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Abstract: One of the key scientific aspects of small-molecule drug discovery and development is the
analysis of the relationship between its chemical structure and biological activity. Understanding
the effects that lead to significant changes in biological activity is of paramount importance for the
rational design and optimization of bioactive molecules. The “methylation effect”, or the “magic
methyl” effect, is a factor that stands out due to the number of examples that demonstrate profound
changes in either pharmacodynamic or pharmacokinetic properties. In many cases, this has been
carried out rationally, but in others it has been the product of serendipitous observations. This paper
summarizes recent examples that provide an overview of the current state of the art and contribute
to a better understanding of the methylation effect in bioactive small-molecule drug candidates.

Keywords: methyl; methylation; methyl effect; magic methyl; methylation effect; drug design

1. Introduction

The small, monovalent, and lipophilic methyl group (-CH3) is versatile and of great
importance in the design or optimization of bioactive compounds, whether in terms of
pharmacodynamic or pharmacokinetic properties [1]. Its role in drug design and hit-
to-lead optimization processes is broad, including the displacement of water molecules
during molecular recognition, i.e., the realization of hydrophobic interactions [2,3]; the
participation in van der Waals interactions; the modulation of physicochemical properties,
such as LogP and aqueous solubility [1]; and the control of the conformational properties
of a given scaffold [1]. The control of the number of conformations in a given system by
methylation correlates with the strategy of conformational restriction [4,5]. Other drug
design strategies, such as bioisosterism [6–8] and homologation [9], can also benefit from
methyl group insertion. During the drug discovery process, controlling conformational
behavior can not only favor the adoption of a bioactive conformation, generating a potency
gain for pharmacological target modulation, but can also help break to planarity and
symmetry, resulting in increased aqueous solubility while increasing lipophilicity [10,11].

Other uses of the methyl group include modulating metabolic reactions by preventing
their occurrence through stereoelectronic effects, by serving as a metabolic point to pre-
vent the formation of toxic metabolites, or by modulating the metabolic profile, making
molecules softer for metabolic reactions [1].

This plethora of effects mediated by the methyl group is commonly referred to as the
“methyl effect”, the “methylation effect”, or even the “magic methyl” effect. It is important
to mention that there are previous works that have already reviewed this topic and are
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published elsewhere [1,12–14]. The aim of this work is to provide a recent analysis of the
last 10 years, with selected key examples, to highlight how the rational use of the methyl
effect has evolved since the last review published by our group [1].

2. The Discovery of the Anticancer Drug Tazemetostat

Undoubtedly, one of the most important recent examples of the methylation effect
in the design of new drugs is related to the discovery of tazemetostat (8). Tazemetostat
(8) is a recently FDA-approved agent (2020) for the treatment of patients with epithelioid
sarcoma [15]. Tazemetostat (8) acts by inhibiting enhancer of zeste homolog 2 (EZH2),
preventing methylation of histone 3 at lysine 27 (H3K27), and abnormal methylation of this
site is found in many cancers [16–18].

The discovery of tazemetostat (8) started with a high-throughput screening (HTS)
campaign that resulted in the identification of the small molecule hit 1, bearing the 4,6-
dimethylpyridone moiety (Figure 1) [16]. Next, the structurally related parent compounds
of 1 were screened for EZH2 inhibition, leading to the identification of 2. Structure–activity
relationship studies were performed, allowing important analyses of the methylation effect
on 3. For example, the conformational effect produced by methylation at the R1 and R2
positions of 3 was remarkable, as can be seen by comparing the methylated derivatives
(5 and 6) and their unmethylated analogs (4 and 7), which presented more than a 10-
fold decrease in potency. Moreover, the methylation effect at the 4,6-dimethylpyridone
moiety was investigated (9), showing significant differences in potency (10–13), and the
dimethylated compound 10 was the most potent. Subsequently, these important studies
regarding the methylation pattern of this system resulted in the discovery of the drug
tazemetostat (8) [16].Pharmaceuticals 2023, 16, x FOR PEER REVIEW 3 of 23 
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authors of [19] first tried to perform the cyclization of compound 14 by linking the methyl 
and ethyl groups to form an indoline ring (15) (Figure 2). However, it was observed that 
this modification led to a loss in potency against the EZH2 wild-type enzyme and the 
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3. The Methylation Effect in Pharmacodynamic Optimization
3.1. Selective EZH2 Inhibitors

Aiming to obtain new selective EZH2 inhibitors related to tazemetostat (8), the authors
of [19] first tried to perform the cyclization of compound 14 by linking the methyl and
ethyl groups to form an indoline ring (15) (Figure 2). However, it was observed that this
modification led to a loss in potency against the EZH2 wild-type enzyme and the EZH2
Y641F mutant. The authors suggest that the cyclization abolished the “magic methyl” effect
previously reported to be key to the FDA-approved drug 8. Therefore, the authors selected
the open-ring analog (14) for further structure–activity relationship (SAR) exploration,
resulting in compound 16, a derivative with a second methyl group at the pyridine ring
that showed selectivity over 22 other methyl transferases [19].
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3.2. PI3K/mTOR Inhibitors

A series of 2-methyl-1H-imidazo[4,5-c]quinolines were reported [20] based on ring
bioisosterism with the 1,3-dihydro-2H-imidazo[4,5-c]quinolin-2-one system present in the
phosphoinositide 3-kinases (PI3Ks) and mammalian target of rapamycin (mTOR) inhibitor
and clinical candidate BEZ235 (17) [21] (Figure 3). Targeting the PI3K/AKT/mTOR path-
way is a validated strategy for cancer treatment because it is aberrantly activated in several
human cancers and plays an essential role in cell growth, proliferation, differentiation,
and apoptosis [22,23]. The rationale for the modification was to utilize the methyl group
to preserve cell permeability and cell absorption capacity while reducing the number of
polar heteroatoms (i.e., the oxygen atom of the carbonyl group of candidate 17). Hence, a
series of compounds were synthesized in order to explore the potential of the 2-methyl-1H-
imidazo[4,5-c]quinoline scaffold and to improve its drug-like profile. This study resulted
in compound 18 having the best profile of kinase selectivity, cellular antiproliferative ac-
tivity, western blot and immunohistochemical analyses, antitumor efficacy in vivo, and
pharmacokinetic properties [20].
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3.3. Selective κ-Opioid Receptor Antagonists

Tetrahydroisoquinoline derivatives have been described as selective κ-opioid receptor
antagonists and as compounds of interest for the treatment of several CNS disorders, such
as substance abuse, depression, and anxiety [24]. Compound 19 was first discovered as a
potent antagonist of this receptor [25], and subsequent SAR evaluations were performed
that focused, among other modifications, on the study of the methylation pattern of the
piperidine ring. The results revealed that the 4-methylated analog (20) had an 18-fold
increase in the affinity for κ-opioid receptors compared to 19 [26] (Figure 4).
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3.4. Cannabinoid Receptor Modulators

Modulation of the endocannabinoid system by targeting G-protein-coupled cannabi-
noid receptors has broad therapeutic applications ranging from pain to cancer treat-
ment [27,28]. A series of oxazolo[5,4-d]pyrimidines (22) were designed via the bioisosterism
strategy as new cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) modula-
tors (Figure 5) [29]. A classical bioisosteric heterocycle replacement strategy was applied
to compound 21, a CB2R agonist developed by Eli Lilly [30]. SAR studies revealed the
importance of methylation at position 5 of this core when 23 was compared with the un-
methylated derivative of the series (24). Compound 23 was characterized as a selective
CB2R antagonist with high binding affinity in the low nanomolar range [29].
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Mugnaini et al. [31] reported that 2-(1-adamantanylcarboxamido)thiophene deriva-
tives (25–28) are selective CB2R agonists (Figure 6). The chemical starting point, compound
25, had weak activity against CB2R, and the simple addition of the methyl group (26)
resulted in a 50-fold increase in the affinity. The authors remarked on the crucial role that
methyl groups play in biologically active small molecules and emphasized that the effect
was likely due to 26’s ability to successfully insert its methyl into the receptor binding site
to establish effective hydrophobic contacts. This theory was supported by the fact that the
n-propyl analog (27) obtained only a threefold increase in the affinity for CB2 receptors.
These results are in stark contrast to studies suggesting that adding a methyl group to a
lead molecule can result in a 10-fold increase in activity in only 8% of cases, while a 100-fold
increase in potency is much less likely, occurring in 0.4% of cases [14,31].
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disease [31].

Garai and colleagues [32] employed the magic methyl effect to increase the potency
and efficacy of GAT211 (29) [33], a cannabinoid type-1 receptor (CB1R) agonist-positive
allosteric modulator (ago-PAM) (Figure 7). The strategic placement of a methyl group
at the alpha position of the nitro functional group was hypothesized to be advantageous
in terms of activity and functional selectivity, as it generated two diastereomers and an
additional chiral center. Results from studies with the two diastereomers highlighted the
increased potency and efficacy of erythro, (±)-30 compared to threo, (±)-31. The analysis of
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the separate enantiomers highlighted (−)-(S,R)-30a and (+)-(S,S)-31a as the most potent.
This result represents the first example of a diastereoselective CB1R allosteric modulator
interaction [32].
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3.5. Histamine 1 Receptor Antagonists

To identify new fragment-like [34,35] histamine 1 receptor (H1R) antagonists, a vir-
tual screening campaign was performed, which led to the identification of compound 32
(Figure 8) [36]. Next, 32 was used for SAR exploration and to investigate the role of the
well-defined receptor binding pockets, i.e., (1) the amine binding region, (2) the upper
and lower aromatic binding regions, and (3) the effect of binding site (de)solvation on
H1R antagonist binding. Molecular modeling analysis combined with SAR exploration
indicated the amine binding region as the primary binding hotspot, preferentially binding
small tertiary amines, which is related to hydrophobic interactions. The methylation effect
is clear when comparing 32 and 33, since the N-methylation strongly increased the binding
affinity for H1 receptors [37].
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3.6. Inhibitors of Phosphopantetheine Adenylyltransferase

In a study conducted by Novartis [38], a fragment-based screening approach [34,35]
was used to identify inhibitors of phosphopantetheine adenylyltransferase (PPAT) for the
discovery of new antibiotics for the treatment of infections caused by multidrug-resistant
and pan-drug-resistant Gram-negative bacteria [38]. Fragment 34 was one of the identified
hits, and hit-to-lead optimization based on C5 methylation of the imidazo[4,5-b]pyridine
core resulted in 35, which had a 15-fold increase in potency (Figure 9), related to additional
interactions with a hydrophobic pocket (V135, M105, and L131) of the target [38].
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Moreover, another fragment hit (36) was optimized, and the methylation pattern of
this hit profoundly altered its potency (Figure 10). An X-ray cocrystal of the structurally
related hit 37 revealed that this triazolopyrimidinone is bound in a similar manner to 34.
The bioisosteric replacement of the bromine atom of 37 by a chlorine atom (38) did not
change potency significantly. Surprisingly, substitution of the benzylic position of the
benzylamine with a methyl group resulted in a 30-fold activity boost, as observed for the
(R)-methyl analog 39, which is probably related to hydrophobic interactions [38].
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3.7. Genetic Depletion of the Mitotic Aurora Kinase B (AURKB)

AURKB is a gene encoding mitotic Aurora Kinase B that is overexpressed in some
tumor cells, making it an interesting therapeutic target [39]. Huang and colleagues [40]
employed a methyl group scanning strategy to enable hit-to-lead optimization (Figure 11)
of compounds identified by mechanism-informed phenotypic screening [41], evaluating
the genetic depletion of Aurora Kinase B (AURKB) [40]. The authors modified the benzene
ring of hit 40 and synthesized ortho-, meta-, and para-methyl-substituted analogs. The
para-substituted compound (41) demonstrated the best polyploidy-inducing activity, with a
minimum effective concentration for polyploidy (MECP) of 0.625 µM. The authors further
optimized lead 41, resulting in compound 42 (MECP = 0.019 µM). This compound displayed
substantial cytotoxic activity in several cancer cell lines and promoted the loss of function
in Aurora Kinase B (AURKB) phenotypes [40].
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3.8. Neurokinin-3 Receptor Antagonists

The discovery of new neurokinin-3 receptor (NK3R) antagonists for the treatment of
sex hormone disorders was described [42]. Starting with an HTS campaign, hit 43 was
identified as an interesting starting point for optimization, but several issues such as poor
solubility, microsomal stability, and off-target safety profile led to the selection of the parent
compound 44 as the starting point (Figure 12). Despite being significantly less active, 44
presented improved off-target and PK profiles, making it more suitable for optimization.
From the SAR analysis, it was possible to perceive the methylation effect by installing a
methyl group at the 8-position of the tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine core, where
(R)-46 presented increased potency, reaching the nanomolar scale. A second methylation
at C6 of the terminal pyridine ring further increased potency, resulting in low nanomolar
activity (48 and 49) [42].
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3.9. Cereblon Ligands for Targeted Protein Degradation

With the goal of obtaining new cereblon ligands for targeted protein degradation [43,44],
Xie and coworkers [45] explored the ortho-effect produced by a methyl group (Figure 13).
The authors modified phenyl dihydrouracil (PDHU) (50) (cereblon Kd = 3.05 µM) and
observed that the ortho-substituted methyl analog (51) had improved binding potency
(cereblon Kd = 1.24 µM). Given this result, the authors selected this compound for further
modification and explored the vector at the meta-position for attachment of the linker
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and of the “protein of interest” ligand subunit. The authors identified compound 52
with the best affinity (Kd = 0.21 µM) for cereblon. The ortho-methylated cereblon ligands
were explored and allowed the identification of potent bromodomain-containing protein 4
(BRD4) degraders [45].
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3.10. Putative Dual Inhibitor of Tubulin and EGFR by Phenotypic Approach

Barbosa and colleagues [46] described a series of combretastatin A-4 analogs based
on the N-acylhydrazone (NAH) LASSBio-1586 (54) with cytotoxic and antimitotic activity
(Figure 14). Homologation [9] studies on the amide nitrogen led to the benzyl homolog
of LASSBio-1586 (54), LASSBio-2070 (56), which showed microtubule-stabilizing behavior,
while the methylated homolog, LASSBio-1735 (55), had microtubule-destabilizing behavior.
In addition, none of the compounds had better cytotoxic activity when compared to the
N-methylated compound LASSBio-1735 (55) [46].
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3.11. Phosphodiesterase Inhibitors

The methylation effect was also shown to have an impact on multitarget small molecule
discovery. The compounds (59 and 60) were designed through molecular hybridization [47]
and bioisosteric replacement [7] strategies using 57 and 58 as starting points (Figure 15). As
previously reported, 57 is an adenosine A2A receptor agonist [48], and 58 is a phosphodi-
esterase 4 (PDE4) inhibitor [49]. Insertion of the methyl group at the amide nitrogen of the
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N-acylhydrazone (60) moiety significantly increased the percent inhibition of PDE4A1A
compared to the non-methylated analog (59). Further evaluation showed that 60 had an
IC50 of 1.08 µM for PDE4A1A inhibition and a moderate affinity for the adenosine A2A
receptor (Ki = 1.5 µM), making this compound interesting for the treatment of pulmonary
arterial hypertension. Regardless of the presence of methyl, there is a σ-hole intramolecular
interaction between the sulfur atom of the thiophene ring and the nitrogen atom of the
imine, which establishes the bioactive conformation for the system, as already described
for N-acylhydrazone derivatives [50,51]. However, with the N-methylation of the amide,
there is a greater stabilization of this conformation and, consequently, an improvement in
biological activity (Figure 15) [50].
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Brullo and colleagues [52] designed and synthesized methylated PDE4 inhibitors as
possible candidates for Alzheimer’s disease treatment due to their role in pro-cognitive
effects. The authors observed that the methylated open-chain linkers were superior to
both de-methylated and cyclic conformationally constrained analogs. For example, the
methylated compound 62 showed an IC50 of 0.47 µM (PDE4D3), and the de-methylated
61 compound had an IC50 of 11 µM (PDE4D3) (Figure 16). In addition, crystallographic
studies showed that the methyl group was able to interact with the binding site and improve
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potency while maintaining the linker flexibility necessary for inhibitors to interact with
PDE4 [52].
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Nunes et al. [53] reported the optimization of the sulfonamide prototype LASSBio-
448 (63) [54], a PDE4 inhibitor (PDE4A IC50 = 0.7 µM; PDE4D IC50 = 4.7 µM), for the
treatment of pulmonary inflammatory diseases such as asthma (Figure 17. In this work,
the authors investigated the methyl effect by designing and synthesizing methylated
homologs on the Nsp3 of a series of sulfonamides and sulfonylhydrazones. While the
non-methylated sulfonylhydrazone LASSBio-1624 (64) was inactive against PDE4, the
N-methylated sulfonylhydrazone derivative, LASSBio-1632 (65), was active, showing anti-
asthmatic activity associated with the inhibition of PDE4A (IC50 = 0.5 µM) and PDE4D
(IC50 = 0.7 µM). The authors also reported that the lead compound was able to block airway
hyperreactivity and TNF-α production in lung tissue [53].
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3.12. Rho-Associated Kinase (ROCK) Inhibitors

ROCK inhibitors have emerged as interesting candidates for treating neurodegen-
erative diseases [55,56]. A series of N-sulfonylhydrazone derivatives were designed as
Rho-associated kinase (ROCK) inhibitors [57] through molecular hybridization between the
approved drug fasudil (67), a ROCK inhibitor [58], and 66, a previously reported inhibitor
of nuclear factor kappa-B kinase subunit beta (IKKβ) [59] (Figure 18). Within this molec-
ular framework (68), 69 was discovered to have low micromolar activity for ROCK1/2
inhibition. N-methylation of 69 resulted in 70, which was three- to fourfold more potent for
ROCK1/2 inhibition [57].
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3.13. Ligands of Toll-like Receptor 4/Myeloid Differentiation Protein 2 Complex

Zhang and coworkers [60] demonstrated that Toll-like Receptor 4/Myeloid Differen-
tiation Protein 2 (TLR4/MD-2) complex [61,62] recognizes methamphetamine (71a and
71b) non-enantioselectively, whereas amphetamine (72a and 72b) is inactive. Compared to
amphetamine (72) (MD-2 Kd not detectable up to 40 µM), the increased TLR4/MD-2 bind-
ing affinity of methamphetamine ((+)-71a MD-2 Kd = 7.0 µM; (−)-71b MD-2 Kd = 8.9 µM)
suggests that the methyl group is essential for molecular recognition (Figure 19). Molecular
dynamics simulations (20 ns) and binding free energies determined by the MM-PBSA tech-
nique indicated that (+)-71a and (−)-71b had comparable binding free energies. Further
energy analysis revealed that hydrophobic interactions are predominantly responsible for
the binding of methamphetamine/amphetamine to TLR4/MD-2 [60].
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3.14. Human Ghrelin Receptor Agonist

Other interesting examples of the use of methyl groups in optimization processes are
macrocycles and peptides, which normally lack adequate physicochemical and pharma-
cokinetic properties [63,64]. In these cases, the methyl effect can be exploited to optimize
these properties through conformational restriction.

A key example is the discovery of ulimorelin (74), a compound that has reached Phase
3 clinical trials. Ulimorelin (74) acts as an agonist of the human ghrelin receptor (also known
as the growth hormone secretagogue receptor—GHSR) and has gastroprokinetic properties.
The development of 74 was initiated by an HTS campaign that led to the identification
of 73 (Figure 20). Despite its high potency, 73 did not show adequate pharmacokinetic
properties, and modification of the macrocycle methylation pattern helped to stabilize the
bioactive conformation of this compound, resulting in the discovery of ulimorelin (74),
which was four- to fivefold more potent for receptor activation and showed minimally
adequate pharmacokinetic properties to enter the clinical phase [65]. It is important to note
that during the SAR investigation, the side chain modification of isoleucine to cyclopropyl
and the introduction of para-fluor on the phenyl ring of 74 did not significantly affect the
affinity of the compound. The authors reported that cyclopropyl is more metabolically
stable than the side chain of isoleucine and that para-fluor resulted in an optimization of
the ligand lipophilicity efficiency (LLE) [65].
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3.15. Pan-Genotype NS3/4A Protease Inhibitors

The results reported by Sun and colleagues [66] highlight the effect of the methyl
group in improving bioavailability following oral administration to rats of pan-genotype
NS3/4A protease inhibitors for the treatment of hepatitis C virus infection [67]. First, the
authors incorporated two methyl groups on 75 (IC50 = 51 nM) to produce 76, a compound
with improved activity (IC50 = 8 nM) against the genotype 3a (GT-3a) NS3/4A protease
(Figure 21). Based on this compound, a series of macrocycles were designed to obtain a
better in vivo profile. The authors addressed the metabolic liability of 76 by exploring the
deuteration strategy and highlighted that an optimal profile was obtained by incorporating
a CF3 into the Boc group and an additional methyl next to the polar acylsulfonamide moiety
(77, IC50 = 4.8 nM). These modifications led to improvements in both in vivo distribution
and metabolic stability [66].
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3.16. Class I Histone Deacetylase (HDAC) Inhibitors

The authors of [68] investigated the impact of the presence of the methyl group in the
design of selective Class I HDAC inhibitors as interesting candidates for cancer treatment.
For example, in the macrocyclic prototype 79 (HDAC1-3 range of IC50 = 3.1–8.9 nM) [69],
removal of the methyl group from the propenyl group resulted in compound 78 (Figure 22).
Removal of the methyl group (78) was detrimental, resulting in IC50 activities in the range
of 69–110 nM (HDAC1-3). When a second methyl group was added (80), a small decrease
in the inhibitory activity was observed (HDAC1-3 range of IC50 = 11–21 nM). Theoretical
modeling studies suggested that the binding pocket better fits the dehydrobutyrine moiety
of 79, which contains only one methyl group in the olefin subunit and seems to be important
for the inhibition of HDACs from Class I [68].
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3.17. Trypanocidal Analogs of Benznidazole

To design new analogs of benznidazole (81), Alcantara and coworkers [70] made
changes to the imidazole ring, moving the nitro group to position 4 and incorporating
the methyl group in position 2 (Figure 23). The authors added the methyl group based
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on studies showing that potency and solubility could be improved, and they moved the
nitro group to position 4 based on results suggesting that such derivatives are non-toxic. In
addition, the authors performed molecular hybridization based on the N-acylhydrazone
cruzain inhibitor 82 (IC50 = 0.6 µM). The imidazole-N-arylhydrazone hybrids were tested
against trypomastigote forms, and the results showed that the 4-chlorophenyl derivative
(83) had the best trypanocidal activity with an IC50 of 206.98 µM [70].
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3.18. Antibacterial Agents

Based on previously described β-ketoacyl acyl carrier protein synthase (FabH) in-
hibitors, compounds 84–86 [71], a series of furoxan-sulfonylhydrazone derivatives (87)
were designed as new antibacterial agents (Figure 24) [72]. From the SAR studies, com-
pound 88 was identified as the most potent of the series, in which the methyl group proved
to be an important structural feature compared to other substituents [72].
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3.19. Phosphonate Derivatives as Anticancer Agents

A series of bis-(3-indolyl)methane phosphonate derivatives were synthesized as anti-
cancer agents (89–92). Overall, compounds methylated at position 5 of the bis-indole core
(89 and 91) showed increased potency for inhibiting cell proliferation of ovarian and lung
cancer cell lines compared to unmethylated analogs (90 and 92) (Figure 25) [73].
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4. The Methylation Effect in Physicochemical and Pharmacokinetic
Property Optimization
4.1. Methylation Effect on Aqueous Solubility

A series of N-acylhydrazone derivatives were designed as HDAC6/8-selective in-
hibitors for cancer treatment [74]. The series was designed from the natural product
trichostatin A (93) using bioisosteric replacement [6,7] and conformational restriction [5]
strategies. The most potent compounds in the series were 94 and 95, which differed
structurally by a single methyl group (Figure 26). In this case, the magic methyl did not
significantly change the activity, but the aqueous solubility was significantly increased
by its presence [74], which is probably a consequence of the strong conformational effect
caused by the N-methylation of N-acylhydrazone derivatives [75].
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4.2. Methylation Effect on Plasma Stability

In the next case study, morpholin-2-one derivatives (96–99) were identified as fungici-
dal agents against Candida and Aspergillus species (Figure 27) [76]. However, the develop-
ment of this series was hampered by low plasmatic stability, probably related to lactone
hydrolysis. The introduction of methyl groups at the 6-position of the morpholin-2-one
scaffold (96–99) led to a significant improvement in plasmatic stability while maintaining
in vitro antifungal activity. The gemdimethyl derivative 99 was the most stable derivative
as a consequence of the higher steric hindrance of lactone hydrolysis [76].
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4.3. Methylation Effect on hERG Potassium Channel Inhibition

Jin and coworkers [77] reported the introduction of methyl groups into the amino-
propylamine chain of compound 100 (checkpoint kinase 1—CHK1 IC50 = 20.9 nM) to
provide a series of CHK1 inhibitors. These compounds showed excellent inhibitory ac-
tivity, and compound 101 was the most potent (CHK1 IC50 = 16.1 nM). Additionally, 101
showed reduced inhibition of the human ether-à-go-go-related (hERG) potassium channel
(35.5% at 10 µM) compared to 100 (43.4% at 10 µM) (Figure 28). Furthermore, the authors
suggested that the introduction of the gem-dimethyl group improved in vivo metabolic
stability compared to linear amines [77].
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In another study, Ma and colleagues [78] designed analogs of the mu opioid recep-
tor (MOR) ligand NAN (102) [79], a 6α-N-7′-indolyl-substituted naltrexamine derivative,
which showed promising pharmacological effects but had significant hERG potassium
channel liability (Figure 29). According to in vivo morphine-induced antinociception assays,
compound 103 was the most potent antagonist. This compound (103) bears a methyl group
at the 2′ position of the indole ring and had a sevenfold lower potency for hERG potassium
channel inhibition compared to NAN (101) [78].
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4.4. Methylation Effect on Metabolism

Liu and coworkers [80] reported the modulation of linkers of phosphoinositide 3-
kinase delta inhibitors and found that by introducing the “magic methyl” group they
had the best balance between oxidative metabolism, stability, and potency. The quinazoli-
none derivative 104 showed significant inhibitory potency on PI3Kδ with an IC50 value
of 0.008 µM (Figure 30). However, compound 104 showed a high clearance with a Clint
value of 21.80 µL/mg/min in human liver microsomes (HLMs). Additional metabolite
identification studies of compound 104 revealed that oxidation of the five-membered pyrro-
lidine linker was the main soft spot for metabolic reactions. This led to the design of new
analogs of 104, resulting in compound 105, which demonstrated favorable bioavailability
in Sprague-Dawley rats following intravenous and oral treatment. In addition, compound
105 had a PI3Kδ IC50 of 0.014 µM and activated basophils and B cells and was effective in a
collagen-induced arthritis model [80].
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5. Perspectives

Analyzing the state of the art in the use of the methyl effect in medicinal chemistry, it
is evident that its applicability to the discovery and optimization of new small-molecule
drug candidates is indisputable. In this review, the importance of this group for improving
pharmacodynamic properties has been discussed, highlighted by the discovery of the
recently approved anticancer drug tazemetostat (8), where the authors found that four
methyl groups inserted at different positions resulted in a stunning >100,000-fold improve-
ment in activity. Indeed, there are many examples focusing on the effect of methylation on
the pharmacodynamic properties of bioactive molecules. However, in this review some
examples of the influence of the methyl group on the pharmacokinetic and physicochemical
profile of drug candidates have been presented, covering its use to block metabolic soft
spots, reduce hERG liability, improve aqueous solubility, and increase plasma stability.
From its participation in the molecular recognition process of pharmacological targets to
the modulation of ADMET properties, the “magic methyl” never ceases to surprise us. We
hope that the key examples discussed here will help the scientific community to further
understand either the relationship between the structure and biological activity of new
chemical entities or the rational application of methylation and what can be expected from
this process.
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