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Abstract: The involvement of the gut microbiota in anti-cancer treatment has gained increasing
attention. Alterations to the structure and function of the gut bacteria are important factors in the
development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the
gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic
agents through interactions with the immune system. This review aims to summarize the current
knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut
microbiota regulates host immune response, and how interactions between the gut microbiota and
host immune response influence the efficacy of chemotherapy. Recent advances in strategies for
increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering
the complex homeostasis maintained by the gut microbiota and host immunity provides a solid
scientific basis for bacterial intervention in chemotherapy.
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1. Introduction

Exciting development in the field of cancer treatment has been witnessed over the
past 50 years. Various methods, such as surgery, chemotherapy, radiotherapy, immunother-
apy, and molecular targeted therapy are efficient when properly employed in anti-cancer
procedures [1]. Chemotherapy, in particular, is effective in controlling the progression of
cancer and relieving related symptoms. Due to its efficiency in different malignant tumors
and accessible cost, chemotherapy is now the recommended first-line treatment for cancer.
However, the non-selective cytotoxicity of chemotherapy may lead to serious side-effects,
such as acute kidney injury and gastrointestinal symptoms. Chemotherapy may become
less efficient with the widespread occurrence of primary resistance and rapidly generated
acquired resistance. Therefore, novel treatment strategies to reduce the associated toxicity
and increase the efficacy of chemotherapy should be developed.

One important recent finding is that the gut microbiota are involved in many physio-
logical activities as well as the development of various diseases. More than 1013 bacteria
exist in the gastrointestinal tract (GIT) [2], mainly composed of Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Verrucomicrobia [3–5]. It is known that gut microbiota are
involved in many aspects of cancer, such as its initiation, progression, diagnosis, treatment,
and prognosis [6] (Figure 1). In addition, growing evidence has shown that the gut micro-
biota also regulate the efficacy and toxicity of chemotherapy through drug metabolization
and immune response [7]. It is envisaged that gut microbiota-based interventions combined
with chemotherapy might improve the outcome of cancer treatments.
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Figure 1. Effect of gut microbiota on different cancers. Specific gut microbiota affect the initiation,
progression, diagnosis, treatment, prognosis, and prediction of a variety of cancers.

In this review, we discuss the interactions among chemotherapy, the gut microbiota,
and the host immune response. We describe the current knowledge on how malignant
tumors and chemotherapy affect the gut microbiota, how the gut microbiota regulate the
host immune response, and how interactions between the gut microbiota and host immune
response influence the efficacy of chemotherapy. We also summarize recent advances in
strategies for increasing the efficiency of chemotherapy based on the gut microbiota.

2. Current Clinical Applications of Chemotherapy

Chemotherapy is a classic anti-cancer treatment, which has certain advantages in
terms of controlling the progression of cancer when compared with local treatment. For
example, neoadjuvant chemotherapy transforms inoperable breast cancer into an operable
state, thus effectively improving its prognosis [8]. 5-fluorouracil (5-FU) is the standard
post-operative chemotherapy for colorectal cancer (CRC), which significantly reduces the
risk of local recurrence in patients [9].

Although extensively applied in anti-cancer treatments [10], chemotherapy has limi-
tations that significantly decrease its efficacy, including poor bio-availability, rapid blood
clearance, non-selective distribution, and drug resistance [11,12]. A retrospective study
found that the objective response (OR) rate of platinum-based drugs in CRC patients was
less than 45% [13], while the pathological complete response (PCR) rate in breast cancer
patients was less than 25% [14]. The non-selective cytotoxic effects of chemotherapeutic
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drugs can also lead to multiple side effects, including short- and long-term treatment-
related adverse events (AEs) such as weight loss, marrow suppression, skeletal muscle loss,
psychiatric complications, and a variety of gastrointestinal symptoms [15,16]. A clinical
study found that nearly 60% of the patients with metastatic CRC treated with FOLFOX
experienced weight loss [17]. Meanwhile, diarrhea occurred in 50–80% of cancer patients
after chemotherapy using 5-FU, capecitabine, irinotecan, and others [2,18,19].

Chemotherapy also injures the intestinal mucosal barrier and intestinal homeostasis,
causing dysbiosis of the gut microbiota and mucosal inflammation [4,15]. For example,
cisplatin impairs the integrity of the intestinal epithelial barrier and promotes microbial
relocation through the circulatory system, therefore leading to systemic inflammation.
Administration of 5-FU increases the presence of Gram-negative bacteria such as Bacteroides
in the gut, which induces inflammation through the nuclear factor kappa B (NF-κB) path-
way [4,20,21]. The use of ephedrine successfully reversed gut microbiota dysregulation,
inhibited inflammation, and restored intestinal barrier function in 5-FU-induced intestinal
mucositis (FUIIM) model mice [22].

Dose-limiting toxicity (DLT) is another important factor that has an impact on the
outcome of chemotherapy [23]. According to the requirements of the National Cancer
Institute (NCI) for recording AEs in cancer trials, the significate toxic effect observed
with different doses is defined as the DLT, and the maximum tolerated dose (MTD) in
chemotherapy is determined based on the DLT. For example, hematological toxicity and
nausea are considered as common DLTs of gemcitabine. In a clinical trial, gemcitabine given
to patients increased gradually until one-third of the patients developed hematological
toxicity or nausea; the corresponding dosage was recorded as the MTD of gemcitabine [24].
Similarly, thrombocytopenic fever is the known DLT for paclitaxel; for example, when
using paclitaxel to treat metastatic breast cancer, thrombocytopenic fever is the sign of
reaching the MTD, and no further increase in dosage should be applied [25]. It is known
that the response to chemotherapy is closely related to the used dose, and a 20% dose
reduction may lead to a 50% decrease in the cure rate [26]. As DLT determines the MTD of
chemotherapy directly while affecting the efficacy of chemotherapy indirectly, it is difficult
to find a balance to improve the outcome of anti-cancer treatment.

3. Gut Microbiota and Chemotherapy
3.1. Gut Microbiota in Tumorigenesis and Development

The gut microbiota are described as the second-largest organ of the human body, which
is connected with physiological and pathological processes through supporting energy
metabolism, nutrient catabolism and absorption, the synthesis of vitamins and essential
amino acids, maintaining intestinal mucosal barrier integrity, inactivation of toxins and
carcinogens, immunomodulation, and protection from pathogens [27,28]. Multiple internal
and external factors can modify the composition and function of the gut microbiota as well
as related metabolites, which may affect the occurrence and development of cancer through
DNA damage in the host, the production of oncogenic/anti-cancer metabolites, activation
of oncogenic signaling pathways, immune cell infiltration, and secretion of inflammatory
factors [7,29].

The gut microbiota are involved in a complex system of catabolism and anabolism,
in which various metabolites are derived and diffuse into the circulatory system to affect
general homeostasis. Carcinogenesis is known to be promoted by toxic or carcinogenic
metabolites such as amines and sulfide, which are frequent products of gut microbiota me-
tabolization [7]. Trimethylamine (TMA) and its metabolite trimethylamine amine N-oxide
(TMAO), for instance, are generated by the gut microbiota and promote the development
of hepatocellular carcinoma (HCC) [30]. Hydrogen sulfide produced by the gut microbiota
has been found to be related to the occurrence and development of CRC [31], although
the underlying mechanism requires further elucidation. Moreover, the distribution and
function of the gut microbiota are related to complications in cancer patients, such as
fever [32], tumor-related fatigue [33], cancerous pain [34], and venous thrombosis [35].
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Studies have shown that the increased level of Akkermansia muciniphila in cancer patients
could damage the intestinal mucus layer and induce fever, and the use of antibiotics or
bacteria-derived propionate prevented these complications in animal models [32].

Gut microbes play an important role in oncogenesis through the biotransformation of
steroid hormones. Clostridium leptum and Clostridium coccoides produce β-glucuronidase
and upregulate the biotransformation of active estrogen, which then promotes the de-
velopment of breast cancer [3,36]. On the other hand, some bacteria in the GIT have
functions which may alleviate tumors; for example, Lactiplantibacillus plantarum-12 secretes
exopolysaccharides that alleviated AOM/DSS-induced colon cancer symptoms in mice [37].

Inflammation is often associated with the development and progression of cancer.
The gut microbiota affect tumor development through interactions with the host immune
system. Gut microbes regulate inflammatory factors such as tumor necrosis factor-α
(TNF-α), interleukin-1 (IL-1), and NF-κB [38–40] to activate or suppress cancer-related
inflammation. Zhong et al. found that dysbiosis of the gut microbiota increased IL-6
levels in both the tumor and serum through activation of the NF-κB signal pathway, thus
promoting the malignant progression of prostate cancer [41]. Moreover, the gut microbiota
interact with the host’s immune system through bacterial translocation. Under pathological
conditions, gut barrier disruption and dysbiosis promote the transfer of bacteria and their
by-products into the portal vein, liver, and other off-site locations, inducing inflammatory
responses and, therefore, influencing the development of tumors [42,43]; more specific
content in this line is discussed in Section 4.3.

The gut microbiome and related metabolites may also serve as biomarkers for early
diagnosis of lung, liver cancer and CRC [44,45]. For example, the significant and simulta-
neous enrichment of B. fragilis, Porphyromonas asaccharolytica, Parvimonas micra, Prevotella
intermedia, Alistipes finegoldii, and Thermanaerovibrio acidaminovorans has been reported as a
diagnostic marker for CRC [46]. Another study found that Ruminococcus, Enterobacteriaceae,
and Lachnospiraceae were highly enriched in lung cancer patients, while Faecalibacterium,
Streptococcus, Bifidobacterium, and Veillonella presented higher levels in healthy people [47].
Alistipes, Phascolarctobacterium, and Ruminococcus have been shown to be significantly de-
creased in early HCC, while Klebsiella and Haemophilus were increased [48]. Moreover,
a study has shown that the decreased abundance of Firmicutes and Actinomycetes, to-
gether with significantly increased levels of Clostridium, Bacteroides, and Proteus, affect the
pancreatic microenvironment and contribute to the development of pancreatic cancer in
smokers [49]. Therefore, the altered abundances of specific bacteria may serve as predictive
biomarkers for cancer diagnosis and prognosis.

3.2. Interaction between Gut Microbiota and Chemotherapy

Chemotherapy alters the gut microbiota on multiple levels. First, chemotherapy
changes the diversity and species richness of the gut microbiota [50,51]. It has been
proven that most chemotherapies lead to decreases in Lactobacillus, Bacteroides [52], Bi-
fidobacterium, and Enterococcus [2,53,54], as well as an increase in Firmicutes, Escherichia
coli, and Staphylococcus [40,44,55]. Cyclophosphamide (CTX) decreased the abundance
of intestinal Bifidobacterium while increasing the levels of Proteus and E. coli [16] in CRC
patients. Irinotecan, on the other hand, significantly increased the levels of Clostridium cecal
and Enterobacteriaceae in the intestines of CRC-bearing rats [44]. Second, chemotherapy
affects the gut microbiota through damaging the mucosal barrier of the GIT [36]. The
most important structure of the mucosal barrier consists of complete intestinal mucosal
epithelial cells and the tight junctions between epithelial cells [56]. This mechanical barrier
can effectively prevent harmful bacteria and endotoxins from entering the bloodstream
through the intestinal mucosa [57]. Studies have shown that chemotherapy could damage
epithelial cells to directly break the mucosal barrier as well as damage intestinal stem cells
to indirectly impair mucosal barrier function. Increased permeability of the mucosal barrier
allows intestinal bacteria to move to the spleen, liver, peritoneal cavity, and blood. The
translocated bacteria may interact with immune system and induce inflammation, which
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subsequently affects the efficacy of chemotherapy [58]. For example, chemotherapy with
CTX was shown to damage the intestinal epithelium and increase the permeability of the
intestinal mucosal barrier. The following translocation of Enterococcus hirae and Lactobacillus
Johansonii to tumor-draining lymph nodes (TDLNs) induced differentiation of CD4+T-cells
to Th17 in the tumor microenvironment (TME), thus enhancing the anti-fibrosarcoma effi-
cacy of CTX in vivo [59]. Oxaliplatin also impairs gastrointestinal barrier function through
reactive oxygen species (ROS)-induced DNA damage [3], which leads to translocation of
microbiota, consequently affecting immune homeostasis and chemotherapy sensitivity [60].
Therefore, chemotherapy has multiple effects on the gut microbiota, which may further
affect the development of cancer and the response to chemotherapy.

The gut microbiota are involved in the response to chemotherapy. Gut microbiota
promoted the ability of tumor-infiltrating hematopoietic cells to release ROS, enhancing
the efficacy of oxaliplatin against lymphoma or colon cancer in mice [61–63]. After translo-
cation to the secondary lymph organs, E. hirae and Barnesiella intestinihominis enhanced the
anti-tumor effect of CTX through regulating Th1 responses [59]. The gut microbiota also
regulate the efficacy of chemotherapy through their metabolites. Butyrate is a metabolite of
gut microbiota species such as Eubacterium rectale and Faecalibacterium prausnitzii [64]. It is
known to increase the anti-tumor activity of irinotecan against colon cancer cell lines [65]
through reducing the expression of the drug resistance-related protein P-glycoprotein.
Furthermore, secondary bile acids—such as ursodeoxycholic acid (UDCA) and ursocholic
acid (UCA)—are associated with improved objective responses (OR) in patients with HCC
receiving treatment with immune checkpoint inhibitors (ICIs) [66]. A study previously
published by our group also proved that the Prevotella-related metabolite 3-Oxocholic acid
decreased the efficacy of FOLFOX against CRC in vitro [67]. Chemotherapy with cisplatin
can result in severe toxic side effects, such as weight loss and intestinal toxicity, which
limits its efficacy and wider application. Studies have shown that oral supplementation of
Lactobacillus increased the expression of IFN-γ, GZMB, and PFR1 in CD8+T-cells, which
improved the efficacy of cisplatin against Lewis lung cancer [68] and reduced its toxic
side effects [69] in mice. Gemcitabine is commonly used in chemotherapy for pancreatic
ductal adenocarcinoma (PDAC), despite the rapid development of drug resistance [70].
Recent studies have found that the antibiotic ciprofloxacin successfully reversed gemc-
itabine chemotherapy resistance in mice [71], suggesting a correlation between gemcitabine
resistance and the gut microbiota.

In addition, the gut microbiota are involved in metabolizing chemotherapeutic drugs
into active, inactive, or toxic forms. The efficacy of more than 60 chemotherapeutic drugs
is altered after this transformation [2,72,73]. For example, glucuronidated SN38 (SN38-
G) is the active metabolite of irinotecan. Intestinal bacteria produce β-glucuronidase to
convert intestinal SN38-G into toxic SN38, which severely reduces the anti-CRC effect
of irinotecan [19,74,75]. Meanwhile, toxic SN38 induces gastrointestinal reactions such
as diarrhea and intestinal damage [44]. In addition, cytidine deaminase produced by
Mycoplasma hydrohinis can metabolize Gemcitabine into the inactive product 2′,2′-difluoro-
2′-deoxyuridine, which reduces the drug activity by more than 10-fold [76].

In summary, the interaction between chemotherapy and gut microbes can alter the
distribution and function of the gut microbiota, thus modulating the efficacy and toxicity of
the chemotherapeutic agents directly through drug biotransformation or indirectly through
the host immune system. Chemotherapy also regulates the colonization of gut microbiota.
These interactions affect the outcome of anti-cancer treatments [3] and the prognosis of
patients (Figure 2).
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Figure 2. Interaction between gut microbiota and chemotherapy. (A) Chemotherapy affects gut
microbiota colonization directly through influencing their abundance/diversity or indirectly through
destroying the intestinal mucosal barrier. (B) The gut microbiota can influence the pharmacological
effect or biotransformation of chemotherapeutic drugs through biochemical reactions including
deamination and deacetylation. CTX, Cyclophosphamide. 5-FU, 5-Fluorouracil. ROS, reactive
oxygen species.

4. Gut Microbiota-Mediated Immunomodulation in Chemotherapy Sensitivity
4.1. Effects of Immune Modulation on Chemotherapy Response

The GIT is considered to be the largest immune organ in the human body, with
about 70% of all lymphocytes residing in the intestinal epithelium, intestinal lamina pro-
pria, and intestinal draining mesenteric lymph nodes. Lymphocytes in the GIT contain
a large number of activated T-cells, antibody secretion plasma cells, and innate immune
cells [77]. Tumor immune escape is one of the most typical characteristics of cancer cells
during tumorigenesis and development, the underlying mechanisms of which include
decreased immune detection ability, transition to an immuno-suppressive microenviron-
ment, upregulation of immune checkpoint proteins such as PD-L1, and decreased activity
of CD8+T-cells [78]. Inhibition of immune cells in the TME is essential for tumor immune
escape and resistance to anti-tumor therapy. As has been previously reported, the gut
microbiota can inhibit immune cells in the TME to promote tumor immune escape. For ex-
ample, the outer membrane protein Fab2 of Fusobacterium nucleatum binds to the inhibitory
T-cell immunoglobulin and ITIM domain (TIGIT) receptors in tumor-infiltrating NK cells
and T-cells, then decreases the anti-cancer effects of these immune cells [79]. With derived
deoxycholic acid, Clostridium scindens targets the cell membrane calcium pump plasma
membrane Ca2+ATPase (PMCA) to promote Ca2+ efflux, which leads to a reduction in
intracellular Ca2+ and inhibition of NFAT2, thus decreasing the anti-cancer function of
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effector CD8+T-cells [80], which ultimately promotes cancer immune escape. On the other
hand, gut bacteria enhance immune surveillance and inhibit the development of cancers.
Wang et al. found that the intestinal bacteria Lactobacillus johnsonii can transform trypto-
phan into 3-Indole propionic acid (IPA), which contributes to the infiltration of CD8+T-cells
and cytokine IFN-γ into tumors, thus enhancing the efficacy of ICI in colon cancer-bearing
mice [81].

Immune regulation is critical in chemotherapy response. For instance, the level of
infiltration of CD8+T-cells and T follicular helper (Tfh) cells into osteosarcoma tissue was
significantly correlated with a positive chemotherapy response [82]. Zhou et al. have
revealed that the activation of the p300/CBP pathway and NF-κB can be used to predict the
anti-tumor effect of oxaliplatin against colon cancer cells [83]. Moreover, the combination
of a PD-1/PD-L1 inhibitor and chemotherapeutic agents such as cisplatin significantly
increased the prognosis of extensive-stage small-cell lung cancer (ES-SCLC) without raising
AEs [84].

Alternatively, some chemotherapy approaches stimulate the secretion of cytokines,
thereby exerting an immunomodulatory effect. A study has found that 5-FU administration
significantly increased inflammatory cytokines such as TNF-α and NOS2 [85] in CRC mice.
The administration of methotrexate (MTX) also upregulated intestinal IL-1β, TNF-α, and
IFN-γ in mice [50].

4.2. Interaction of Gut Microbiota and Related Metabolites with Immune System

Intestinal homeostasis can be maintained by the gut microbiota. The gut microbiota
occupy ecological niches to prevent pathogenic micro-organisms from binding with epithe-
lial cells and inducing immune responses [3,43]. On the other hand, the gut microbiome is
closely related to immune responses [44]; for example, the gut microbiota can promote the
production of cytokines such as IL-22, IL-17, and IL-10 [77,86], in order to regulate the host
immune system. Cytokines also activate primary/secondary lymphoid organs to regulate
the tumor immune microenvironment [87]. Moreover, the gut microbiota contribute to the
development of intestinal epithelial cells (IEC). Studies have shown that lipopolysaccha-
rides (LPS) and flagella proteins of the gut microbiota promote IEC proliferation [88]. These
components also act as ligands and bind with the NOD domain-like receptors (NLRs) and
Toll-like receptors (TLRs) that are expressed by IEC, consequently regulating the immune
barrier function of IEC [49,79,89,90]. Flagellin promotes the production of IL-8 through
binding to NLRs and TLRs, while LPS can induce the secretion of mucin 2 (MUC2) from
colon goblet cells [88]. LPS also promotes the secretion of pro-inflammatory cytokines such
as TNF-α, which plays an important role in the activation of macrophages, as well as the
generation and clearance of inflammation [91].

Abnormal gut microbiota can have negative impacts on the homeostasis of the immune
system. The study of Li et al. showed that dysfunction of the gut microbiota leads to
abnormal hyperplasia of intestinal epithelial tuft cells and enhances the secretion of IL-25,
which induces M2 macrophage polarization [92]. Dysbiosis induced by fluconazole led to
decreased expression levels of IL-1β, IL-6, and IL-8, as well as increased expression of IL-2,
LZM, and IgM, suggesting that the gut microbiota interfere with immune responses [93].

The gut microbiota regulate the infiltration and activation of immune cells, as well as
the secretion of inflammatory factors, to affect intestinal homeostasis. The gut microbiota
participate in reducing the pro-inflammatory response through regulating the production
of IL-10 by Tregs cells and transforming growth factor beta (TGF-β). Bacteroides fragilis, for
instance, upregulates the secretion of anti-inflammatory cytokine IL-10 [94]. Meanwhile,
IL-10 knockout increased the pathogenicity of Bacteroidaceae, Porphyromonadaceae, Bacteroides
ovatus, and Bacteroides acidifaciens, and increased the level of Th17 and Treg cells [95]. The
gut microbiota can increase the expression of IFN-γ and granzymes by helper (CD4+) and
cytotoxic (CD8+) T-cells, which promotes the recruitment of macrophages, as well as the
activation and maintenance of natural killer (NK) cells, lymphocytes, B cells, cytotoxic, and
helper T lymphocytes [28,96]. Meanwhile, the gut microbiota also induces the activation of
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NF-κB, promoting the secretion of pro-inflammatory cytokines such as TNF-α and IL-1 to
modulate the circulating immunity of the host (Figure 3A) [46,54,94,97].
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production of IFN-γ and GZM; b. Gut microbiota can promote the secretion of pro-inflammatory
cytokines such as TNF-α or IL-1 through activation of NF-κB; c. Gut microbiota reduce the level of
Treg cells via IL-10 and TGF-β. (B) The gut microbiota-related metabolites SCFAs affect the overall
anti-tumor function through activating GPCRs (a), inhibiting HDAC (b), or influencing TH1 and
TH17 cell maturation (c). GZM, granzymes. NK cell, natural killer cell. SCFAs, short-chain fatty acids.
HDAC, histone deacetylase. GPCRs, G-protein-coupled receptors.

Furthermore, gut microbiota-related metabolites affect the systemic immune response.
Intestinal bacteria-related metabolites, such as short-chain fatty acids (SCFAs) [98], bile
acid [99], tryptophan metabolites [100], and methionine [101], are absorbed into the circu-
latory system. They then bind with cell surface receptors to regulate the differentiation
and function of immune cells [102]. For example, SCFAs derived from Clostridium bu-
tyricum, Bifidobacterium, Lactobacillus rhamnosus, Streptococcus thermophilus, Lactobacillus
reuteri, Lactobacillus casei, and Lactobacillus acidophilus [103] are involved in activation of
G-protein-coupled receptors, which are widely present in the immune system. SCFAs
also promote the differentiation of T-cells into effector T-cells (Th1 and Th17 cell) [94,104].
Furthermore, derived SCFAs inhibit histone deacetylases (HDACs), which have many
implications in the innate immune process through regulating the Toll-like receptor and
interferon signaling pathway. Meanwhile, HDACs regulate the antigen presentation pro-
cess, lymphocyte growth, differentiation, and polarization in the adaptive immune process.
Research from the Harvard School of Public Health has suggested that SCFAs can prevent
colitis in mice through Regulatory T-cells (Tregs) [105]. Another example is gut microbiota-
derived D-methionine: it has been found that D-methionine relieves cisplatin-induced
intestinal mucositis through increasing the abundance of beneficial micro-organisms such as
Lactobacillus, which reduced oxidative stress and pro-inflammatory immune responses [106].
In addition, the gut microbiota convert primary bile acids into secondary bile acids [107],
which are known to suppress the expression of chemokines (e.g., CXCLs) as well as the
accumulation of NKT cells in the liver, which promoted liver cancer development in
mice [99]. Taken together, these results suggest that gut bacteria play essential roles in
immune regulation.

4.3. Interactions among Gut Microbiota, Immune System, and Chemotherapy

Interactions between the gut microbiota and the immune system may influence the ac-
tivity and toxicity of chemotherapeutics through the host immune response, inflammatory,



Pharmaceuticals 2024, 17, 604 9 of 20

and immuno-suppressive pathways [94], while chemotherapy could alter the distribution
and function of the gut microbiota. These changes induce immune responses which, in
turn, influence the activity of chemotherapeutic agents. Thus, maintaining the balance of
the gut microbiota may reduce the inflammation induced by chemotherapy [108].

As previously described, bacteria can translocate from the gut to secondary lymphoid
organs, which activates an immune response and induces inflammation in distal organs.
Studies confirmed that CTX—a classic alkylating agent—promoted the translocation of gut
bacteria to the intestinal lamina propria [109], then increased the differentiation of Th17
cells through the MyD88 signaling pathway [110,111]. The use of antibiotics significantly
decreased the anti-tumor effect of CTX, indicating that the gut microbiota are a key factor
affecting the efficacy of CTX.

Both inherent and exogenous gut microbiota can interact with immune system and,
thus, play roles in the host’s sensitivity to chemotherapy; in particular, the inherent gut
microbiota-mediated immune response influences chemotherapy sensitivity. Gut micro-
biota species such as B. fragilis can release B. fragilis toxin, which upregulates the expression
of spermine oxidase (SMO) in colonic epithelial cells [112,113]. B. fragilis also increases
the levels of Nox1 and Cybb encoding ROS-generating NADPH oxidase 2 (NOX2) [114]
and stimulates tumor-infiltrating myeloid cells to produce ROS. High levels of ROS result
in oxidative stress, leading to DNA damage and apoptosis, which affect the anti-tumor
efficacy of oxaliplatin, alkylating agents, anthracycline, pavonlotoxin, camptothecin, and so
on [38,115]. Studies have shown that the gut microbiota could stimulate tumor-infiltrating
myeloid cells to produce ROS through the TLR4-MYD88 signaling pathway, which in-
creased the anti-tumor efficacy of oxaliplatin in mice bearing colon cancer. In contrast,
elimination of the gut microbiota with antibiotics reduced the sensitivity of the tumor to
oxaliplatin [27,116]. Our previous study also revealed that the Prevotella-derived metabolite
3-Oxocholic acid significantly increased the expression levels of IL-1β and TNF-α, thus
decreasing the efficacy of FOLFOX against CRC in vitro [67]. Another example is 5-FU, a
first-line chemotherapeutic agent for various gastrointestinal malignant tumors. Studies
have confirmed that F. nucleatum activated autophagy through the TLR4-MYD88 signaling
pathway, resulting in chemo-resistance to 5-FU [117] and Oxaliplatin [118].

On the other hand, exogenous microbiota interventions such as ingestion of probi-
otics affect the response to chemotherapy through adjusting immune regulation and the
inflammatory response. Probiotics also interact with the gut microbiota and their derived
metabolites (e.g., SCFAs, bile acids) to regulate carcinogenesis (Figure 3B). A study on
probiotics found that Lactobacillus paracasei and L. reuteri in combination with gemcitabine
could enhance the anti-cancer effect and alleviate liver toxicity in PDAC, when compared
to gemcitabine used without probiotics [119]. L. paracasei has also been shown to decrease
the IL-6 level in mice, which may contribute to inhibition of PDAC [119]. It is known that
chemotherapy induces atrophy of the gastrointestinal villi and disruption of the mucosal
barrier through increasing the levels of matrix metalloproteinase (MMP-9), NF-κB, IL-1β,
and TNF-α in the gastrointestinal mucosa [4,50,53]. Another study found that Lactobacil-
lus fermentum together with the prebiotic fructooligosaccharide alleviated 5-FU-induced
intestinal mucositis and improved intestinal barrier function [106].

In conclusion, gut microbiota-mediated immune responses play important roles in the
development of cancers and sensitivity to chemotherapy (Table 1). Therefore, additional
gut microbiota interventions may be a beneficial strategy for enhancing the efficacy of
chemotherapy in anti-cancer treatments.
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Table 1. The effects of gut microbiota on the efficacy and toxicity of chemotherapy through immune
regulation.

Cancer Species Model Drug Gut Microbiota Metabolites Mechanism Toxicity/Efficacy References

EL4 lymphoma, MC38
colon carcinoma, and

B16 melanoma

Subcutaneous injection
in mice

Oxaliplatin and
Cisplatin

Ruminococcus ↑ and
Alistipes ↑ - ROS production Enhance efficacy [114]

Metastasizing B16F10
melanomas and

non-metastasizing
MCA205 sarcomas

Subcutaneous injection
in mice CTX Lactobacillus johnsonii ↑

and E. hirae ↑ -
Promotes IL-17

production by CD4
T-cells

Enhance efficacy [111]

- Mice Irinotecan
Bacteroides vulgatus ↑

and Clostridium ramosum
↑

- β-glucuronidase
activates SN-38 Enhance toxicity [120]

- Mice MTX Overall abundance of
gut microbiota ↓ -

Gut microbiota
containsTLR2 agonist

PCSK
Enhance toxicity [121]

Mice colon cancer cell
line CT-26

Subcutaneous injected
in mice FOLFOX Prevotella ↑ 3-Oxocholic acid ↑

Significantly improved
the expression of P-

EGFR/P-ERK/c-MYC
and LOX

Reduce efficacy [67]

- Mice Paclitaxel Tyzzerella ↑, Romboutsia
↑ and Turicibacter ↑ SCFAs ↑ Increased anxiety-like

behavior Enhance toxicity [15]

Pancreatic cancer

Induction of pancreatitis
by intraperitoneal

injection into the right
lower quadrant of KC
transgenic mice for 7 h

Gemcitabine Lactobacillus paracasei ↑ -

Increase IFN-γ levels to
suppress Th2 cytokine

production and regulate
Th1/Th2 immune

balance

Enhance efficacy [119]

5. Clinical Application

The interactions between the gut microbiota or their derived metabolites with the
immune system mediate the pharmacological efficacy of chemotherapeutic agents. This
interaction is also a potential target for reducing the toxicity and enhancing the efficacy of
chemotherapy. To date, widely investigated gut microbiota interventions include ingestion
of probiotics/prebiotics, dietary interventions, Traditional Chinese Medicine (TCM), and
Fecal Microbiota Transplant (FMT). The positive results reported in biomedical research
offer greater opportunities for their future application in anti-cancer treatments (Figure 4).

Probiotics/prebiotics are known to modulate the gut microbiota and related metabo-
lites in cancer patients, which may interfere with the response to chemotherapy. A clinical
study has confirmed that the probiotics Bifidobacterium lactis Bl-04 and L. acidophilus NCFM
increased the intestinal production of butyrate by Faecalibacterium and Clostridiales in CRC
patients [122]. Other studies have shown that probiotics could alleviate the adverse effect
of chemotherapy in patients through modulation of the gut microbiota. Post-operative
probiotic administration with combined Bifidobacterium infants, Lactobacillus acidophilus,
Enterococcus faecalis, and Bacillus cereus tablets reduced chemotherapy-induced gastrointesti-
nal complications and gut microbiota imbalances in CRC patients [123]. Administration
of these probiotics effectively restored the gut microbe balance, with mild increases in
Bifidobacterium, Streptococcus, and Blautia. Furthermore, probiotics could also promote the
production of SCFAs, particularly increasing acetate, butyrate, and propionate. Another
study has found that probiotic supplementation with Bifidobacterium longum, L. acidophilus,
and E. faecalis reduced chemotherapy-related cognitive impairment in breast cancer pa-
tients [124]. These effects demonstrate that probiotics/prebiotics regulate the response to
chemotherapy through modulation of the gut microbiota. Furthermore, intervention with
probiotics regulates the response to chemotherapy through gut microbiota-related inflam-
matory factors. The probiotic Lactobacillus rhamnosus (Lcr35) reversed the dysbiosis of gut
microbiota after treatment with FOLFOX and down-regulated inflammatory factors such
as IL-6 and TNF-α in the intestine, thus alleviating intestinal damage [125]. Meanwhile, it
is known that B. longum can alleviate irinotecan-induced intestinal dysbiosis through re-
ducing the levels of IL-1β and IL-18 and re-establishing the intestinal mucosal barrier [126].
The study of Chen et al. has indicated that probiotic VSL#3 (a probiotic mixture containing
eight strains of probiotic bacteria) increased the abundance of bacterial-derived propionate
and butyrate. These metabolites increase the expression of CCL20, which upregulates the
recruitment of Th17 cells in lung endothelial cells, thus inhibiting the lung metastasis of
melanoma [127]. Moreover, probiotics/prebiotics interfere with efficiency of anti-CRC treat-
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ment by affecting the colonization of pathogenic bacteria such as Clostridium difficile and
Staphylococcus aureus in the intestine. Probiotics/prebiotics also act by regulating intestinal
immunity and affecting the production of SCFAs [128]. However, the beneficial effects of
probiotics/prebiotics on the human body are complicated by individual differences, and
the underlying mechanisms still require further elucidation [128].

Dietary interventions have been found to be closely related to tumorigenesis, devel-
opment, and cancer therapy. Considering the current status of pre-clinical research, most
investigations focused on dietary interventions have been carried out in rodent models.
The study of Meynet et al. showed that dietary restriction (DR) with 70% of the normal
quantity improved the sensitivity to BH3 mimetic therapy in mice with lymphomas [129].
On the other hand, a high-fat diet (HFD) increased the pathogenic bacteria Alistipes sp.
Marseille P5997 and Alistipes sp. 5CPEGH6 in mice and promoted the carcinogenesis of
colon cancer [130]. Further investigation revealed that HFD upregulated the synthesis of
Glycerophospholipid and increased the carcinogenic metabolite LPA in mice. Studies have
also found that DR changed the composition of the gut microbiota in mice and reduced the
expression levels of the inflammatory factors IL-10, IL-1β, TNF-α, IFN-γ, and IL-6, thus
relieving the MTX-induced enteric dysfunction [131]. Therefore, diet is an important factor
in modulating the composition of the gut microbiota, the production of metabolites by the
gut microbiota, and intestinal inflammation [132]. Due to the diversity of diets and the
complexity of the inner environment of individuals, the impact of diet on chemotherapy
needs further investigation in humans.

FMT with human fecal suspensions has been conducted to treat poisoning and diar-
rhea [133]. Furthermore, fresh or fermented fecal suspension is useful in reconstruction of
the gut microbiota balance [134]. However, the application of FMT in anti-cancer treatments
is still at a premature stage. A study has confirmed that transplantation of A. muciniphila
with FMT increased the levels of IFN-γ, IL-6, and TNF-α in serum after administration of
CDDP, thus enhancing CDDP’s efficacy in mice with Lewis lung cancer [135]. FMT also
significantly alleviated diarrhea and intestinal mucositis in mice after FOLFOX adminis-
tration [136]. With its ability to reconstruct the receptor microbiota, FMT is a promising
strategy for anti-cancer treatment. Moreover, two clinical studies have confirmed that FMT
enhances the anti PD-1 mAb response in patients with refractory melanoma [137–139].
However, FMT still faces issues such as abdominal discomfort and transmission of infec-
tions [140]. Meanwhile, FMT may transfer non-bacterial micro-organisms such as the gut
virome, which raises potential safety concerns [141]. As such, it is urgent to improve the
safety of FMT. Washed Microbiota Transplantation (WMT) increases the safety of fecal trans-
plantation through employing a fecal bacteria separation system to eliminate pathogenic
micro-organisms and phlogogenic factors. A clinical study confirmed that the use of WMT
reduced the AE caused by FMT [142]. It is possible to envisage that FMT and WMT may
undergo rapid development with the establishment of a fecal bank, a FMT registration
database, and the continuous involvement of systems biology technology.
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Figure 4. Clinical application of gut microbiota. The figure lists the intestinal microbiome interven-
tions that have been applied or are in progress. Probiotics/Prebiotics: An elevated level of Lactobacillus
casei, Bifidobacterium lactis, and Bifidobacterium longum is associated with reduced chemotherapy tox-
icity. Lactobionic acid serves as a carrier to enhance the inhibitory effect of doxorubicin against
liver cancer in vitro. Dietary intervention: a high-salt diet and a high-fiber diet inhibit the develop-
ment of colon cancer in mice, whereas a high-fat diet promotes cancer development. The ketogenic
diet enhances anti-tumor effect of PD-1 in melanoma mice. Traditional Chinese Medicine: Salvia
miltiorrhiza Bge increases the anti-tumor effect of PD-1 in mice with liver cancer. Coptis chinensis
Franch significantly inhibits the growth of gastric cancer in mice. Astragalus membranaceus inhibits
the development of colon cancer, while Gegen Qinlian Tang (GQD) enhances the anti-tumor effect
of PD-1 in CRC mice. Fecal Microbiota Transplant: Akkermansia muciniphila enhances the efficacy of
CDDP in mice with Lewis lung cancer. Butyricicoccus and Parabacteroides alleviate colorectal cancer.
Lactobacillus and Olsenella increase the anti-tumor efficacy of immune checkpoint blockade in mice
with colon cancer.

TCM has its own implications in gut microbiota interventions. It has been reported
that active constituents of TCMs, such as celastrol, ephedrine, polyphenols, and apigenin
exhibit anti-inflammatory effects through bacterial modulation [143]. A study has shown
that Astragalus membranaceus inhibited the development of colon cancer in mice through
inhibition of intestinal opportunistic pathogens such as Escherichia-Shigella, Streptococcus,
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and Enterococcus [144]. Gegen Qinlian Tang (GQD) is a classic TCM formula, which has
been shown to enhance the anti-tumor effect of PD-1 in CRC bearing mice through in-
creasing IFN-γ expression. Further research has revealed that the combined effect may be
related to the significant enrichment of s_uncultured_organism_g_norank_f_Bacteroidales_S24-
7_group [145]. Another example is Poria cocos polysaccharides (PCP), a TCM extract with
various bioactivities. PCP increased the relative abundance of specific gut bacteria such
as Bifidobacterium and Lactobacillus in colon cancer bearing mice, thus enhancing the effi-
cacy of 5-FU [146]. There is also a close interaction between TCM and the gut microbiota.
Several studies have found that TCMs have impacts on the composition of gut microbiota,
such as Bacteroidetes, Firmicutes, and the F/B ratio (Firmicutes/Bacteroidetes) [147,148]. The
gut microbiota can also metabolize TCMs, then convert carbohydrates and proteins into
metabolites which may have beneficial or harmful effects on human health [149]. However,
the use of TCMs still faces limitations such as limited understanding of the related mecha-
nisms, difficulty in absorption, and a lack of modern scientific validation of the inherent
complexity of TCMs. To address these issues, a comprehensive multi-omics platform based
on gut microbiota [150] and a database related to TCM–gut microbiota research [151] can
be used to characterize the active ingredients related to TCM, allowing for the eventual
identification of new TCMs for novel anti-cancer strategies [149]. With the development
of gut microbiota sequencing technology, fecal bacteria transplantation, precise editing of
the gut microbiota, and synergistic chemotherapeutic strategies based on gut microbiota
interventions are promising research areas for improving the outcomes of chemotherapy.

Taken together, immune homeostasis regulation-based gut bacterial intervention plays
important roles in the sensitivity to chemotherapy. The combination of beneficial gut
microbiota with chemotherapy may provide new therapeutic prospects for anti-tumor
treatment.

6. Conclusions

The critical contributions of the gut microbiota toward human immune regulation
in anti-cancer therapy have just begun to be elucidated, such as the immuno-regulatory
impact of the gut microbiota on bacterial translocation, metabolite derivation, secretion of
inflammatory cytokines, and so on [79]. As described in this review, the gut microbiota
affect drug metabolism, immune responses, and the generation of metabolites to improve
the efficacy of chemotherapy and reduce its side effects. Recent studies have focused on the
discovery of effective microbes for use in interventions to improve the efficacy of chemother-
apy and have made prominent achievements. Moreover, the composition and metabolic
activity of the gut microbiota can be used to predict the outcome of chemotherapy [116].
However, the mechanisms driving the interactions between the gut microbiota and the
immune system need further investigation. The limited availability of metagenomics and
insufficiency of bacterial metabolite functional annotations restrict the development of gut
functional microbiology. Meanwhile, the culture of gut anaerobes and aerobes is still a
major obstacle in vitro. In addition, the safe dose of gut microbes and their negative effects
are comparatively less well-understood. There are also ethical problems related to the
transplantation of fecal microbiota. Future work should, therefore, aim to determine the
underlying mechanism of the interactions between gut microbiota-mediated immune regu-
lation and the response to chemotherapy. Furthermore, a combination of high-throughput
sequencing, macrogenomics, and metabolomics may enhance our understanding of how to
optimize the immune response, allowing for the precise regulation of pro-chemotherapy
gut microbiota and, thus, providing a necessary perspective for improving the efficiency of
anti-cancer treatments.
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