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Abstract: This research focuses on combating the increasing problem of antimicrobial resistance, es-
pecially in Escherichia coli (E. coli), by assessing the efficacy of aminoglycosides. The study specifically
addresses the challenge of developing new therapeutic approaches by integrating experimental data
with mathematical modeling to better understand the action of aminoglycosides. It involves testing
various antibiotics like streptomycin (SMN), kanamycin (KMN), gentamicin (GMN), tobramycin
(TMN), and amikacin (AKN) against the O157:H7 strain of E. coli. The study employs a pharmacody-
namics (PD) model to analyze how different antibiotic concentrations affect bacterial growth, utilizing
minimum inhibitory concentration (MIC) to gauge the effective bactericidal levels of the antibiotics.
The study’s approach involved transforming bacterial growth rates, as obtained from time–kill curve
data, into logarithmic values. A model was then developed to correlate these log-transformed values
with their respective responses. To generate additional data points, each value was systematically
increased by an increment of 0.1. To simulate real-world variability and randomness in the data, a
Gaussian scatter model, characterized by parameters like κ and EC50, was employed. The mathemati-
cal modeling was pivotal in uncovering the bactericidal properties of these antibiotics, indicating
different PD MIC (zMIC) values for each (SMN: 1.22; KMN: 0.89; GMN: 0.21; TMN: 0.32; AKN: 0.13),
which aligned with MIC values obtained through microdilution methods. This innovative blend
of experimental and mathematical approaches in the study marks a significant advancement in
formulating strategies to combat the growing threat of antimicrobial-resistant E. coli, offering a novel
pathway to understand and tackle antimicrobial resistance more effectively.

Keywords: pharmacodynamic function; antimicrobial resistance; E. coli; aminoglycoside; Monte
Carlo simulation

1. Introduction

Over the past few decades, antimicrobial resistance has emerged as one of the most
pressing health concerns worldwide [1]. Central to this concern is the resistance exhibited
by common pathogens, with Escherichia coli (E. coli) being a prime example [2]. This re-
sistance is not merely an academic interest; it poses real-world consequences. As these
microorganisms evolve and develop resistance, they render many previously effective ther-
apeutic agents obsolete [3]. The resulting dearth in the therapeutic strategies complicates
clinical treatments and prolongs patient recovery [4].

Within this backdrop, aminoglycosides have stood out as a beacon of hope [5]. As a
potent class of antibiotics, they have been tailored specifically to counter Gram-negative
bacterial threats, a category to which E. coli belongs [5]. Aminoglycosides enter bacterial
cells passively, then actively cross the inner membrane, where they hinder protein synthesis
by binding to the 30S ribosomal subunit, leading to defective proteins and bacterial cell
death [6]. This disruption in protein synthesis is the primary mode of their bactericidal
action [7]. However, the efficacy of antibiotics is not solely contingent on their direct
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bacterial action but also on a complex dance of absorption, distribution, metabolism,
and excretion in the human body, collectively referred to as pharmacokinetics (PK) [8].
Moreover, it is not just about how the body processes these drugs; it is equally about how
these drugs, once administered, influence both the pathogen and the host. This sphere
of influence, known as pharmacodynamics (PD), encapsulates the drug’s therapeutic and
adverse effects [9]. The relationship between PK and PD is integral for determining the
dosage regimen of a drug [10], optimizing its therapeutic efficacy [11], and minimizing
adverse effects [12].

Despite the pivotal role that aminoglycosides play, especially within the PK/PD frame-
work, there exists a puzzling gap. Comprehensive and granular data on these antibiotics,
spanning from their absorption kinetics to their bacterial eradication rates [13,14], is not
as abundant as one would expect. This paucity of data is especially surprising given the
gravity of the antimicrobial resistance issue and the prominence of aminoglycosides in
counteracting such resistance [15]. It underscores an urgent need for research endeavors to
inform more robust clinical strategies. The Emax model, which holds significant importance
in PK/PD for quantifying the effect of a drug in relation to its concentration, is intricate
due to its reliance on in vivo studies [16]. These in vivo studies often introduce complex-
ities due to physiological variables, making the extrapolation of results challenging [17].
Recognizing this, previous study pioneered an alternative approach through their PD
modeling [18]. While conceptually parallel to the Emax model, it leverages mathematical
computations, offering a more systematic, replicable, and less labor-intensive method.

Driven by the above gaps and innovations, our research embarked on a dual-phase
journey. The first phase involved in vitro time–kill assays of five distinct aminoglycosides,
gauging their efficacy against E. coli. These assays, through controlled conditions, aimed to
chart the bactericidal trajectory of each aminoglycoside over time. Armed with this data,
the subsequent phase employed the PD model proposed by previous research [18]. This
study aimed to enhance understanding of aminoglycosides’ potential against increasing
antimicrobial resistance by connecting experimental results with mathematical models.
Through detailed computational analysis, we seek to offer dependable methods that assist
in making well-informed decisions for therapeutic strategies.

2. Results
2.1. MIC and MBC

In the assessment of five antibiotics against E. coli, the findings revealed the following
MIC and MBC values (Figure 1 and Table 1). For SMN, the MIC was determined to be 2,
with an MBC of 4 and an MBC-to-MIC ratio of 2. KMN exhibited an MIC of 1, an MBC of 2,
and a ratio of 2. GMN had an MIC of 0.25, an MBC of 1, and a ratio of 4. TMN presented
with an MIC of 0.5, an MBC of 1, and a ratio of 2. Lastly, AKN demonstrated an MIC of
0.25, an MBC of 1, and a ratio of 4. These values provided insights into the efficacy of each
antibiotic in inhibiting and killing E. coli.
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Figure 1. Optical density at 600 nm of 5 aminoglycoside antibiotics with concentration variations
between 0.03125 to 64 µg/mL. Streptomycin, SMN; kanamycin, KMN; gentamicin, GMN; tobramycin,
TMN; amikacin, AKN.
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Table 1. Minimum inhibitory concentration and minimum bactericidal concentration of 5 antibiotics
against E. coli.

Antibiotics MIC MBC MBC/MIC

SMN 2 4 2
KMN 1 2 2
GMN 0.25 1 4
TMN 0.5 1 2
AKN 0.25 1 4

Streptomycin, SMN; kanamycin, KMN; gentamicin, GMN; tobramycin, TMN; amikacin, AKN.

2.2. Time–Kill Curves against E. coli

Figure 2A–E illustrates the bacterial count measurements for several antibiotics against
E. coli over a 24 h period. At the onset (0 h), all antibiotics exhibited consistent bacterial
counts across all concentrations (MIC, 2MIC, and 4MIC), as well as the control, with a
value of 6.21 Log cfu/mL. As time progressed, the control samples consistently showed
an upward trajectory in bacterial growth, culminating at 9.56 at the 24 h mark. In contrast,
for all antibiotics, as the concentration increased, bacterial counts typically decreased. By
24 h, SMN’s bacterial count was highest at MIC with 8.12 Log cfu/mL, but dwindled to
2.32 Log cfu/mL at 4MIC. Similarly, KMN displayed a count of 6.75 Log cfu/mL at MIC
and plummeted to 1.61 Log cfu/mL at 4MIC. GMN, TMN, and AKN followed the same
trend. This overarching pattern underscored the potent growth-inhibitory effects of these
antibiotics on E. coli, with their efficacy generally amplifying at higher concentrations.
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value of 0.9842, suggesting a strong fit to the observed data. KMN, on the other hand, 
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bacteria in the absence of the drug. Its ψmin was −0.9728 (CI: −1.213 to −0.8488), and the Hill 
coefficient was −0.5324 (CI: −0.7153 to −0.3553), suggesting a less steep response curve than 
SMN. The EC50 value for KMN was lower at 1.374 (CI: 0.8118 to 2.202), and the R2 value 
was exceptionally high at 0.9938, denoting a very accurate model fit. Each antibiotic’s in-
dividual PD parameters, including GMN, TMN, and AKN, similarly reflect their unique 
inhibitory profiles and potency, with varying degrees of bacterial growth inhibition and 
death rates, as evidenced by their respective EC50 values and Hill coefficients. 

Figure 2. Time–kill curves and area under the curve (AUC) of viable cells against E. coli ATCC
43888. Bacterial count measurements of various antibiotics (SMN (A), KMN (B), GMN (C), TMN (D),
AKN (E)) with various concentration (MIC, 2MIC and 4MIC) against E. coli for 24 h. (F) Comparative
visualization of antibiotic effectiveness using AUC of viable cells. Color gradients in heat map sym-
bolize the range of activity. Streptomycin, SMN; kanamycin, KMN; gentamicin, GMN; tobramycin,
TMN; amikacin, AKN.

The area under the curve (AUC) of viable cells, which were consistent with time–kill
curves, offered insights into the performance of various antibiotics against E. coli over
time. Heat map results, as shown in Figure 2F, also provided a visual representation of
the comparative efficacy of antibiotics. Darker shades indicated reduced efficacy activity,
while lighter shades suggested higher activity. For SMN, the AUC values are 179.3, 162.5,
and 83.22 for MIC, 2MIC, and 4MIC concentrations, respectively, while the control showed
a higher AUC of 208.5. KMN demonstrated AUC values of 151.8, 98.47, and 67.5 for
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MIC, 2MIC, and 4MIC respectively, again with a control AUC of 208.5. GMN has AUC
measurements of 112.9, 93.77, and 61.38 for its respective concentrations. TMN posted AUC
results of 123.3, 94.17, and 69.63, while AKN registered values of 107.5, 85.08, and 71.29.
This findings indicated the effectiveness of the antibiotics in inhibiting bacterial growth
over time, with lower AUC values representing better antibiotic efficacy.

2.3. PD Modeling through Simulation

Equation (3), which represented the PD function, corresponded to the observed net
growth rates of bacteria, as depicted in Figure 2A–E. A model based on logarithm versus
response was developed from this. Consequently, this approach facilitated the derivation of
four key parameters: ψmax, ψmin, κ, and EC50, which are elaborately presented in Figure 3
and detailed in Table 2.
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Figure 3. Fitting the pharmacodynamic model to the time–kill curves. Streptomycin, SMN;
kanamycin, KMN; gentamicin, GMN; tobramycin, TMN; amikacin, AKN.

Table 2. Parameter estimates based on observed bacterial growth rate (n = 3).

Antibiotics ψmax (95% CI) ψmin (95% CI) Hill Coefficient (95% CI) EC50 (95% CI) R2 (95% CI)

SMN 0.5651 (0.4419 to 0.7845) −0.8166 (−1.028 to −0.6976) −0.7631 (−1.244 to −0.4600) 2.996 (1.781 to 5.250) 0.9842
KMN 0.7290 (0.5889 to 1.022) −0.9728 (−1.213 to −0.8488) −0.5324 (−0.7153 to −0.3553) 1.374 (0.8118 to 2.202) 0.9938
GMN 0.5240 (0.4212 to 0.6701) −0.7685 (−0.9204 to −0.6699) −0.9266 (−1.694 to −0.5834) 0.7419 (0.4936 to 1.174) 0.9854
TMN 0.3745 (0.2323 to 0.5583) −0.8218 (−0.9516 to −0.7168) −1.323 (−2.068 to −0.7063) 0.2389 (0.1355 to 0.3037) 0.9682
AKN 0.5249 (0.3646 to 1.001) −1.141 (−2.027 to −0.9152) −0.5799 (−0.9459 to −0.2582) 1.5290 (0.7134 to 7.856) 0.9794

ψmax is maximal bacterial growth rate; ψmin is maximal bacterial growth rate; EC50 is the value to produce 50% of
the maximal antibacterial effect.

Based on the parameter estimates displayed in Table 2 for various aminoglycosides,
we can observe distinct PD profiles for each antibiotic. For SMN, the ψmax was estimated
at 0.5651 with a confidence interval (CI) ranging from 0.4419 to 0.7845. Conversely, the
ψmin showed a significant inhibitory effect at −0.8166 (CI: −1.028 to −0.6976). The Hill
coefficient, indicative of the steepness of the drug effect curve, was noted at −0.7631 (CI:
−1.244 to −0.4600), and the EC50 value, the concentration required to achieve half the
maximal antibacterial effect, was 2.996 (CI: 1.781 to 5.250). This antibiotic also showed a
high R2 value of 0.9842, suggesting a strong fit to the observed data. KMN, on the other
hand, presented a higher ψmax of 0.7290 (CI: 0.5889 to 1.022) indicating a faster growth rate
of bacteria in the absence of the drug. Itsψmin was −0.9728 (CI: −1.213 to −0.8488), and the
Hill coefficient was −0.5324 (CI: −0.7153 to −0.3553), suggesting a less steep response curve
than SMN. The EC50 value for KMN was lower at 1.374 (CI: 0.8118 to 2.202), and the R2
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value was exceptionally high at 0.9938, denoting a very accurate model fit. Each antibiotic’s
individual PD parameters, including GMN, TMN, and AKN, similarly reflect their unique
inhibitory profiles and potency, with varying degrees of bacterial growth inhibition and
death rates, as evidenced by their respective EC50 values and Hill coefficients.

These calculated values then facilitated the introduction of the Gaussian scatter model,
followed by the application of the Monte Carlo simulation. The PD function provided an
excellent fit for all five antibiotics, as evidenced by the adjusted R2 values shown in Figure 4.
Simulated ψmax, ψmin, EC50, and Hill coefficient were described in Figure 5. Table 3
presented the parameter estimates for various antibiotics determined through Monte Carlo
simulations, with a particular emphasis on the zMIC values. SMN has a zMIC of 1.22,
indicating the concentration at which it inhibits the growth of the bacterial population.
KMN exhibits a lower zMIC value of 0.89 ± 0.52, suggesting a potent antibacterial effect
at lower concentrations. GMN shows an even lower zMIC of 0.21 ± 0.02, highlighting its
strong efficacy in inhibiting bacterial growth.
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Table 3. Parameter estimates of antibiotics through Monte Carlo.

ψmax ψmin ψmax − ψmin ψmin/ψmax Hill Coefficient zMIC

SMN 0.46 ± 0.05 –0.92 ± 0.13 1.38 ± 0.08 –1.50 ± 0.61 –0.65 ± 0.12 1.22 ± 0.19
KMN 0.90 ± 0.13 –0.99 ± 0.12 1.89 ± 0.01 –1.90 ± 0.08 –0.50 ± 0.09 0.89 ± 0.52
GMN 0.46 ± 0.05 –0.76 ± 0.04 1.22 ± 0.01 –1.60 ± 0.25 –1.00 ± 0.16 0.21 ± 0.02
TMN 0.36 ± 0.04 –0.83 ± 0.02 1.19 ± 0.02 –1.43 ± 1.00 –1.56 ± 0.20 0.32 ± 0.15
AKN 0.55 ± 0.13 –0.99 ± 0.15 1.54 ± 0.01 –1.55 ± 0.08 –0.53 ± 0.14 0.13 ± 0.02

zMIC, pharmacodynamic MIC.

TMN presents a zMIC of 0.32 ± 0.15, which is comparable to GMN, indicating its effec-
tiveness in halting bacterial proliferation. AKN has the lowest zMIC of 0.13 ± 0.02 among
the group, suggesting that it is the most effective at inhibiting bacterial growth at minimal
concentrations. These zMIC values provide critical insights into the pharmacodynamics of
these antibiotics, showcasing their potential effectiveness at specific concentrations against
bacterial growth.

3. Discussion

Addressing the challenge of antimicrobial resistance in E. coli necessitates the devel-
opment of rigorous and consistent methods for the in vitro evaluation of antimicrobial
interventions [2]. The research presented in this study performed an in vitro time–kill
assay of aminoglycosides against E. coli. By using this assay, we sought to gain a deeper
understanding of the dynamic interaction between antimicrobials and bacterial populations
over time, which is essential for predicting treatment outcomes in clinical settings. The
incorporation of the PD model, which elucidates the intricate relationship between antimi-
crobial concentration and bacterial growth rate, added another layer of sophistication to our
analysis. Such models are paramount in bridging the gap between in vitro results and their
clinical implications. They offer insights into the optimum concentration levels needed to
curb bacterial growth, thereby facilitating a more targeted approach to dosing regimens.

The MBC to MIC ratio serves as a critical parameter in understanding the bactericidal
nature of antibiotics [19]. It is widely accepted that an antibiotic with an MBC/MIC ratio of
4 or less is generally considered bactericidal against a particular microorganism [20]. In our
study, evaluating five antibiotics against pathogenic E. coli, the findings suggested promis-
ing results in terms of bactericidal activity. Specifically, all the antibiotics tested exhibited
an MBC/MIC ratio of 4 or less, classifying them as bactericidal agents against this strain of
E. coli. SMN, KMN, and TMN each displayed a ratio of 2, which indicated a strong bacterici-
dal potential since their killing concentrations are only twice their inhibitory concentrations.
On the other hand, GMN and AKN presented with a ratio at the threshold of 4. While
still within the bactericidal range, this suggested that their bactericidal concentrations are
four times their inhibitory concentrations, marking a relatively higher distinction between
inhibition and killing capabilities when compared to the other antibiotics.

The AUC derived from the time–kill assay is an indispensable metric when assessing
the efficacy of antimicrobials [21]. Essentially, it offers a quantitative representation of
bacterial response over time when subjected to antibiotic treatment. In the context of an-
timicrobial susceptibility, a smaller AUC typically denotes a more potent antibacterial effect
as it indicates fewer viable bacterial cells over the assay’s duration. Delving into specifics,
the AUC values for SMN across various concentrations (MIC, 2MIC, and 4MIC) clearly
indicated a concentration-dependent effect. As the concentration increased, the AUC dimin-
ished, underscoring a heightened antibiotic effect. A similar trend is discernible for KMN,
with its AUC values diminishing progressively with increasing antibiotic concentration.

The PD function served as a tool to elucidate the relationship between bacterial vitality
rates and varying concentrations of antibiotics belonging to different classes [18]. This
function corresponds closely with Emax models previously mentioned in other report [22].
Within this function, there are four essential parameters clearly outlined. Firstly, ‘ψmax’
highlights the peak bacterial growth rate when no antibiotic is present. ‘ψmin’ depicts
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the lowest net bacterial growth rate when confronted with high antibiotic concentrations.
‘zMIC’ acts as an indicator for the PD MIC. The Hill coefficient underscores the sensitivity
of bacterial growth or mortality rates to changes in antibiotic concentrations [23]. Cen-
tral to this is the Hill coefficient, a pivotal determinant of the curve’s gradient, especially
around the zMIC point. This coefficient provides profound insights into how alterations in
antimicrobial concentrations influence bacterial elimination [24]. Intriguingly, previous re-
search established a noteworthy correlation: antimicrobials with a concentration-dependent
manner, epitomized by drugs like ciprofloxacin, typically align with elevated Hill coeffi-
cients [18]. In contrast, time-dependent antimicrobials like tetracycline tend to have lower
Hill coefficients. An in-depth analysis of Table 3, which details the parameter estimates
obtained via Monte Carlo methods, further supported and enhanced these results. The
data show GMN having a Hill coefficient of 1.00 ± 0.06 and TMN with a coefficient of
1.56 ± 0.20, hinting at a likely concentration-dependent mechanism. In contrast, AKN, with
a Hill coefficient of 0.53 ± 0.14, appears to indicate a tendency towards a time-dependent
mode of action. While AKN is generally recognized as concentration-dependent [25], pre-
vious research has revealed its time-dependent toxic effects on the renal functions of male
Wistar rats [26]. The research found variations in toxic effects, like decreased creatinine
clearance and urinary excretion of furosemide, based on the timing of AKN administration.
The MICs of these antibiotics were assessed in vitro using a twofold dilution method. The
zMICs were found to align with the range determined by the dilution method. However,
greater precision is offered by them, as they are not constrained by a twofold dilution
method. The parameter estimates from Table 3, obtained through Monte Carlo simulations,
revealed distinct pharmacodynamic profiles of various antibiotics against E. coli. Antibiotics
like SMN and KMN show significant differences in their ψmax (0.46 ± 0.05, 0.90 ± 0.13)
and ψmin values (−0.92 ± 0.13, −0.99 ± 0.12), indicating varied ranges of action and po-
tencies. SMN showed intricate interactions with bacterial cells, whereas KMN revealed a
stable and strong efficacy over various concentrations. This was further explored in the
study of streptomycin resistance in E. coli mutants [27]. GMN, known for its pronounced
concentration-dependent impact, a finding corroborated by earlier studies on intracellular
Yersinia pestis [28], stands in stark contrast to TMN. The latter displays a distinct mode of
action, as evidenced by its notably high negative Hill coefficient, the most extreme among
the antibiotics evaluated in the study. AKN stood out with a potential time-dependent
action, suggested by its Hill coefficient and the lowest zMIC value. These findings under-
score the diverse mechanisms of action of these antibiotics, crucial for understanding their
effectiveness against antimicrobial-resistant E. coli strains.

The obtained parameters from in vitro time–kill curves, notably the ψmax, ψmin, and
zMIC in tandem with the Hill coefficient, crafted the PD profile of these antibiotics. Tailoring
antibiotic therapy based on such insights could pave the way for a reproducible and
affordable strategy to measure the antibiotics’ properties.

The role of PD tackling antibiotic resistance has gained paramount importance. Recent
research has enriched our knowledge in this domain, notably in the area of gonorrhoea
caused by Neisseria gonorrhoeae, where an increasing resistance to conventional treatments
has been observed [29]. To address this, a unique in vitro time–kill curve assay was
innovatively used, revealing the effectiveness of nine different antimicrobials against
established reference strains. The study emphasized the crucial role of this approach,
especially through a PD lens, in shaping future gonorrhoea treatments. In another study,
the intrinsic qualities of antimicrobial peptides, recognized for their unique PD attributes
and resistance to bacteria, were scrutinized [30]. A detailed analysis revealed their effects
on Staphylococcus aureus, demonstrating an adaptive PD relationship under extended drug
exposure, underlining the necessity to comprehend these adaptations to manage resistance
development. Another research focused on evaluating the impact of specific antimicrobials
on Neisseria gonorrhoeae’s growth [31]. Detailed analyses through PD functions were carried
out, revealing that higher doses of ceftriaxone might be potent against particular Neisseria
gonorrhoeae variants and introducing GMN as a potential contender for treatment.
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In the study presented, Gaussian models were applied to examine the data distribu-
tions and identify primary patterns and anomalies within the data set. Following this,
Monte Carlo simulations were executed to predict outcomes, taking into account the
stochastic nature and inherent fluctuations of the system being studied. Although Monte
Carlo simulations are pivotal for assessing stochastic phenomena, integrating them with
Gaussian models introduces certain complexities. One notable limitation is the assumption
in the simulation process that variables act independently, an assumption which may not
hold true in Gaussian frameworks where variables often exhibit interdependencies that
could influence the simulation outcomes. Despite integrating Gaussian models with Monte
Carlo simulations, the results of this study showed a linear correlation (as reflected by the
R-squared value). Therefore, while the methodologies employed herein have provided
valuable insights, cautious interpretation is required. It is recommended that these methods
be supplemented with additional analytical techniques to ensure more robust and reliable
results. This multifaceted approach would help to mitigate any methodological limitations
and provide a more holistic understanding of the data and their implications.

Although the results of this research are encouraging, it is crucial to acknowledge
the intrinsic constraints associated with in vitro experiments. Clinical conditions in actual
practice are considerably more intricate, shaped by numerous elements such as the host’s
immune response, the virulence of the bacteria, and the pharmacokinetics (PK) of the drug.
However, the integration of time–kill curve assays and sophisticated PD modeling has laid
a robust groundwork for future research endeavors to expand upon.

4. Materials and Methods
4.1. Chemicals and Reagents

The antibiotics (streptomycin (SMN), kanamycin (KMN), gentamicin (GMN), to-
bramycin (TMN), and amikacin (AKN)) used in the study were obtained from Sigma-
Aldrich (St. Louis, MO, USA). They were prepared for use by dissolving them according to
the provided guidelines and recommendations.

4.2. Bacteria Culture

Escherichia coli (E. coli) ATCC 43888 was acquired from the American Type Culture
Collection (ATCC). The procured bacteria were cultured on Luria Bertani (LB) agar plates
(BD, Diagnostics, Sparks, MD, USA) and allowed to incubate at a temperature of 37 ◦C for
a period of 24 h. After the incubation, emerging colonies were selected and transferred into
5 mL of Mueller Hinton broth (MHB) (BD, Diagnostics, Sparks, MD, USA) and incubated
overnight at 37 ◦C. The bacteria were then subcultured into another 5 mL of the same
medium and maintained at 37 ◦C, with agitation at 180 rpm in a shaker/incubator for a
duration of 3 h, facilitating the bacteria to reach the mid-logarithmic growth phase [32].

4.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
of Antibiotics against E. coli

The minimum inhibitory concentration (MIC) of antibiotics (SMN, KMN, GMN, TMN,
and AKN) against E. coli O157:H7 strain ATCC 43888 was assessed using a two-fold serial
dilution method, with concentration variations between 0.03125 to 64 µg/mL in accordance
with the guidelines of the Clinical and Laboratory Standards Institute (CLSI) [33]. After
inoculation, the plates were incubated at 37 ◦C for 24 h. The MIC was determined as the
lowest concentration of antibiotic that visually inhibited bacterial growth in the medium. A
microplate reader (Versamax™, Idaho Emmett, ID, USA) was used to confirm the results.
For establishing the minimum bactericidal concentration (MBC), samples from three con-
centrations above the determined MIC, where no visible bacterial growth was observed,
were placed onto LB plates. These plates, after being incubated at 37 ◦C for 24 h, were
examined to recognize a 3log10 reduction in the initial bacterial count.
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4.4. Time–Kill Curves of Antibiotics against E. coli

The in vitro time–kill curves of antibiotics (SMN, KMN, GMN, TMN, and AKN)
against E. coli O157:H7 strain ATCC 43888 were created following the guidelines from the
CLSI [33]. The bacterial concentration was adjusted to a final inoculum of 1.5 × 106 cfu/mL
and then exposed to various antibiotic concentrations ranging from 1× to 4× MIC. Control
growth curves were established using MHB without any antibiotics. Bacterial counts were
conducted at various intervals: 0, 1, 2, 4, 8, 12, and 24 h of culturing, after which they were
incubated for 24 h at 37 ◦C on LB plates [34].

4.5. PD Modeling

The study investigated the PD relationship between the concentration of an antibiotic
and the corresponding growth and death rates of bacteria [18]. A model was proposed
to depict the net growth rate (ψ) of a bacterial population when exposed to a particular
antibiotic concentration (a). This net growth rate is a function of various factors. In our
model, the maximal bacterial growth rate is denoted as ψmax, while the bacterial death rate
at a given antibiotic concentration is represented by µ (a), following a Hill function.

Essential parameters of this model include Emax, indicating the maximum death rate
induced by the antibiotic, and EC50, representing the antibiotic concentration at which the
death rate is half of Emax. The Hill coefficient, κ, is another critical parameter that describes
the steepness of the curve relating µ to a, typically showing a sigmoidal relationship.

To quantify these rates, such as ψ (a), ψmax, µ (a), and Emax, we evaluated the hourly
logarithmic changes (base 10) in bacterial density. Furthermore, zMIC is defined as the
PD MIC at which no bacterial growth is observed, meaning ψ (zMIC) is zero. Figure 6
in our study illustrates how these parameters affect the relationship between antibiotic
concentration and bacterial growth rate.

ψ(a) = ψmax − µ(a) (1)

µ(a) = Emax

(
a

EC50

)κ

1 +
(

a
EC50

)κ (2)

ψ(a) = ψmax −
(ψmax −ψmin)

( a
zMIC

)κ( a
zMIC

)κ −ψmin/ψmax
(3)

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 10 of 12 
 

 

To quantify these rates, such as ψ (a), ψmax, μ (a), and Emax, we evaluated the hourly 
logarithmic changes (base 10) in bacterial density. Furthermore, zMIC is defined as the 
PD MIC at which no bacterial growth is observed, meaning ψ (zMIC) is zero. Figure 6 in 
our study illustrates how these parameters affect the relationship between antibiotic con-
centration and bacterial growth rate. ψ a ψ μ a   (1)

μ a 𝐸   (2)

ψ a ψ ψ ψ 𝑎𝑧𝑀𝐼𝐶𝑎𝑧𝑀𝐼𝐶 ψ /ψ  (3)

 
Figure 6. Pharmacodynamic model of relationship between antibiotic concentration and bacterial 
growth. Ψ represents the net growth rate of the bacteria. ψ max and ψ min are maximal bacterial growth 
rate and minimal bacterial growth rate. к defined as Hill coefficient is the steepness of the curve. 

4.6. Monte Carlo Simulation 
In this approach, the rate of bacterial growth, derived from the data of time–kill 

curves, underwent a transformation into logarithmic scale. Following this, a detailed 
model was established to link these logarithmic values with their corresponding re-
sponses. The process of generating subsequent data points involved adding a fixed incre-
ment of 0.1 to each value. To incorporate randomness and variability in the data, a Gauss-
ian scatter model was applied, characterized by a standard deviation of 0.1. 

4.7. Statistical Analysis 
The data were presented as mean values accompanied by standard deviations. For 

statistical analysis, ANOVA (analysis of variance) was utilized, executed via the 
GraphPad Prism software (version 8.0.1, based in La Jolla, CA, USA). A p-value below 
0.05 was considered statistically significant. 

Figure 6. Pharmacodynamic model of relationship between antibiotic concentration and bacterial
growth. Ψ represents the net growth rate of the bacteria. ψ max and ψ min are maximal bacterial
growth rate and minimal bacterial growth rate. κ defined as Hill coefficient is the steepness of
the curve.



Pharmaceuticals 2024, 17, 27 10 of 11

4.6. Monte Carlo Simulation

In this approach, the rate of bacterial growth, derived from the data of time–kill
curves, underwent a transformation into logarithmic scale. Following this, a detailed
model was established to link these logarithmic values with their corresponding responses.
The process of generating subsequent data points involved adding a fixed increment of 0.1
to each value. To incorporate randomness and variability in the data, a Gaussian scatter
model was applied, characterized by a standard deviation of 0.1.

4.7. Statistical Analysis

The data were presented as mean values accompanied by standard deviations. For
statistical analysis, ANOVA (analysis of variance) was utilized, executed via the GraphPad
Prism software (version 8.0.1, based in La Jolla, CA, USA). A p-value below 0.05 was
considered statistically significant.

5. Conclusions

In summary, facing the growing menace of antimicrobial-resistant E. coli, the integra-
tion of novel experimental methodologies and mathematical modeling will play a crucial
role in guiding future research and developing new treatment approaches. Although the
journey forward is filled with obstacles, employing thorough and scientific methods such
as those demonstrated in this study equips us more effectively to tackle the intricate issues
surrounding antimicrobial resistance.
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