satisfactory yields of the final products. Thus, the
high-yield synthetic pathway to transfer the symmetric diamides of terephthalic acids to
thio-substituted analogues under microwave irradiation was presented (method II). The
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symmetrical dithioamides of terephthalic acid were generated in a three-step synthesis. The
chemical structures of the new intermediates and the final products (5a–5e) were character-
ized by 1H-NMR and 13C-NMR spectra. Moreover, the intermolecular similarity of novel
terephthalic acid derivatives was estimated in the multidimensional space (mDS) of the
structure/property-related in silico descriptors using principal component analysis (PCA)
and hierarchical clustering analysis (HCA), respectively. Hence, the distance-oriented
property distribution for the congeneric series of compounds was correlated with the exper-
imental TLC and HPLC lipophilic data. Interestingly, Gly-, Ala-, and Ser-based molecules
are clustered together along the first principal component (PC1 > 0), while Tyr-containing
and Val-based compounds are separated from the remaining ones. Moreover, the structural
dissimilarity between the above molecules is also observed along the second principal com-
ponent (PC2), where Tyr-containing compounds ‘break’ the Lipinski’s Ro5 rule (MW > 500).
The HCA findings confirmed the PCA results, where Tyr-containing molecule (cluster C)
and Val-based compounds (cluster A) differ from the rest of the objects (cluster B). Color-
coded vectors of the experimental lipophilic data (TLC-based Rmo and HPLC-based logk)
show that molecules of cluster B are mainly characterized by lower values of Rmo and
logk parameters. In fact, a relatively good correlation between the generated clogP and
the empirical Rmo value was revealed for all engaged clogP estimators. A slightly worse
correlation was recorded between the calculated clogP and the experimental logk values.
Finally, the crystal structure of compound (5d) is provided as well.

As a matter of fact, the introduction of soft-donor sulfur into amide carbonyl oxygen
of α-AA-based diamides can increase the complexation potency and selective recognition
of biologically relevant transition metal ions. In consequence, dithioamides of terephthalic
acid can potentially create ADMET-friendly conglomerates with drug molecules and serve
as attractive drug carriers for poorly absorbed curative agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16070984/s1, Figures S1–S8: H1 NMR and C13 NMR data.
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