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Abstract: Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups
from histones. They also influence the deacetylation of non-histone proteins, contributing to the
regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases,
including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their
potential as therapeutic targets. This paper reviews the structure and function of the four classes
of human HDACs. While four HDAC inhibitors are currently available for treating hematological
malignancies, numerous others are undergoing clinical trials. However, their non-selective toxic-
ity necessitates ongoing research into safer and more efficient class-selective or isoform-selective
inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired
potency and/or selectivity. These methods include ligand-based approaches, such as scaffold hop-
ping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships,
and structure-based virtual screening (molecular docking). Moreover, recent developments in the
field of molecular dynamics simulations, combined with Poisson–Boltzmann/molecular mechanics
generalized Born surface area techniques, have improved the prediction of ligand binding affinity.
In this review, we delve into the ways in which these methods have contributed to designing and
identifying HDAC inhibitors.

Keywords: histone deacetylases (HDACs); HDACs structure; HDACs inhibitors; molecular modeling;
drug design

1. Introduction

Histone deacetylases (HDACs), also known as lysine deacetylases (KDACs), are zinc
(Zn2+)-dependent or nicotinamide adenine dinucleotide (NAD+)-dependent proteolytic
enzymes. They are involved in transcriptional repression and chromatin condensation
mechanisms through controlling the acetylation state of lysine side chains in histone
tails [1]. Specifically, the HDAC protein family normally removes the acetate moiety from
acetylated ε-amino groups of histone lysine and other non-histone proteins, thus regulating
and modulating several pivotal biological signaling pathways [2]. After deacetylation,
the positively charged N-terminal residues of amino acids interact with DNA phosphate
groups, leading to the repression of gene transcription. By contrast, acetyltransferases
(HATs) carry out the acetylation of histone lysines, thus neutralizing the positive charge of
the lysine residue and relaxing the chromatin structure [3].

Moreover, HDACs can indirectly regulate other post-translational modifications
(PTMs) by releasing the acetyl group from lysine so that other PTMs, for instance ubiquiti-
nation, can mark on the loci [4].
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The enzymatic activities of HDAC isoforms are responsible for the maintenance of
several normal physiological processes, such as cell proliferation, apoptosis, neurogenesis,
and epigenetic regulations. An imbalance between histone acetylation and deacetylation
can lead to a variety of diseases, including neurodegenerative and cardiovascular disorders,
autoimmune diseases, metabolic disorders, diabetes, and cancer [5,6].

Due to their contributions in these pathophysiological conditions, HDACs have be-
come attractive and significant targets, especially in cancer research [7,8]. Specifically,
irregular HDAC expression and its abnormal deacetylation activity have become a very
popular and interesting topic for the prevention of cancer generation and progression [9,10].

Contemporary advancements in computational methods for designing HDAC in-
hibitors highlight innovative and multifaceted screening and design strategies. These
approaches markedly improve the quality of identified compounds as potential HDAC
inhibitors. Specifically, the use of multilayered computational methods reduces the risk of
false positive hits, enhancing the ability to select specific inhibitors through diverse filtering
and scoring functions. Thus, this review aims to investigate how the integration of diverse
approaches and methodologies has substantially enhanced the reliability of compounds
identified in the domain of HDAC inhibitor discovery.

1.1. Classification of HDAC Family

So far, according to their 3D structure, function, and sequence homology, 18 isoforms
of human HDACs have been identified. Based on their intracellular localization and tissue
distribution specificity, they can be divided into four subfamilies (Class I, Class II, Class III,
and Class IV) characterized by different biological functions (Figure 1) [11].
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Figure 1. Schematic classification of HDAC family.

Class I subfamily includes HDAC1, HDAC2, HDAC3, and HDAC8. These isoforms
are widely expressed in various tissues [12] and behave as repressors of gene transcription.
HDAC1 and HDAC2 are highly homologous and are involved in cell proliferation, cell cycle
regulation, and apoptosis [13]. HDAC3 plays a crucial role in cell cycle and DNA damage
response [14], while HDAC8 is responsible for smooth muscle cell differentiation [15]. The
Class II subfamily, which includes HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10,
can be further divided into two groups: Class IIa (HDAC4, HDAC5, HDAC7, and HDAC9)
and Class IIb (HDAC6 and HDAC10) [16]. Class IIa has only one catalytic domain, while Class
IIb members show two catalytic domains [17]. HDAC4 and HDAC5, which are members of
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Class IIa, are expressed in the brain, heart, and skeletal muscle (Kee et al., 2022), while
HDAC7 is predominantly present in the heart, lung, placenta, pancreas, skeletal muscle,
and thymus [18]. HDAC9 is mainly expressed in the brain and skeletal muscle [19]. On the
contrary, HDAC6 and HDAC10, which are representative of Class IIb, are expressed in the
heart, skeletal muscle and brain [20], and in the liver, spleen, and kidney, respectively [21].
HDAC11, the only Class IV enzyme, shows a high catalytic efficiency as a fatty acid acylase
and is present in the brain, heart, kidney, testis, and skeletal muscle [22].

The Class III subfamily is known as Sirtuins, due to its strong resemblance to the
yeast Sir2 protein. It contains seven members (SIRT-7) and uses NAD+ for its ADP-
ribosyltransferase and histone deacetylase enzymatic activities [23]. The SIR2 regulator
family is divided into four subclasses: I, II, III, and IV. Subclass I consists of SIRT1, SIRT2,
and SIRT3 proteins; subclass II contains SIRT4 protein; subclass III includes SIRT5 protein;
and subclass IV comprise SIRT6 and SIRT7 proteins [24]. SIRT1, SIRT6, and SIRT7 are mainly
present in the nucleus, SIRT2 in the cytoplasm, while SIRT3, SIRT4, and SIRT5 are located in
the mitochondria [25]. Classes I, II, and IV HDACs exert their catalytic activity by means of
Zn2+ ions and show a high homology of their catalytic core structural domain [26,27], with
more remarkable variations in the sequences and structures outside the catalytic domain.
By contrast, Class III HDACs are totally different from other HDACs [28,29], since they are
NAD+-dependent Sir2 super proteins and their deacetylase reaction does not need Zn2+

direct involvement [30].

1.2. HDAC Structure and Function

HDACs typically include a core structural domain known as the HDAC structural
domain, which consists of two highly conserved isoforms: the HDAC N-terminal structural
domain and the HDAC central structural domain [6]. Within the HDAC structural domain,
some catalytic sites, such as zinc ions and arginine residues, are crucial for their catalytic
activity [31]. On the other hand, the HDAC C-terminal structural domain represents a
more miscellaneous region, characterized by variations in length and amino acid sequences
among different HDAC types [32]. Moreover, HDACs can form complexes with various
proteins, including cell cycle regulatory proteins and transcription factors [33].

The earliest identified members of the Class I HDAC family include Rpd3 in budding
yeast, along with HDACs1–3 and 8 all tumbling into this class. Their N-terminus contains
the catalytic structural domains and exhibits a sequence conservation of 40–70% with the
catalytic domain of yeast Rpd3 [34]. Also, HDACs1-3 possess C-terminal extensions of
varying lengths, which can be subject to phosphorylation, enhancing their deacetylase
activity and influencing the formation of co-inhibitory complexes [35]. These three isozymes
are found within large multiprotein complexes [36]. HDAC1 and HDAC2 are exclusively
localized in the nucleus, while HDAC3 contains a nuclear localization signal (NLS) region
and a nuclear export signal (NES) region. Its localization may vary depending on cell
type and environmental conditions [37]. However, all three isozymes collectively play a
significant role as nuclear deacetylases.

HDAC8 differentiates itself from other Class I isozymes through the absence of a
C-terminal extension region. Notably, HDAC8 demonstrates significant histone deacetylase
activity and substrate selectivity even in its isolated form, suggesting a relatively inde-
pendent functional capacity [38]. Structural analysis through crystallography reveals that
the catalytic domain of Class I HDACs comprises approximately 400 amino acid residues,
sharing a common structural framework. This framework consists of a core featuring eight
parallel β-fold bundles forming a β-fold sheet, surrounded by more than thirteen α-helices
and elongated loops stemming from the C-terminus of the β-fold, thus creating a narrow
hydrophobic channel [4]. Within HDAC8, the hydrophobic channel is delineated by specific
residues, including Phe152, Phe208, His180, Gly151, Met274, and Tyr306. Contrastingly,
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in other Class I subfamily members (HDAC1-3), most residues within this channel are
conserved, except for Met274, which is substituted by leucine residues [39]. These con-
served hydrophobic residues characterize the binding sites for the substrate. In the catalytic
mechanism, the acetylated lysine of the substrate docks into the catalytic core pocket at the
bottom of the hydrophobic channel, interacting with the zinc ion bound therein. Under
normal physiological conditions, the hydrophobic channel accommodates the acetylated
lysine side chain, containing four methylene groups of the substrate. At the bottom of the
channel, the Zn2+ ion forms a chelate involving His180, Asp178, and Asp267 of HDAC, the
acetyl group oxygen of the substrate, and the water molecule oxygen participating in the
hydrolysis reaction. Aside from the substrate binding site and the zinc ion binding site,
two metal ion binding sites are found in the catalytic domain of HDAC (Site 1 and Site
2) [40]. Site 1 is located close to the zinc ion binding site, while Site 2 is on the periphery of
the catalytic domain, near the N-terminal end of the β-fold bundle. The presence of two
metal ions within the enzyme structure is crucial in promoting its stability. Additionally,
the metal ion located at Site 1 may potentially serve a functional purpose in the deacetylase
reaction. This suggests that the metal ions not only provide structural support, but also
contribute to the enzyme’s catalytic activity, making them essential components of the
enzyme’s overall functionality. The main function of Class I HDACs is to remove acetyl
groups from histones within complexes, thereby catalyzing enzymatic reactions. These
complexes play a crucial role in regulating HDAC activity and specificity, and are also
subject to regulation by other transcription factors. By means of this regulation, the com-
plexes are able to bind to chromosomes and precisely target specific temporal and spatial
locations for deacetylation. Besides, phosphatidylinositol, a conserved regulator within the
Class I HDAC co-inhibitor complex, has been found to enhance HDAC enzymatic activity.
However, it has been highlighted that effective activation of HDAC enzymatic activity
requires the presence of both co-inhibitors and phosphatidylinositol. The interactions of
phosphatidylinositol within the substrate binding channel alter the conformation of the
channel, facilitating substrate access to the catalytic active site [41]. The involvement of
polyinositol in this complex also hints at a possible connection between epigenetics and
cellular metabolism. It is worth noting that HDAC8, unlike other Class I isoenzymes,
has a higher catalytic efficiency for acyl-lysine substrates than for acetyl-lysine. Further-
more, HDAC8 operates independently of multiprotein complexes. What is particularly
interesting is that the three-dimensional structural model of human HDAC8 in the PDB
database reveals that the secondary structure consists of eleven or thirteen α-helices and
eight β-folds [42]. The analysis of the PDB database reveals several distinctive features of
HDAC8 compared to HDACs1-3 (Figure 2). Specifically, α-helix H1 in HDAC8 adopts a
conventional α-helix structure, while loop L1 is two amino acid residues shorter than that
of HDAC3. Additionally, loop L6 in HDAC8 contains a proline residue, causing the loop to
be slightly distant from the catalytic site. As a result, HDAC8 maintains a relatively open
catalytic pocket, which could potentially facilitate the access of substrate to its catalytic
core. These structural differences make HDAC8 more compatible with its catalytic core
and promote easier substrate access [43]. The elucidation of HDAC8’s crystal structure
is crucial for understanding the structural dynamics and catalytic mechanisms of zinc
ion-dependent HDACs, particularly within the Class I subgroup (Figure 3) [43]. Given
that HDAC8 shares substantial sequence identity with HDAC1 (40%), HDAC2 (41%), and
HDAC3 (41%), and that the catalytic activity centers of zinc ion-dependent HDACs are
conserved, the information obtained from HDAC8’s crystal structure can provide valuable
insights into this particular group of enzymes.
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Enzymes belonging to Class II are further divided into two categories: Type a and
Type b. The first Type encompasses HDAC4, 5, 7, and 9, while Type b comprises HDAC6
and HDAC10, which were recently discovered [46] (Figure 4). HDACs of Class IIa share
a common catalytic core structural domain located at their C-terminus. They also have
a unique and conserved N-terminal extension region, which contains multiple binding
sites. Specifically, this region includes the MEF2 (myogenic transcription factor 2) binding
site, which is crucial for inhibiting muscle cell differentiation. Additionally, the region
contains several phosphorylated serine sites that regulate enzyme localization and inter-
actions with transcription factors and co-blockers [47]. Class IIa HDACs can move easily
between the nucleus and cytoplasm. The catalytic domains of Class IIa HDACs and Class
I HDACs share similarities, featuring an α/β structure with several loops that form the
substrate binding channel and catalytic active site. The active site contains a single zinc
ion, whereas two potassium/sodium ion binding sites are also present. While the histone
deacetylation domain is conserved across Class IIa HDACs, the distinct catalytic activity
of this class remains incompletely comprehended [48]. Unlike Class I and IIb HDACs, IIa
HDACs feature a conserved histidine residue instead of a tyrosine residue at their active
site, leading to limited deacetylation activity [49,50]. However, this constraint does not
hinder their role as transcriptional repressors. In this regard, IIa HDACs contribute to
epigenetic functions not only through deacetylation but also by recruiting Class I HDACs
and interacting with transcription factors via their N-terminal binding site [51]. On the
other hand, HDAC6, belonging to Class IIb, is mainly observed in the cytoplasm and
comprises distinct structural domains such as NLS (localization signal region), NES1 and
NES2 (leucine-rich nuclear export signal regions), DD1 and DD2 (tandem deacetylation
catalytic regions), SE14 (serine–glutamate-containing tetradecapeptide repeat region), and
ZnF-UBP (ubiquitin-binding zinc finger structure) [52]. Despite containing a nuclear local-
ization signal, HDAC6’s cytoplasmic localization is primarily governed by NES and SE14,
facilitating its translocation and anchoring in the cytoplasm [53,54].

The role of hadC6 within the cytoplasm remained unknown for a considerable period.
However, in 2002, its characterization as a major histone deacetylase and its diverse array of
non-histone substrates, including α-microtubulin, cortactin, Ku70, and HSP90, were eluci-
dated [55]. Tubulin stands out as the principal substrate of HDAC6, influencing cytoskeletal
dynamics, intracellular transport, and cellular motility. By regulating microtubule assembly
and the localization of microtubule motor complexes, HDAC6 influences microfilament-
based cell motility and the interaction of cortical actin with microfilaments [56]. Thus, its
inhibition results in the hyperacetylation of microtubule proteins, enhancing intracellu-
lar vesicular transport, a process associated with neurological disorders like Parkinson’s
and Huntington’s disease [57]. Additionally, HDAC6 participates in crucial intracellular
signaling pathways, underscoring its cellular significance. Conversely, HDAC10 operates
as a transcriptional repressor, capable of shuttling between the nucleus and cytoplasm. It
harbors two conserved deacetylation catalytic domains at the N-terminal end. While the
C-terminal region shares sequence similarity with the N-terminal end, it lacks deacetylase
activity. The cytoplasmic localization is dictated by the leucine-rich domain situated at the
C-terminal end [58]. HDAC10 exhibits interactions with HDAC3 akin to Type a HDACs,
yet it possesses a distinct capability to function independently as a deacetylase.
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bound to a hydroxamic acid inhibitor (PDB code 2VQM) [59]; HDAC6 with catalytic domain 2 in
complex with Trichostatin A (PDB code 5EDU) [60]; HDAC7 catalytic domain in complex with
Trichostatin A (PDB code 3C10) [61].

HDAC11 is the only member of Class IV HDAC, which has fewer similarities to Class
I and II HDACs. Among the identified HDACs, HDAC11 is the shortest, and is primarily
comprised of the core catalytic domain that exhibits exclusive deacetylase activity [62]. This
protein can be found in both the nucleus and cytoplasm of cells and has tissue-specific
expression, with notable abundance in the kidney, heart, brain, skeletal muscle, testis, and
other tissues [63]. In vivo, HDAC11 can also form complexes with HDAC6 [64]. Despite
being the most recently discovered isoenzyme, HDAC11 remains one of the least studied and
understood proteins within the HDAC family, with its 3D structure currently unavailable.

Class III HDACs are a group of NAD+-dependent deacetylases, which are capable
of catalyzing the deacetylation of histone and non-histone substrates [65]. This class of
HDACs belongs to the Sirtuin protein family, which has seven members in humans and
are known as SIRT1–7. In yeast, this family is represented by the Sir2 protein [66]. For
human Sirtuin proteins SIRT1, 2, 3, 5, and 6, the crystal structures of their catalytic core
domains have been successfully resolved (Figure 5). These structures exhibit a well-organized
comprehensive configuration, which can be ascribed to the selective evolutionary process
and the preservation of the catalytically active region’s sequence. Specifically, their catalytic
structural domain shows an elliptical shape and comprises two large and two small structural
domains, each encompassing approximately 270 amino acid residues. The relatively conserved
large structural domain adopts a typical Rossmann fold structure, featuring a central β-sheet
and six β-strands. Additionally, this domain boasts several α-helices forming pockets for
NAD+ accommodation and binding. On the other hand, the smaller domain is more variable
and comprises two modules extending from the large structural domain, including a conserved
Zn2+ binding element and a region of α-helices with relatively high variability [67]. The zinc
finger structural domain is made up of three reverse parallel β-strands and one α-helix [68].
The highly conserved four-loop region connecting the structural domains forms the substrate
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binding pocket crucial for catalytic activity. Notably, the largest loop, i.e., a β1-α2 loop or
cofactor binding loop, is a part of the NAD+ binding site and has a highly dynamic structure,
which is critical for catalytic reactions.

Research has highlighted that SIRT1–3 display significant deacetylating activity, differ-
ing from the lower activity observed in SIRT5–7 [69]. According to several studies, different
SIRTs may exhibit higher activity toward novel acylations. Notably, SIRT4 does not show
any significant deacetylation activity. On the other hand, SIRT1–2 demonstrate significant
activity against various acylations. This suggests that different SIRTs may have distinct
functions and roles within cells, contributing to various biological processes [66]. Moreover,
SIRT2 has the ability to facilitate the removal of benzoyl groups from histone lysine both in
laboratory experiments and within living organisms [70]. SIRT5, a Sirtuin protein, offers
an array of enzymatic activities, including debenzoylation, which can modify specific
amino acid residues on target proteins. Furthermore, SIRT5 can act on different acyl-CoA
derivatives, such as malonyl, butanoyl, and glutaryl groups, providing a wide range of
regulatory functions. By contrast, SIRT4 and SIRT6 exhibit ADP ribosyltransferase activity,
a post-translational modification that can alter protein function and localization. Notably,
SIRT6 also exhibits debenzoylation activity on long-chain fatty acids, which can further
diversify its functional range of activity [71]. SIRT7’s deacetylation activity is triggered
by double-stranded DNA, resulting in histone H3 lysine 18 (H3K18) deacetylation within
chromatin. Moreover, rRNA can enhance SIRT7’s long-chain fatty acylation activity, poten-
tially exceeding its deacetylation activity [72]. The intracellular localization of the Sirtuin
family deacetylases is clearly established. SIRT1, which shares close resemblance with yeast
Sir2, has been the object of extensive research. SIRT3 is distributed in both the nucleus and
mitochondria [73], while SIRT4 and SIRT5 are predominantly mitochondrial [74]. SIRT6 ex-
clusively resides in the nucleus, whereas SIRT7 is specifically localized in the nucleolus [75].
In summary, the roles of SIRT1–7 in cells exhibit complexity and diversity [76].
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Figure 5. A 3D structure available for human Class III HDAC (SIRT-7). SIRT1 catalytic domain bound
to NAD and an EX527 analog (PDB code 4I5I) [77]; SIRT2 apoform (PDB code 3ZGO) [78]; SIRT3 in
complex with ADP-ribose (PDB code 4BN4) [79]; SIRT5 in complex with diazirine inhibitor 9 [PDB code
7X3P] [80]; SIRT6 in complex with ADP-ribose [81].
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HDACs are implicated in a range of diseases, spanning cancer, neurodegenerative
disorders, and inflammatory conditions, underscoring their potential as therapeutic targets
(Table 1) [82–86]. Particularly in cancer biology, their different functions are evident through
their commonly altered expression across a variety of tumor types, emphasizing their
significance as potential targets for cancer treatment (Table 2) [6,82,87–89].

Table 1. Diseases associated with each HDAC isoform.

Class I Zn2+-Dependent

Isoform Disease

HDAC1, HDAC2,
HDAC3, HDAC8

Cancer (prostate, gastric, colorectal, Hodgkin lymphoma, lung,
liver, acute lymphoblastic leukemia, breast, neuroblastoma);
Neurological diseases (Huntington’s disease, Amyotrophic
Lateral Sclerosis, Alzheimer’s Disease); Metabolic diseases

(Diabetes, obesity); Cardiovascular diseases

Class II Zn2+-Dependent

Isoform Disease

HDAC4, HDAC5, HDAC6,
HDAC7, HDAC9, HDAC10

Cancer (esophageal, colon, Hodgkin lymphoma, lung, acute
lymphoblastic leukemia, breast, medulloblastoma); Neurological
diseases (Huntington’s disease, Parkinson’s disease, Amyotrophic
Lateral Sclerosis, Alzheimer’s Disease); Cardiovascular diseases

Class IV Zn2+-Dependent

Isoform Disease

HDAC11 Cancer (breast, renal, liver); Neurological diseases (Multiple
Sclerosis); Cardiovascular diseases

Class III NAD+-dependent

Isoform Disease

SIRT1, SIRT2, SIRT3, SIRT4,
SIRT5, SIRT6, SIRT7

Cancer (breast, pancreatic, colon, glioma); Neurological disease
(Multiple Sclerosis); Metabolic diseases (Diabetes, obesity);

Cardiovascular diseases

As researchers delve deeper into the structural complexities of HDACs, they are grad-
ually uncovering distinctions among various subgroups and subtypes. This knowledge
offers a rational explanation for the selectivity of some HDAC inhibitors. For example,
a series of novel o-phenylenediamine HDAC inhibitors were found to selectively inhibit
HDAC1 and HDAC2 [90]. After conducting a detailed analysis of homologously modeled
HDAC1 and HDAC3, researchers have discovered a structural difference in an amino acid
located in the cavity at the bottom of the catalytically active center. This difference involves
the substitution of the Ser113 residue of HDAC1 with the Tyr96 residue of HDAC3, which
may serve as the structural basis for selectivity. Additionally, the lack of isoform selectivity
in most current HDAC inhibitors is due to the highly conserved amino acid sequence of
the catalytic active center of Zn2+-dependent HDAC [91]. On the other hand, the amino
acid sequence surrounding the active site entrance on the protein surface remarkably
differs among the isoforms. HDAC8, for example, has a shorter L1 loop near the active
center entrance than other Class I members, resulting in a more expansive entrance and
a more flexible protein surface. To develop inhibitors selective toward specific subtypes,
researchers are employing a successful strategy that takes into account the structural differ-
ences around the entrance to the active center of each HDAC8 subtype. A comprehensive
understanding of the structural differences of each HDAC isoform will also be invaluable
in creating potent and specific inhibitors (Table 3).



Pharmaceuticals 2024, 17, 620 10 of 48

Table 2. Description of the intricate role of each HDAC isoform in cancer biology and their distinct
expression patterns across diverse tumor types.

Class I Zn2+-Dependent

Isoform Role in Cancer Biology Expression in Cancer

HDAC1 (−) Apoptosis, (+) proliferation

Overexpressed in prostate
(hormone-refractory), gastric A, colorectal,

breast B, Hodgkin lymphoma, lung A,
and liver A cancer

HDAC2 (−) Apoptosis, (+) proliferation,
(+) aneuploidy

Overexpressed in colorectal A, gastric A,
prostvate A, Hodgkin lymphoma,

acute lymphoblastic leukemia

HDAC3 (−) Differentation, (+) proliferation

Overexpressed in lung, gastric A,
breast AB, Hodgkin lymphoma, acute

lymphoblastic leukemia
Downregulated in liver cancer

HDAC8 (−) Differentation, (+) proliferation Overexpressed in neuroblastoma

Class II Zn2+-Dependent

Isoform Role in Cancer Biology Expression in Cancer

HDAC4 (−) Differentation, (+) Angiogenesis Overexpressed in esophageal cancer

HDAC5 (−) Differentation, (−) Migration
Overexpressed in medulloblastoma

Downregulated in lung, colon cancer and
acute myeloid leukaemia

HDAC6 (+) Migration Overexpressed in breast cancer
Downregulated in lung cancer

HDAC7 (+) Angiogenesis
Overexpressed in acute
lymphoblastic leukemia

Downregulated in lung cancer
HDAC9 (+) Angiogenesis Overexpressed in medulloblastoma

HDAC10 (+) Angiogenesis Overexpressed in lung cancer

Class IV Zn2+-Dependent

Isoform Role in Cancer Biology Expression in Cancer

HDAC11 Overexpressed in breast, renal and
liver cancer

(+) Increased activity; (−) Reduced activity; A Independent prognosis indicator; B Associated with enhanced prognosis.

Table 3. Size (number of amino acids), residues involved in the Zn2+ coordination, cellular distribu-
tion, corresponding complex and chromosome location for each HDAC isoform [92–96].

Class I Zn2+-Dependent

Isoform Size (aa) Zn Coordination Cellular
Distribution Complex Chromosome

Location

HDAC1 482

His140
His141
Asp176
Asp264

Nuclear Sin3, NURD 1p34

HDAC2 488

His141
His142
Asp177
Asp265

Nuclear Sin3, NURD 6q21

HDAC3 428

His134
His135
Asp170
Asp259

Nuclear NCOR1/NCOR2-
GPS2-TBL1X 5q31

HDAC8 377

His142
His143
Asp178
Asp267

Nuclear Xq13
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Table 3. Cont.

Class II Zn2+-Dependent

Isoform Size (aa) Zn Coordination Cellular
Distribution Complex Chromosome

Location

HDAC4 1084

His802
His803
Asp840
Asp934

Nuclear,
cytoplasm NCOR1/NCOR2 q37.2

HDAC5 1122 Nuclear,
cytoplasm 17q21

HDAC6 1215

H610
H611

Asp649
Asp742

Nuclear,
cytoplasm Xp11.22–23

HDAC7 952

His669
His670
Asp707
Asp801

Nuclear,
cytoplasm NCOR1/NCOR2 12q13.1

HDAC9 1011 Nuclear,
cytoplasm p21–p15

HDAC10 669 Nuclear,
cytoplasm NCOR2 22q13.31

Class IV Zn2+-Dependent

Isoform Size (aa) Zn Coordination Cellular
Distribution Complex Chromosome

Location
HDAC11 347 Nuclear - -

Class III (SIRT) NAD+-Dependent

Isoform Size (aa) Cellular
Distribution Complex Chromosome

Location

SIRT1 747 Nuclear,
cytoplasm eNoSC

SIRT2 389 Nuclear,
cytoplasm

SIRT3 399 Mitochondria FoxO3A
SIRT4 314 Mitochondria

SIRT5 310

Nuclear,
cytoplasm,
mitochon-

dria

6p23

SIRT6 355
Nucleas,

endoplasmic
reticulum

SIRT7 400 Nuclear,
cytoplasm 17q25.3

Interestingly, as extensively documented in the scientific literature, the functions of most
HDAC isoforms undergo significant regulation through various post-translational modifi-
cations (PTMs), such as phosphorylations, acetylations, sumoylations and ubiquitinations.
Additionally, HDACs can form complexes with other proteins (Table 3), thereby modulating
their deacetylase activity [97]. In this context, multiple HDAC isoforms may participate
in these complexes, where one isoform can influence the activity of another. For instance,
research on human HDAC1 and HDAC2 has uncovered their coexistence in at least three dis-
tinct multi-protein complexes (Sin3, NuRD/NRD/Mi2 and CoREST), exerting mutual effects
on their activities [98]. Furthermore, Fischle et al. demonstrated that the enzymatic activity
of HDAC4, 5 and 7 relies on their association with the HDAC3/SMRT/N-CoR complex [99].
Specifically, the C-terminal zinc-binding domain of HDAC4 plays a critical role in substrate
recognition and its association with the HDAC3–NCoR corepressor complex [100].
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1.3. Mutation Effects on HDACs Biology

The dysregulation of HDACs, either through excessive or reduced activity, contributes
to tumorigenesis by affecting apoptosis, differentiation and angiogenesis [6]. In particular,
specific mutations can significantly alter the deacetylase activity of HDACs, thereby driving
tumorigenesis and promoting cancer development [101]. Indeed, these mutations alter the
dynamic regulation of histone acetylation and deacetylation processes catalyzed by lysine
acetyltransferases (KATs) and HDACs [101]. Notably, mutations in HDACs, like HDAC2,
HDAC4 and HDAC9, have been identified in various cancers (colon, breast, and prostate
cancer) [102–104]. For instance, the recurrent frameshift mutation in exon1 of HDAC2 is
particularly common in colon cancer and leads to a loss of measurable HDAC2 expres-
sion in mutant tumors [103]. This mutation confers resistance to HDAC inhibitors and
alters gene expression to promote tumorigenesis [105]. In this regard, in vitro experiments
demonstrated that HDAC2-deficient cells were unresponsive to HDAC inhibitors, such as
Trichostatin A. These cells did not exhibit increased acetylation of histones H3 and H4, and
their proliferation was not reduced compared to cells expressing wild-type HDAC2 [103].
On the other hand, mutations in other proteins, such as AT-Rich Interaction Domain 1A
(ARID1A), can also influence HDAC activity and therapeutic responses [106,107]. ARID1A
mutations are common in ovarian clear cell carcinomas (OCCCs) and endometrioid carci-
nomas (OECs), leading to loss of ARID1A protein expression and driving ovarian cancer
progression [106,107]. Together, elevated HDAC2 expression is associated with poor out-
comes in ovarian cancer [108]. Thus, given that EZH2 inhibition is synthetically lethal
with ARID1A mutation, and the EZH2-containing PRC2 complex interacts with HDAC2,
attempts were made to determine whether ARID1A regulates the interaction between
EZH2 and HDAC2. Co-immunoprecipitation (coIP) analysis demonstrated an interaction
between EZH2 and HDAC2 in ARID1A-mutated Ovarian Tumor-derived Cell Line 21G
(TOV21G), and the restoration of wild-type ARID1A disrupted this interaction, suggesting
that EZH2 did not interact with HDAC2 in ARID1A wild-type cells. Furthermore, ARID1A
knockout amplified the growth inhibition caused by HDAC2 knockdown in ARID1A wild-
type RMG1 cells while restoring wild-type ARID1A in ARID1A-mutated cells, reducing
sensitivity to HDAC2 knockdown [109]. Notably, the observed growth inhibition induced
by HDAC2 knockdown could be rescued by a short hairpin RNA (shRNA)-resistant wild-
type HDAC2, but not by a catalytically inactive mutant HDAC2 H142A [110]. Given
the involvement of the catalytic site, the sensitivity of HDAC2 to SAHA was evaluated
in preclinical models of ARID1A-mutated ovarian cancers. ARID1A-mutated cells ex-
hibited significantly lower half-maximal inhibitory concentration (IC50) of SAHA than
ARID1A wild-type cells. Furthermore, SAHA treatment effectively inhibited the growth of
xenografted ARID1A-mutated tumors and improved survival in mice bearing orthotopi-
cally transplanted ARID1A-mutated tumors, suggesting potential for achieving selectivity
with pan-HDAC inhibitors in ARID1A-inactivated cells [109].

1.4. HDACs, HDACIs, Metabolism and Emerging Technologies like Omics

Histone acetylation and deacetylation processes are highly sensitive to changes in
metabolite levels, which can impact the effectiveness of histone deacetylase inhibitors
(HDACis) and the intrinsic HDAC activity. Additionally, HDACs have demonstrated regu-
latory effects on proteins beyond histones, including enzymes participating in metabolic
pathways. There are several examples of metabolic pathways influenced by HDAC activ-
ity [111]. For instance, in several cancers, such as hepatocellular carcinoma (HCC), height-
ened aerobic glycolysis contributes to increased tumor growth, a phenomenon known
as the Warburg effect [112]. The gluconeogenesis pathway suppresses aerobic glycolysis;
hence, the inhibition of gluconeogenesis can further increase cancer cell growth. Yang et al.
identified elevated levels of HDAC1 and HDAC2 in HCC tissues. HDAC1 and HDAC2
inhibit Fructose-1,6-bisphosphate (FBP1) expression, the key enzyme in the gluconeogene-
sis pathway, through histone H3K27 deacetylation at the FBP1 enhancer. This repression
of gluconeogenesis promotes aerobic glycolysis and cancer progression. Knockdown of
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HDAC1 and HDAC2 resulted in increased FBP1 expression and reduced cell growth in
HCC cell lines [113]. Thus, these deacetylases are not only implicated in epigenetic mod-
ifications, but also in metabolic or, for example, immune modulation [113]. Therefore,
understanding the impact of HDACs on cancers through metabolic or other processes
can reveal new potential targets [111]. Consequently, computational -omics techniques
encompassing genomics, transcriptomics, proteomics, metabolomics and epigenomics can
play crucial roles in elucidating the HDACs functionality and the inhibitory activity of
HDACis, especially in the context of specific mutations [111]. For instance, transcriptomics
can identify gene expression changes upon HDAC inhibition, while metabolomics can re-
veal metabolic alterations influenced by HDAC activity. Moreover, epigenomics techniques,
like Chromatin Immunoprecipitation Sequencing (ChIP-seq), can elucidate the genomic
regions targeted by HDACs [114].

Various -omics approaches have begun to elucidate the underlying mechanisms of ther-
apeutic or toxic effects associated with HDACis. These inhibitors modulate the expression
of genes involved in diverse biological pathways, including cell cycle regulation, cell death,
metabolism, and stress responses in cancer cells [114]. Beyond epigenomic and transcrip-
tomic profiling, recent advancements in proteomics, metabolomics and chemoproteomics
have provided datasets relevant to HDACis (Table 4) [114].

Table 4. Omics system technologies used to analyze HDACs and HDACis.

Omics Analysis Detecting

Chemoproteome MS, beads MS, MudPIT Protein/HDACi
interaction

Epigenome
ChIP-seq, ChIP-qPCR, ChIP-chip,

DNase-seq, MNase-seq, ATAC-seq,
MBD-seq, RNA-seq, NA-seq, HT-FAIRE

Histone modification
and chromatin

accessibility
Acetylome Protein modification

Transcriptome

Microarray, miRNA microarray,
miRNA-seq, mRNA-seq,

splicing-sensitive microarray, TempO-seq,
GRO-seq, ChIP-seq

Gene expression

Proteome LC-MS/MS, SILAC, HSMS, MS
acetylome Protein expression

Metabolome MS metabolomics, NMR,
LC/GC-MS/MS Metabolic physiology

MS (mass spectrometry); MudPIT (Multidimensional protein identification technology); ChIP (Chromatin im-
munoprecipitation); MNase (micrococcal nuclease); ATAC (assay for transposase-accessible chromatin); MBD
(Methyl-CpG Binding Domain); FAIRE (formaldehyde-assisted isolation of regulatory elements); TempO (tem-
plated oligo assay); GRO (Global run-on); LC-MS/MS (liquid chromatography–tandem mass spectrometry);
SILAC (Stable isotope labeling by amino acids in cell culture); HSMS (High-Resolution Mass Spectrometry); NMR
(nuclear magnetic resonance); GC (gas chromatography) [114].

For example, Zhu et al. conducted multi-omics analyses involving bulk RNA sequenc-
ing (RNA-seq), transposase accessible chromatin sequencing (ATAC-seq), and H3K27ac-
targeted cleavage under targets and tagmentation sequencing (CUT&Tag-seq) in HDACi-
treated CAR-T cells, revealing comprehensive epigenetic remodeling and functional al-
terations, including changes in chromatin accessibility, transcription factor interaction
networks and regulation of T cell differentiation. Also, specific HDAC inhibitors, like
M344 and Chidamide (selective class I inhibitors), notably suppressed HDAC1 expression
in CD19-28ζ CAR-T cells [115]. Regarding metabolism, inhibition of HDAC activity by
HDACis can affect various metabolic processes. Amoedo et al. demonstrated that sodium
butyrate (NaB) and Trichostatin A (TSA) treatment of lung cancer cells led to increased oxy-
gen consumption coupled with ATP synthesis, activation of the pentose phosphate pathway
(PPP), and enhanced mitochondria-bound hexokinase activity, promoting glycolysis [116].
Also, a study conducted by Wardell et al. examined the impact of HDACis valproate (VPA)
and suberoylanilide hydroxamic acid (SAHA) on metabolism within the context of multiple
myeloma. These HDACis elicited various metabolic changes in the cells, including reduced
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levels of acetyl-CoA, a decreased expression of glucose transporter type 1 (GLUT1) and the
inhibition of hexokinase 1 (HXK1) activity [116]. The latter two effects are associated with
diminished glucose uptake and glycolysis, processes essential for energy production in
cancer cells [117]. On the other hand, some metabolites can regulate HDAC and HDACi ac-
tivity. For instance, trapoxin (TPX) acts as an irreversible inhibitor of HDAC1 and HDAC4
by covalently binding to these targets [118,119]. Additionally, metabolism can enhance the
activity of specific HDACis, such as the reduction of the disulfide bond in depsipeptide
to create an active compound like romidepsin, which exhibits potent anticancer effects in
leukemias and lymphomas [120,121]. In summary, employing systems technologies like
proteomics and metabolomics is instrumental in fully understanding the mechanism of
action of HDAC inhibitors and evaluating their therapeutic activity [111].

2. HDAC Inhibitors

HDAC inhibitors (HDACis) are a class of pharmacological agents that have shown
great potential in the treatment of cancer. These compounds primarily function by altering
the acetylation status of histones, which play a crucial role in regulating gene expression.
By modifying histone acetylation, HDACis can induce changes in chromatin structure,
leading to the activation of silenced genes and the inhibition of genes that promote cell
proliferation. HDACis have been shown to exert their anticancer effects through a variety
of mechanisms, including apoptosis, cell cycle arrest and autophagy [122,123]. Clinical
trials have primarily focused on developing targeted Class I/II HDAC inhibitors, such as
isohydroxamic acids like SAHA and cyclic peptides. These inhibitors have shown the most
promising activity in inhibiting HDACs. However, they face several challenges, such as
low bioavailability, rapid metabolism, irreversible differentiation, and lack of selectivity
towards cancer cells. Therefore, it is crucial to explore the various functions of different
HDACs to develop more effective and selective HDAC inhibitors. Additionally, HDAC
inhibitors have exhibited effects on various cells and genes, indicating multiple antitumor
mechanisms [124], including apoptosis and autophagy induction [125], tumor cell cycle
arrest [126], and the inhibition of tumor cell angiogenesis [125]. For cell death in many
cancer cells, HDACis can activate either the extrinsic pathway, influencing the receptor
death pathway, or the intrinsic pathway, affecting the mitochondrial pathway [127]. Over
the past few years, many HDAC inhibitors have been created either synthetically or by
extracting them from natural sources [128]. The first natural hydroxamic acid known to
inhibit HDACs was Trichostatin A (TSA). Vorinostat (suberoylanilide hydroxamic acid,
SAHA), structurally similar to TSA, was the first FDA-approved HDAC inhibitor for the
treatment of refractory cutaneous T-cell lymphoma (CTCL) [129]. At present, the US Food
and Drug Administration (FDA) has given its approval to four HDACis for the treatment of
various hematologic tumors as well as certain solid tumors (Figure 6) [130,131]. Moreover,
Tucidinostat was approved in 2015 by the China Food and Drug Administration (CFDA) in
the treatment of certain cancers [132].

Over the past two decades, there has been a significant expansion in the compound
library of Zn2+-dependent HDAC inhibitors (HDACis). Despite the various structures of
these compounds, whether synthesized or naturally occurring, a shared pharmacophore
model predominates among most Zn2+ HDACis (Figure 7). This model comprises three
essential elements:

(1) the cap structure (Surface Recognition Domain), which typically constitutes a hy-
drophobic aromatic moiety that interfaces with the enzyme surface;

(2) a Zn2+ binding group (ZBG), such as isohydroxamic acid, carboxylic acid, or benza-
mide, coordinating the Zn2+ ion at the enzyme catalytic center;

(3) a Linker, which may be a saturated or unsaturated linear chain or a hydrophobic long
chain with a ring structure, connecting the cap structure to the ZBG [133,134].
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Studies on co-crystalized complexes of isohydroxamic acid HDACis and HDACs
have elucidated the interaction between the cap structure and the amino acids proximal
to the enzyme catalytic site. Meanwhile, the ZBG structure binds to the metal ion at the
bottom of the active site to form the complex [45]. The linker is a crucial component that
plays a significant role in positioning the ZBG group within the active region of HDACs.
The optimal length of the linker is of utmost importance, as it helps the ZBG group to
chelate with Zn2+ and to establish hydrogen bonds with amino acids like histidylic acid
and tyrosine. The long linker chain interacts with amino acid residues, occupying the
active site, through forces like van der Waals interactions. On the other hand, the cap
structure functions as a cover for the entrance to the enzyme active site [45]. HDACis
work by competitively inhibiting the binding of acetyl-lysine residues of the substrate
to the enzyme active site. However, alterations in any of the three components of the
HDACis pharmacophore can influence their activity or selectivity, which can affect their
therapeutic efficacy and safety. Isohydroxamic acid, benzamide, carboxylic acid, sulfhydryl
groups, ketones, and epoxides are typical groups for ZBG. A comparative analysis of
clinical HDACis SAHA, entinostat (MS275), and valproic acid, utilizing isohydroxamic acid,
benzamide, and carboxylic acid as chelating groups, respectively, underscores significant
differences in their inhibitory activity against HDACs. Notably, isohydroxamic acid exhibits
the most potent zinc ion chelation capability [135]. Linker structures can differ in terms of
their structural characteristics, such as lengths, saturation, unsaturation, linearity, cyclicality,
and modifications. Scientists have found that modifying the linker can significantly affect
the activity of an HDACi, making it more or less effective. Some of the most commonly
used types of linkers include aliphatic chains, aromatic rings and vinyl–aromatic rings [136].
Docking and energy-optimized pharmacophore localization studies have revealed that
a higher affinity for the target can be obtained with inhibitors containing at least one
aromatic ring in their linker region. Moreover, the most effective enzyme inhibitory activity
was observed when the carbon number of the linker region (n) is six. Phenyl, naphthyl
and thiophene groups in the cap groups enhance the hydrophobic and high capacity
of compounds, leading to improved HDAC inhibition. Additionally, the presence of
substituents with higher lipophilicity, such as trifluoromethyl, tend to result in stronger
HDAC inhibition. The effect is even more pronounced when methoxy and trifluoromethyl
substitutions occur in the cap group at the adjacent, inter-, and para-positions. Lipophilicity
unequivocally amplifies the hydrophobic interaction between the HDAC active site and
its inhibitor, resulting in a marked increase in the inhibitor activity [137]. It is important
to improve our understanding of the HDACi inhibition mechanism to develop drug
compounds more effectively. One way to achieve this is by combining the pharmacophore
model of HDAC inhibitors with structural insights into the enzymatic active region. This
widely accepted approach enables the rational design and optimization of HDAC inhibitors
by modifying their structure based on the three components of the pharmacophore.

The ZBG plays a pivotal role in the inhibitory activity of HDACis by binding to Zn2+

and its adjacent residues [46]. Using the type of ZBG to classify the six HDACIs, three
primary categories are obtained (Table 5):

(1) Isohydroxamic acids, which encompass SAHA, Belinostat (PXD101), and Panobinostat
(LBH589);

(2) Benzamide derivatives, exemplified by Mocetinostat (MGCD0103) and Chidamide;
(3) Cyclic peptides, represented by romidepsin (FK228) [138].

Moreover, there are multiple HDACi drugs currently being studied in preclinical and
clinical trials [139].
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Table 5. A 2D chemical structure, related disease and selectivity of current HDAC inhibitors divided
by chemical class (hydroxamic acids, benzamides, short-chain fatty acids, and cyclic tetrapeptides).

Class Inhibitor 2D Structures Selectivity Disease

Hydroxamic acids

Vorinostat
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Table 5. Cont.
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2.1. Isohydroxamic Acids

Isohydroxamic acid-based HDAC inhibitors have been extensively studied and are
widely used due to their ability to inhibit nearly all Zn2+-dependent HDACs belonging to
Classes I, II and IV. These inhibitors are known to be broad-spectrum inhibitors and are rec-
ognized as highly effective in regulating gene expression, cell differentiation and cell death.
Unfortunately, this wide-ranging inhibition also gives rise to several adverse side effects.
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Despite these drawbacks, these drugs show potent antitumor effects and are frequently
incorporated into combination therapies with various anticancer agents, amplifying their
antitumor efficacy [140]. The hydrophobic channel of HDAC plays a crucial role in its
physiological function by accommodating the acetyl-lysine side chain of the substrate. Zn2+

forms a five-tooth chelate at the bottom of the channel. However, when the isohydroxamic
acid of HDAC inhibitors is present, the hydrophobic channel becomes occupied by the
inhibitor’s hydrophobic linker competitively, while the ZBG of the inhibitor is chelated
the zinc ion. Specifically, the isohydroxamic acid group, beyond forming a strong diph-
thong chelate with Zn2+, can be involved in oxygen bonds with His142, His143 and Tyr306.
Thus, the isohydroxamic acid group acts as a ZBG and shows several advantages, such as
unexacting synthesis, excellent in vitro stability, strong zinc binding and elevated solubil-
ity [141]. However, isohydroxamic acid groups show some negative aspects to consider.
They act as a non-selective ZBG, also binding to other zinc-dependent enzymes, such as
aminopeptidases, matrix metalloproteinases and carbonic anhydrases, with the appearance
of unwanted side effects. Furthermore, isohydroxamic acid is susceptible to hydrolysis
and glucuronidation, resulting in unfavorable pharmacokinetic characteristics and reduced
in vivo efficacy [142]. Regarding the linker domain of isohydroxamic acid, either linear
or cyclic structures, as well as saturated or unsaturated configurations, can be observed.
Regarding the linear, straight-chain linker isohydroxamic acid HDAC inhibitors, the cap
structure plays a pivotal role in compound modification and optimization, resulting in a
diverse range of HDAC inhibitors. The flexibility of linear linkers enables them to interact
more effectively with the surface amino acid residues, and this is crucial for HDAC activity.
Due to this, in designing HDAC inhibitors, more complex cap structures such as branching
caps are often employed. These cap structural domains usually consist of hydrophobic
groups, specifically aromatic moieties. By incorporating these cap structures, the inhibitors
can be optimized for their potency and selectivity towards HDAC enzymes [143].

In 2006, the US Food and Drug Administration (FDA) approved the clinical use of
SAHA (Suberoylanilide Hydroxamic Acid) for the treatment of the cutaneous T-cell lym-
phoma. SAHA, also known as Vorinostat, was developed by Merck and represented the
first approved HDACi [144]. This compound has shown potential in treating hematologic
cancers, with a different efficacy in B-cell lymphomas, such as diffuse large B-cell lym-
phoma, follicular lymphoma and mantle cell lymphoma. For solid tumors like prostate and
pancreatic cancers, SAHA has demonstrated the inhibition of the Akt/FOXO3a signaling
pathway, which stimulates apoptosis in prostate tumor cells [145]. Additionally, SAHA
plays a crucial role in inducing autophagy in tumor cells and preventing acute graft-versus-
host disease. However, it is associated with significant toxicity, including fatigue, diarrhea,
anorexia, bone marrow suppression and thrombocytopenia, due to its broad-spectrum
inhibitory capacity [146]. Recent research has shown a promising potential in enhancing
the selectivity of HDAC inhibitors, or developing new ones based on SAHA’s fundamental
pharmacodynamic moiety. For instance, by replacing the hydrogen atom (H) at the C2
position of SAHA’s hydrophobic long chain with aliphatic or aromatic hydrocarbons, a
new analog named C2-R-SAHA was created. This analog has shown the ability to enhance
its selectivity for HDAC6 and 8 [147]. Thanks to the molecular docking approach, highly
conserved active catalytic regions across all HDAC isoforms were observed, with class I
HDAC exhibiting a narrower hydrophobic channel than HDAC6. Thus, by substituting
aliphatic hydrocarbons on the hydrophobic chain of SAHA, it is possible to increase the
barrier to the catalytic channel, which in turn impedes the catalysis of compounds HDAC1,
2 and 3. Similarly, by replacing unsaturated hydrocarbons on aromatic, cyclic, or adjacent
isohydroxamic acid groups, it is possible to enhance the selectivity of HDAC6, as observed
in tubastatin A [148]. Interestingly, Trichostatin A (TSA) shares its structure with SAHA,
but displays significantly stronger HDAC inhibition activity. This increased activity is
largely attributed to the bridging region of TSA, which includes a diene and an R-type
methyl group. However, researchers have determined that these features alone do not fully
explain the potency of TSA. The arylamine ring in the surface recognition region may also
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play a significant role in its effectiveness by interacting with amino acid residues in the
enzyme capsule [149].

2.2. Benzamide Derivatives

Benzamide inhibitors are a new promising class of HDACis, characterized by en-
hanced selectivity and, thus, by reduced side effects. Specifically, they showed a higher
selectivity towards HDAC1 and 2 than conventional isohydroxamic acid counterparts
thanks to their unique N-(2-aminophenyl) benzamide pharmacodynamic group. Through a
molecular docking study, Bass et al. suggested that benzamide inhibitors exhibit a distinct
binding mode to histone deacetylase-like protein (HDLP), differing from isohydroxamic
acid analogs [150]. Interestingly, their binding does not involve interactions with Zn2+.
According to the docking findings, benzamides interact with the two benzene rings of
Phe141 and Phe198 residues, narrowing the active pocket and obstructing the channel of
the N-terminal Lys acetylation side chain of histone, the physiological substrate of HDAC.
Such orientation allows for the formation of a hydrogen bond with either Tyr91 or Glu92,
while the intermediate benzene ring adopts a sandwich structure with Phe141 and Phe198.
This specific binding confers consistent selectivity to benzamide-based inhibitors compared
to isohydroxamic acid inhibitors targeting Zn2+, thereby reducing toxicity.

The 3D structures of HDAC2 inhibitor complexes disclose the arrangement of the
HDAC2 active site, comprising an approximately 8Å-long hydrophobic channel with the
catalytic site containing the Zn2+ and an adjacent inner cavity termed the “foot pocket,”
spanning approximately 14 Å. During inhibition, benzamide inhibitors deeply penetrate
this cavity, with the o-amino group and carbonyl oxygen participating in Zn2+ chelation.
Conversely, one side of the aromatic ring enters the catalytic “foot pocket,” prompting the
repositioning of its residues to accommodate the aryl portion. In contrast, the structural
characteristics of SAHA hinder its access to the catalytic foot pocket, explaining its lack
of specificity in inhibiting HDAC2 [151]. Intramolecular hydrogen bonding can influence
the effectiveness of benzamide inhibitors over time, unlike SAHA, which has a Zn2+

chelating group at the top of its molecule. This eliminates the need for extensive protein
rearrangement or the breaking of internal ligand hydrogen bonds during the formation of
drug-target complexes. The isohydroxamic acid of SAHA can directly bind to Zn2+ at the
bottom of the hydrophobic channel and replace the bound water, resulting in rapid binding
kinetics for ligands containing isohydroxamic acid esters. Benzamide inhibitors, however,
must break their intramolecular hydrogen bonds before chelating with Zn2+. Furthermore,
their large molecular size and curved hydrophobic channels limit their ability to rapidly
bind the zinc ion [45].

Chidamide represents the pioneering oral inhibitor of histone deacetylase with sub-
type selectivity. It has been approved for clinical trials by the State Food and Drug Ad-
ministration (China Food and Drug Administration, CFDA) [152]. Chidamide falls un-
der the category of benzamide histone deacetylase subtype-selective inhibitors and it is
characterized by its distinctive chemical structure. Known chemically as N-(2-amino-4-
fluorophenyl)-4-[1]benzamide, Chidamide exhibits potent antitumor efficacy associated
with low cytotoxicity relative to its counterparts. Its primary targets include subtypes 1, 2
and 3 of Class I HDACs and subtype 10 of Class IIb [153]. Moreover, Chidamide can induce
the differentiation of tumor stem cells and reverse epithelial-mesenchymal phenotypic
transformation (EMT) in tumor cells, thereby reinstating drug sensitivity in resistant tumor
cells and impeding tumor metastasis and recurrence. This mechanism is attributed to its
inhibition of relevant HDAC isoforms, elevation of chromatin histone acetylation levels,
and initiation of chromatin remodeling, consequently inducing epigenetic alterations that
disrupt the tumor cell cycle and promote apoptosis. Also, Chidamide demonstrates modu-
latory effects on cellular immunity, enhancing the activity of natural killer (NK) cells and
antigen-specific cytotoxic T cells (CTLs) in mediating tumor cell elimination.
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2.3. Cyclic Peptides

Cyclic peptides, the most structurally intricate class of HDAC inhibitors, can be cate-
gorized into two groups based on the presence of the 2-amino-8-oxo-9, 10-epoxy-decanoyl
(Aoe) moiety. In the first group, including cyclic peptides with the Aoe moiety, trapoxin A,
trapoxin B and WF-3161 can be mentioned. Apicidin and depsipeptide are examples of the
second group, consisting of cyclic peptides without the Aoe moiety. Both peptide groups
bind to HDACs similarly to isohydroxamic acids but with distinct mechanisms [154]. The
spatial arrangement of Aoe-containing cyclic tetrapeptide macrocycles exhibits a config-
uration with D-amino acids and cycloamino acids, a spacer region adjacent to the amino
acids, and numerous internal hydrogen bonds, resulting in a constricted 12-membered
cyclic structure. Indeed, the presence of D-configured amino acids appears crucial for
tight binding to the cap activation site edge. Some Aoe-containing inhibitors, for HDAC
binding, require an epoxy keto group, a large cyclic peptide structure capable of binding
to the duct entrance “groove,” a keto carbonyl group for interaction with Zn2+ and polar
amino acid residues in the HDAC duct, and an epoxy group for alkylating the HDAC
active site, thereby irreversibly inhibiting enzyme activity. Notably, substituting the epoxy
keto group with isohydroxamic acid renders HDAC inhibition reversible [155]. Cyclic
peptide HDAC inhibitors predominantly employ larger cyclic peptide structures as Cap
groups. FK228, extensively studied, does not adhere to the classical pharmacophore model
of HDAC. In vivo, it necessitates hydrolysis to release the sulfhydryl moiety of the zinc-
chelating group, enabling effective chelation with zinc metal ions for enzyme inhibition.
The larger cap group enhances interaction with amino acids at the active pocket periphery,
thereby increasing target affinity [156]. Also, these inhibitors exhibit subtype selectivity
for the HDAC family, showing potent inhibitory activity for Class I HDACs while poorly
inhibiting Class IIb HDACs, particularly HDAC6. Thus, this selectivity offers insights
into designing selective HDAC inhibitors. However, the design and synthesis of these
inhibitors face challenges due to the complexity and poor drugability resulting from their
large molecular skeleton and mass.

In 2012, the US FDA approved romidepsin (FK228), an atypical HDACi targeting Class
I, for treating cutaneous T-cell lymphomas (CTCL) and peripheral T-cell lymphomas [157].
It derives from Gram-negative pigmented bacillus No. 968 and possesses a caged bicyclic
phenolic peptide structure with rare disulfide bonds. These bonds are activated within
human cells post-metabolism [158]. FK228, a precursor drug, exhibits greater stability than
its reduced form, Red-FK228. The disulfide bond facilitates efficient diffusion across the
cell membrane. Upon entering the cell, FK228 undergoes activation through glutathione
reduction, allowing the Red-FK228 free sulfhydryl group to interact with the Zn2+ active
site, thereby preventing HDAC from binding to the substrate.

2.4. Future Perspectives and PROTACs

Despite the considerable progress made, numerous unresolved issues in the explo-
ration of HDAC inhibitors (HDACis) remain. Primarily, the majority of HDACis currently
available are broad-spectrum inhibitors. In fact, these compounds compete for Zn2+ within
the enzyme active site, lacking specificity towards distinct isoforms. By disrupting specific
HDAC activities crucial for protein–protein interactions, a degree of selectivity for HDAC
isoforms can be reached [159]. As previously highlighted, HDAC1, 2, and 3 are subunits
within multiprotein complexes localized in the nucleus, and dislodging HDACs from
these complexes significantly decreases enzyme activity. Thus, inhibiting the assembly of
these complexes can partially block HDAC activity. Inositol phosphate is a well-conserved
regulatory factor found within a complex of multiple proteins. It has a significant impact
on enzyme activity. Indeed, by interacting with arginine residues close to the active site
access, inositol phosphate is crucial for forming the complex and activating the enzyme.
Therefore, the disruption of this interaction may intensify the inhibitory effect on HDAC1,
2 and 3, which can have negative consequences on enzyme activity.
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Generally, HDAC inhibitors employ Zn2+-binding groups like isohydroxamic acid,
thiol, carboxylic acid, ketone, or 2-aminoaniline. However, these functional groups may
also strongly bind to other essential metalloenzymes, culminating in cytotoxicity and
limiting the clinical utility of HDACis [160]. Combination therapy stands as a pivotal
strategy to enhance efficacy, mitigate adverse effects, and neutralize drug resistance in
tumor treatment. Extensive research has delved into combining HDACi with diverse drug
categories, including antimetabolites, antimicrotubule drugs, topoisomerase II inhibitors,
DNA cross-linking agents like cisplatin, HSP90 antagonists, and targeted therapies [161].
Also, HDACis have demonstrated synergy with the transcriptional regulator all-trans
retinoic acid, DNA demethylating agents, and Bcr-Abl kinase inhibitors [162]. In summary,
these results highlight the potential of HDACi combination therapy as an optimal thera-
peutic approach, exploiting synergistic effects to improve antitumor efficacy and overcome
resistance to conventional treatments. Several combination drug regimens based on HDAC
inhibitors (HDACi) are currently in clinical studies [163]. Thus, HDACis are progressively
emerging as a promising novel therapeutic agent for tumors, showing broad potential in
anticancer therapy.

In addition to isoform selectivity, HDAC1, HDAC2, and HDAC3 are present in vivo
within seven distinct corepressor complexes, introducing an additional layer of complex-
ity [164]. These different corepressor complexes play distinct physiological roles in cells,
suggesting that targeting specific HDAC-containing corepressor complexes may be crucial for
discovering new HDAC therapies with better efficacy and fewer side effects [165]. The future
contributions of Proteolysis Targeting Chimeras (PROTACs) in this area are of particular inter-
est. PROTACs, designed to degrade target proteins, generally include three components: a
ligand to bind the protein of interest (POI), a ligand to trigger protein degradation (commonly
an E3 ligand), and a linker covalently connecting these two ligands (Figure 8). Through the
polyubiquitination of lysine amino acids on the POI, PROTACs facilitate eventual degradation
by the proteasome. This ubiquitin transfer to the POI relies on the protein–protein interaction
between the POI and E3 ligase mediated by the PROTAC [166].
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For instance, the pan-BET inhibitor JQ1 functions broadly across BET proteins; how-
ever, when JQ1 is included in a PROTAC, it facilitates the specific degradation of BRD4
while sparing BRD2 and BRD3 [167]. Foretinib, a pan-kinase inhibitor, exhibits reduced
kinase binding when functionalized into a PROTAC, indicating altered specificity [168].
Additionally, PROTACs’ ability to modify binding affinities and selectivity highlights their
dynamic role in protein degradation, as evidenced by studies on p38 isoforms [169].

The remarkable ability of PROTAC-mediated degradation to alter protein selectivity
has attracted researchers seeking to modulate HDAC activity. Notably, the first PROTAC
targeting a histone deacetylase enzyme, NAD+-dependent SIRT2 [170], and the first zinc-
dependent HDAC-targeting PROTAC for HDAC6 signify significant advancements in the
field [171]. While approximately 20 PROTACs are progressing through or are already in
clinical trials, none currently target HDACs; nevertheless, several studies have highlighted
the great potential of this challenging approach. For instance, in a proteomics investigation
by Xiong et al., HDAC degradation was explored with 48 PROTACs varying in HDAC
ligand, linker length, and E3 ligand, revealing HDAC1, HDAC2, and HDAC9 as the least
frequently degraded zinc-dependent HDAC isoforms, while HDAC6, HDAC8, and HDAC3
were most frequently degraded [172]. Thus, generating selective PROTACs for HDAC1 and
HDAC2 posed challenges, given the susceptibility of the other Class I isoform (HDAC3) and
HDAC6 to PROTAC-mediated degradation. Nevertheless, some PROTACs demonstrated
selectivity in degrading specific HDAC isoforms, like HDAC3, exemplified by the synthesis
reported by Xiao et al. of an HDAC3-selective degrader exhibiting significant potency in
breast cancer cells [172–175]. Moreover, several studies have investigated the PROTAC-
mediated degradation of HDAC8 [176–180], highlighting its propensity for degradation
alongside HDAC3 and HDAC6, with Chotitumnavee et al. developing a selective HDAC8
PROTAC that outperformed its parent inhibitor in compromising cell viability [177].

Within the Class IIa enzymes, only HDAC4-selective PROTACs have been documented
thus far, with Macabuag et al. pioneering the development of these PROTACs to explore the
role of HDAC4 in Huntington’s Disease [181]. Their study introduced two sets of isoform-
selective PROTACs, one incorporating a hydroxamic acid-based inhibitor linked to a VHL
E3 ligase ligand via three different PEG lengths, and the other based on a trifluoromethyl
oxadiazole HDAC inhibitor [182,183]. Both sets demonstrated dose-dependent degradation
of HDAC4 in Jurkat E6-1 cells while sparing HDAC1, HDAC5, HDAC7, and HDAC9.

Meanwhile, among the eleven zinc-dependent HDAC enzymes, PROTACs targeting
HDAC6 for degradation have been extensively reported, suggesting its particular suscep-
tibility to proteasome-mediated degradation by PROTACs. This susceptibility might be
attributed to the zinc finger ubiquitin-binding domain that characterizes this isoform [184].

Following K. Yang et al., who discovered selective HDAC6 degradation using a PRO-
TAC incorporating a pan-HDAC inhibitor as the HDAC ligand [171], An et al. drew
inspiration from the selective HDAC6 inhibitor Nexturastat A to design PROTACs target-
ing HDAC6 [185]. The PROTAC, incorporating Nexturastat A as the HDAC ligand and
pomalidomide as the E3 ligand, demonstrated impressive efficacy in the B lymphoblast
MM.1S cell line, with no degradation of HDAC1, HDAC2, or HDAC4. Additionally, Cao
et al. devised a structurally unique HDAC6-targeting PROTAC based on the natural
product indirubin as the ligand to engage HDAC6, revealing that shorter PEG linkers
containing one PEG unit were notably more effective at HDAC6 degradation than longer
PEG linkers [186].

Concerning PROTACs targeting Class III HDACs, J.Y. Hong et al. introduced a new
SIRT2 inhibitor, incorporating it into two PROTACs [187], both effectively degrading SIRT2
within a concentration range of 0.5–10 mM in MCF7 and BT-549 cell lines. One of these
PROTACs demonstrated the capability to reduce SIRT2 deacetylase and defatty-acylation
activity in cells, whereas the SIRT2 inhibitor from which the PROTAC derives was not
capable of reducing SIRT2 defatty-acylation activity, showcasing an advantage over the
sole inhibition of SIRTs’ catalytic active site.
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HDAC11, the sole HDAC isoenzyme in Class IV discovered in 2002, possesses sig-
nificant fatty-acid deacylase activity and is recognized as a potential target for metabolic
disorders [188–190]. Despite the existence of selective inhibitors for HDAC11 [191], no
PROTACs targeting its degradation have been reported to date.

PROTACs exhibit the potent and selective degradation of individual HDAC isoforms,
serving as valuable chemical probes for studying HDAC biology. By targeting HDACs
for degradation via the proteasome, researchers can explore their biological roles beyond
enzymatic function alone, potentially leading to novel therapeutic applications. While some
HDAC-targeting PROTACs show enhanced efficacy in compromising cancer cell viability
compared to HDAC inhibitors, others exhibit reverse effects, particularly against pan-
HDAC inhibitors. However, future investigations should explore the therapeutic potential
of HDAC-targeting PROTACs beyond cytotoxicity, considering their ability to enhance
antitumor immune responses and overcome drug resistance in cancer immunotherapies, as
evidenced by recent studies [192,193]. Ongoing clinical trials investigating combination
therapies of HDAC inhibitors with immune checkpoint inhibitors suggest a promising
avenue for the therapeutic application of PROTACs targeting HDACs [193].

3. Animal Research and Clinical Trials with HDAC Inhibitors

Animal studies investigating HDAC inhibitors have provided valuable insights into
their potential therapeutic applications across various diseases [194]. These studies often
involve the administration of HDACis to animal models, such as mice or rats, to eval-
uate their efficacy, safety and mechanism of action [17,195]. By examining the effects
of HDACis on disease progression, biomarkers and physiological parameters in these
models, researchers can better understand their pharmacological properties and potential
clinical benefits. Furthermore, animal studies allow for the exploration of optimal dos-
ing regimens, routes of administration and combination therapies, which are essential
for translating preclinical findings into successful clinical trials. Overall, animal studies
play a crucial role in advancing our knowledge of HDACis and their therapeutic poten-
tial in treating a wide range of diseases [196–199]. On the other hand, clinical studies
investigating HDACis in humans aim to assess their safety, efficacy and tolerability across
various diseases, providing essential data for their potential use as therapeutic agents.
The clinical trial information of some drugs is summarized in Table 5. The majority of
pan-HDAC inhibitors are currently undergoing Phase II/III clinical trials, with several
demonstrating promising outcomes [200–202]. A Phase II clinical study investigating
Panobinostat revealed a substantial therapeutic benefit in treating multiple myeloma. This
effect might be further enhanced by combining it with other related medications [200]. The
next generation of selective inhibitors is expected to achieve heightened effectiveness in
treating hematologic and solid tumors, broadening the range of diseases addressed by
HDACis. With enhanced targeting mechanisms, these inhibitors will also help reduce side
effects, bringing us closer to a future where cancer treatment is more effective and less
harmful [203]. Beyond cancer, HDAC inhibitor drugs have demonstrated effectiveness in
various other conditions. Vorinostat, for instance, is presently undergoing clinical trials for
Alzheimer’s disease (NCT03056495). In neurodegenerative disorders, it is anticipated to
be utilized for frontotemporal dementia resulting from progranulin deficiency, albeit with
a need for further efficacy enhancement [204]. Significantly, a growing number of drugs
have exhibited therapeutic potential in addressing HIV infection. This outcome could be
linked to the cellular autophagy and immunomodulatory functions mediated by HDACs.
With the expansive range of genetic regulatory functions attributed to HDACs, an esca-
lating number of clinical trials for various diseases have progressed to the Phase II stage,
offering further avenues for research in both clinical and preclinical settings. However, it is
concerning that numerous adverse events persist in the clinical trials of marketed HDACis
in different cancer types [205,206]. Despite the improved metabolic half-life and assured
oral bioavailability of the latest clinical candidate, Pracinostat (Figure 4), the completion
of a co-administration trial (NCT03848754) has revealed prevalent toxicities including
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nausea/vomiting (63%), anorexia (50%), hypokalemia (50%) and rhinorrhea accompanied
by neutropenic symptoms [207]. Although present-day HDACis demonstrate potential
in inhibiting cell proliferation in vitro, their lack of selectivity results in undesirable side
effects, including off-targeting. This can lead to the harmful attack of healthy cells, causing
significant toxic reactions. Furthermore, the increase in HDAC drug trials has raised wor-
ries about drug resistance [208–210]. This has led to the understanding that resistance to
HDAC inhibitors involves many factors.

4. Computational Studies on HDACs
4.1. Molecular Modeling

Over the last two decades, several computational approaches have been employed
to find HDAC inhibitors with enhanced potency and/or selectivity. The main purpose is
to simplify the search process, reducing the search space and ensuring the identification
of the most promising compounds with desired activities. Computational techniques,
including ligand-based approaches (Figure 9) such as scaffold hopping, 3D-QSAR, and
pharmacophore modeling, as well as structure-based methods like structure-based virtual
screening/molecular docking (Figure 10) and fragment-based ligand design, have proven
instrumental in developing HDAC inhibitors with targeted activity.
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Figure 9. Schematic representation of some ligand-based (LB) approaches for the virtual screening of
large databases to discover new HDACis. The features of the ligand-based pharmacophore based
on Vorinostat are illustrated as follows: the aromatic ring is represented by an orange ring, the
hydrophobic feature is depicted as green spheres, and H-bond acceptors and donors are shown as
red and light-blue spheres associated with arrows, respectively. In the scaffold hopping analysis,
blue and yellow spheres denote the H-bond donor/acceptor moiety of Vorinostat. Specifically, blue
spheres are designated as optional matches.
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Figure 10. Schematic representation of some structure-based (SB) approaches for the virtual screening
of large databases to discover new HDACis. HDAC8 is represented as violet surface and ribbons,
while the main residues of the catalytic site are shown as violet thin tube.

Thus, the potential hits identified undergo further validation through structure-based
assessments, utilizing techniques such as molecular dynamics (MD) simulations coupled
with MM-PBSA/MM-GBSA binding energy calculations (Figure 11). The MM/PBSA
and MM/GBSA methodologies estimate the free energy of ligand binding to biological
macromolecules, serving as intermediary tools bridging empirical scoring (e.g., docking
and scoring) and rigorous alchemical perturbation (AP) methods [211,212]. The application
of combined computational approaches in HDACi rational design allows us to significantly
limit the risk of false positive hits. Moreover, such methodologies increase the possibility of
retrieving specific inhibitors by employing different filters and scoring functions.
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Scaffold hopping strategies, along with molecular docking, have been employed in
various studies for the design of HDAC inhibitors. Usually, the majority of newly devel-
oped compounds with improved potency and/or desired selectivity are achieved through
modifications in the three distinct structural regions of HDAC inhibitors. An exemplary
demonstration of this strategy is seen in a series of quercetin-containing hydroxamic acid
derivatives. These derivatives were synthesized by altering quercetin in both the cap and
the linker regions, while their ability to bind HDAC was initially assessed in silico [213].
Given the recognized pan-HDAC inhibition activity of resveratrol, a combination of scaf-
fold hopping, molecular docking and ADME prediction was utilized to create a set of
resveratrol analogs. These prospective inhibitors were subsequently subjected to additional
validation via MD simulations and in vitro enzyme inhibition assays targeting HDAC1 and
HDAC2 [214,215]. The scaffold hopping strategy was also useful for the discovery of some
hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids with dual HDAC/EGFR1
inhibitory activity against breast cancer line MCF-7 [216], and of a novel Aminotetralin
Class of HDAC6 and HDAC8 selective inhibitors with potent inhibitory activity against
neuroblastoma BE(2)C cells [217]. Notably, a pair of HDAC6-selective inhibitors with
2-mercaptoquinazolinone as the cap moiety were drawn for the first time. This design fore-
saw manipulating the surface recognition group (quinazolinone core as a cap) and linker
while retaining the hydroxamic acid side chains at the C-2 or N-3 position [218]. In a recent
investigation, HDAC inhibitors featuring 4-acyl pyrrole caps were employed as a scaffold
for developing potent hybrid inhibitors that target both bromodomain and extra-terminal
(BET) proteins as well as HDACs [219]. Considering all these findings, the combined use of
scaffold hopping with molecular docking emerges as a critical computational strategy for
formulating HDAC inhibitors with the desired pharmacological characteristics

As previously stated, the conventional pharmacophore of HDAC inhibitors comprises
three main components: a capping group (cap), a linker region, and a zinc-binding group [220].
Modifications in the cap and linker regions aim to achieve selectivity for specific HDAC iso-
forms, while variations in the zinc-binding groups aim for increased potency. Pharmacophore
models can be classified as structure-based, developed from protein-ligand complexes, or
ligand-based, utilizing known HDAC inhibitors’ structures. These models undergo validation
to ensure their efficacy in distinguishing active and inactive compounds, often through meth-
ods like Receiver Operating Characteristic (ROC) analysis or inactive compounds (decoy)
testing [221]. For instance, in the search of potential selective inhibitors targeting HDAC2,
a screening process was conducted on 300,000 compounds sourced from Asinex, National
Cancer Institute (NCI) and Maybridge databases using e-pharmacophore modeling [222].
Also, a 3D chemical feature-based QSAR pharmacophore model was developed to study
the interaction between benzamide MS-275 and HDAC [220]. A potent HDAC3 inhibitor
was identified by Kumbhar et al., by using a combined computational screening strategy
involving ligand-based pharmacophore modeling, MD simulation, and MM-PBSA calculation
methods [223]. It is noteworthy that combining MD simulations with energetically optimized
structure-based pharmacophores (e-Pharmacophores) was useful in the rational design of
potential HDAC inhibitors, as validated by MM-GBSA binding energy calculations [224].
Thanks to dynamic pharmacophore models, it became possible to address the issue concern-
ing the flexibility within the protein’s active site. Specifically, this method was utilized to seek
out potential inhibitors of HDAC8 by generating structure-based pharmacophore models
from various conformations obtained through MD simulations [225].

Quinoline has been used as a cap group in the development of many HDAC in-
hibitors [226–229]. Among them, the quinoline-based HDAC inhibitor CHR3996 has
completed a Phase I clinical study [230,231]. In 2017, Chen et al. designed several quinoline-
based HDAC inhibitors whose binding mode was found to be the same as that of traditional
HDACis. Interestingly, the authors observed that the eight positions of quinoline did not
occupy the pocket, thus encouraging them to modify such positions in order to improve
the activity and selectivity [232]. Therefore, in a more recent study, they designed and syn-
thesized a new series of 8-substituted quinoline-2-carboxamide derivatives and identified a
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very potent compound (IC50 = 0.050 µM) that exhibited 3-fold greater HDAC inhibitory
activity compared to the known HDAC inhibitor Vorinostat, with low toxicity against
normal cells [233].

More recently, Gao and co-workers developed and synthesized novel HDAC inhibitors
derived from the β-elemene scaffold [234]. β-elemene is specifically a sesquiterpene used
in the treatment of lung cancer, pancreatic cancer, gastric cancer, breast cancer, bladder
cancer, and malignant brain glioma [235–240]. Most of the prepared compounds, whose
binding mode was fully investigated by means of molecular docking analyses, showed
potent inhibitor activities against HDACs and significant inhibitory effects on the prolifer-
ation of K562 and MV4-11. Two derivatives demonstrated excellent in vitro antienzyme
(IC50 values of 22 nM and 9 nM for HDAC1 and 8 nM and 14 nM for HDAC6, respectively)
and broad spectrum in vitro antiproliferative activities (IC50 values ranging from 0.79 to
4.42 mM against K562, MV4-11, HEL, SU-DHL-2 and WSU-DLCL-2 cell lines) and, among
them, one was found to induce cell apoptosis and to exhibit antitumor activity in the
WSU-DLCL-2 xenograft mouse model, without significant toxicity.

Initial investigations into HDAC inhibitors utilized comparative molecular field anal-
ysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for the
design of novel HDAC inhibitors [241]. Afterwards, various QSAR analyses, including
3D-QSAR and multi-QSAR modeling, facilitated the discovery of potent HDAC inhibitors.
As for indole amide analogs, a 3D-QSAR analysis was conducted on HDAC1 to iden-
tify the compounds with the highest predicted inhibitory activity [242,243]. Moreover,
QSAR classification models, such as k-nearest neighbors (kNN) and neighborhood clas-
sifier (NEC), were employed to predict potential HDAC8 inhibitors [244]. Recent studies
utilized 3D-QSAR analysis to design potential selective inhibitors of HDAC6 and explore
selective HDAC8 inhibitors through QAAR studies [245,246]. A multi-QSAR modeling
study successfully identified potent HDAC8 inhibitors [243]. Recent approaches involved
3D-QSAR analysis to design potential selective HDAC6 inhibitors [246]. QAAR studies,
utilizing DFT-based calculation and molecular dynamic simulation, explored selective
HDAC8 inhibitors [245]. Similarly, QAAR and molecular docking led to the discovery of
selective HDAC8 inhibitors with antiproliferative activities [247]. Also, as for isoform 1,
the 3D-QSAR model was utilized to predict potential HDAC1 inhibitors with high activity.
Additionally, induced fit docking (IFD) optimized protein-ligand interactions and MD
simulations with MM-GBSA calculations were employed [248]. In order to address the
limitations of 3D-QSAR, researchers developed 4D-QSAR models incorporating molecular
state ensemble averaging [248].

Due to the wealth of the crystal structures of HDACs, structure-based inhibitor design
has become increasingly achievable. Currently, the crystal structures of various human
HDAC classes are available on the Protein Data Bank (Figures 2, 4 and 5) (https://www.
rcsb.org/), as previously described [249]. For other isoforms, homology models have been
built to study their potential inhibitors. Notably Hsu et al. utilized homology modeling
to construct human HDAC5 and 9 models. These models, along with crystal structures
of HDAC4 and -7, were employed to perform structure-based/molecular docking-based
virtual screening of the NCI compound library, aiming at identifying potential inhibitors of
Class IIa HDACs. Subsequently, these compounds underwent evaluation against HeLa
nuclear Class II HDACs to uncover Class IIa-selective inhibitors [250]. In 2019, Ibrahim
Uba et al. applied a homology modeling study for human HDAC10, exploiting the crystal
structure of HDAC10 derived from zebrafish (PDB code: 5TD7). Then, this theoretical
model was submitted to structure-based virtual screening, MD simulations and ADMET
prediction techniques, for identifying potential HDAC10 inhibitors [251]. In the study
by Géraldy et al., an additional homology model of human HDAC10 was introduced,
emphasizing the significance of a crucial hydrogen bond formation between a nitrogen atom
in the cap group and the gatekeeper residue Glu272 in influencing HDAC10 binding [251].
Therefore, the accessibility of crystal structures for human HDACs has greatly improved
the effectiveness of structure-based inhibitor design. Moreover, when biological activity
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data are unavailable, researchers have been using a method known as MM-GBSA/MM-
PBSA ligand binding affinity calculations to determine the effectiveness of identified hits.
For example, Sixto-López et al. used molecular docking, MD simulations and MM-GBSA
energy calculations to design hydroxamic acid derivatives with potent inhibitory activity
against HDAC1, HDAC6 and HDAC8. YSL-109 emerged as the most active compound
against hepatocellular carcinoma, neuroblastoma and breast cancer [252]. Also, novel
methods including e-pharmacophore modeling, structure-based virtual screening and
MD simulations combined with MM-GBSA ligand binding energy calculations have been
utilized in the quest to identify potent inhibitors of HDAC2 [222]. A thorough analysis was
performed to discover potential inhibitors of Class IIa HDACs using a virtual screening
process. This involved the usage of MD simulations and MM-PBSA to determine the
ligand-free energy of binding. The compounds that exhibited optimal results based on
these calculations were ultimately chosen as the final hits [253]. Similarly, a “multi-layer
virtual screening workflow” was developed for identifying inhibitors selective for the
HDAC6, demonstrating significant anticancer activity [254]. In a recent development, a
compound demonstrating nanomolar activity against HDAC1, HDAC3 and HDAC6 was
uncovered through a combined approach of pharmacophore modeling and structure-based
virtual screening of an in-house database comprising 22,700 compounds. This compound
displayed superior inhibitory effects compared to Vorinostat and exhibited potential in
impeding the growth of solid cancers [255].

In summary, the computational methodologies mentioned above complement each
other, providing multiple layers of filtration essential for successful hit discovery. Typically,
pharmacophore modeling and/or 3D-QSAR modeling serve as the foundational models
utilized in pharmacophore-based/ligand-based virtual screening. Following the identifica-
tion of potential hits, structure-based virtual screening and molecular docking are utilized
to anticipate binding poses and affinities. The most promising candidates are subjected
to MD simulations to examine the stability of ligand binding modes. For a more precise
determination of ligand binding affinity, MM-GBSA/MM-PBSA calculations are commonly
integrated with MD simulations.

More recently, various studies have been focused on the elucidation of the simulta-
neous inhibition of two or more targets involved in critical pathways related to cancer
progression. For example, Duan and co-workers applied computational and SAR ap-
proaches, and identified a series of pyridazinone-based PARP7/HDACs dual inhibitors
whose in vitro and in vivo activities were evaluated. In particular, a hydroxyl propenamide
derivative was reported as a potent and balanced dual inhibitor, with an excellent antitumor
capability towards lung, B-myelomonocytic leukemia and histiocytic lymphoma cell lines,
thus suggesting a relationship between anticancer immunity and HDAC inhibition [256].

Inspired by the synergistic effects of tubulin and HDAC inhibitors in dual targeting
cancer therapy and the interaction between proteins, some o-aminobenzamide-based dual
HDAC/tubulin inhibitors have been reported, which could target tumor tissues more
accurately, thus enhancing their efficacy and improving the antitumor effects [257]. In 2022,
Yao’s team reported a series of 2ME2 derivatives as dual HDAC/tubulin inhibitors by
combining the pharmacophore of a HDAC inhibitor with the 2-methoxyestradiol (2ME2)
skeleton [258]. Among them, a compound showed potent dual inhibitory activities on
tubulin polymerization and HDAC (IC50 values were 0.06 and 0.12 µM of HDAC2 and
HDAC6, respectively), as well as exhibited potent antiproliferative activities against MCF-
7, MGC-803, HeLa, A549, HepG2 and U937 with IC50 values of 0.37–4.84 µM. In addi-
tion, the compound also exhibited potent in vitro and in vivo antitumor and antiangio-
genic response. Its well-defined binding modes in tubulin (PDB code: 5LYJ) and HDAC2
(PDB code: 4LXZ) helped to explain in detail the high inhibitory potency on tubulin and
HDAC2. More recently, novel dual tubulin/HDAC inhibitors were designed and synthe-
sized based on the structure of natural product millepachine, which has been identified as
a tubulin polymerization inhibitor [259]. A biological evaluation revealed that a derivative
exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM, and
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effectively inhibited both microtubule polymerization and HDAC activity. Furthermore,
the compound induced PC-3 cells apoptosis with a decrease in mitochondrial membrane
potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally,
it showed inhibitory effects on tumor cell migration and angiogenesis with favorable
drug metabolism characteristics in vivo. Molecular docking analysis provided additional
evidence supporting the binding of the identified dual inhibitor to tubulin and HDAC [260].

Also, the simultaneous inhibition of Class I phosphoinositide 3-kinases (PI3K) and
HDAC has shown promise for treating various cancers [261]. Several PI3K/HDAC dual
inhibitors have been disclosed, showing promising anticancer properties [262–265]. The
first PI3K/HDAC dual inhibitor entering into the clinical trials, CUDC-907, was granted
the fast-track designation by the FDA for treating relapsed or refractory diffuse large B-cell
lymphoma [266]. Recently, Zhang et al. reported a novel series of 4-methylquinazoline
based PI3K/HDAC dual inhibitors characterized by a hydroxamic acid moiety as a HDAC
pharmacophore [267]. Despite favourable antiproliferative activities against a broad panel
of cancer cell lines, these compounds only showed limited in vivo activities largely due to
their poor pharmacokinetic properties. Therefore, the same research team incorporated
the benzamide moiety as the zinc binding group and, by means of molecular docking and
QSAR studies, obtained two potent PI3K/HDAC dual inhibitors for the treatment of acute
myeloid leukemia with improved pharmacokinetic properties [268].

4.2. Machine Learning

Recently, machine learning has garnered significant attention in the initial phases of
drug discovery studies [269]. Machine learning has opened up avenues to explore the vast
chemical space beyond the limitations of conventional experimental techniques [270,271].
In medicinal chemistry, a range of machine learning models utilize algorithms including
decision trees (DT), random forests (RF), support vector classifiers (SVC), k-nearest neigh-
bors (kNN), Gaussian naive Bayes (GNB), and deep neural networks [271–273]. AlphaFold
represents a promising machine learning approach, capable of accurately predicting the 3D
structure of proteins, even in the absence of closely related structures. However, its models
are generated without considering the presence of small molecules, ions, or cofactors,
which complicates their direct application in drug design. In a recent study, Baselious
and colleagues demonstrated the utility of an optimized AlphaFold model for virtual
screening, specifically addressing HDAC subtype selectivity [274]. In the developed multi-
step screening process, various methodologies were employed, including structure-based
pharmacophore screening to filter large databases, ligand docking, pose filtering, and prior-
itization. This stepwise virtual screening approach successfully identified a hit compound,
subsequently validated using an in vitro enzymatic assay. The compound exhibited an
IC50 value of 3.5 µM for HDAC11 and demonstrated the selective inhibition of HDAC11
over other HDAC subtypes at a concentration of 10 µM. Molecular dynamics simulations
confirmed the stability of the initial binding mode, as evidenced by ligand RMSD, RMSF,
bidentate chelation of the zinc ion, and interaction stability [275].

The absence of an experimental 3D model for HDAC10 poses a challenge to structure-
based drug design for selective inhibitors. Consequently, various ligand-based modeling
techniques offer a primary avenue to accelerate inhibitor design. In a recent investigation,
Bhattacharya and collaborators employed diverse ligand-based modeling approaches on
a wide array of HDAC10 inhibitors, leveraging machine learning models to screen for
potential HDAC10 inhibitors within a vast chemical database. Furthermore, Bayesian classi-
fication and Recursive partitioning models were utilized to identify structural fingerprints
governing HDAC10 inhibitory activity. Complementarily, a molecular docking analysis
was conducted to elucidate the binding patterns of these identified structural fingerprints
within the active site of HDAC10, providing invaluable insights for medicinal chemists in
the design and development of effective HDAC10 inhibitors [276].

A recent study delved into HDAC8, a protein implicated in cancer progression. While
many reported inhibitors targeting HDAC8 feature a hydroxamic acid group, known for its
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mutagenic potential, Nurani et al. turned to machine learning for drug screening, aiming
to uncover alternative compounds devoid of hydroxamic acid while retaining HDAC8
inhibitory activity [277]. In this investigation, the authors devised a predictive model
utilizing the random forest algorithm to screen for HDAC8 inhibitors, selected for its
superior accuracy on the training dataset inclusive of data augmented by the synthetic
minority oversampling technique (SMOTE). Employing the trained RF-SMOTE model, they
successfully identified a selective non-hydroxamic acid derivative as an HDAC8 inhibitor,
exhibiting an IC50 of 842 nM.

Furthermore, the study addressed HDAC1, another pivotal isoform implicated in
numerous tumors. Li et al. compiled a dataset comprising 7318 HDAC1 inhibitors and
computed four types of molecular fingerprints (MACCS, RDK, ECFP4, and TT fingerprints)
to delineate molecular structural features. By calculating Tanimoto coefficients, they en-
sured a dataset rich in structural diversity, enabling the establishment of 80 classification
models across four types of molecule fingerprints using five machine learning algorithms.
Additionally, employing the DT algorithm, the authors dissected the structure–activity
relationship of HDAC1 inhibitors, identifying certain substructures, such as N-(2-amino-
phenyl)-benzamide, benzimidazole, hydroxamic acid with a middle-chain alkyl, and 4-aryl
imidazole with a mid-chain alkyl featuring a chiral α carbon, as exerting a significant
impact on high activity [278].

In contrast, HDAC6 has emerged as a potential therapeutic target associated with
various diseases, notably cancer and neurological disorders, such as Rett syndrome,
Alzheimer’s disease, and Huntington’s disease. In a recent study aimed at developing
selective and potent HDAC6 inhibitors, Banerjee et al. investigated the structural determi-
nants of quinazoline-cap-containing HDAC6 inhibitors through a combination of machine
learning, conventional QSAR analysis, and MD simulation-based binding mode analysis.
This integrated molecular modeling approach highlighted the critical role of the quinazo-
line moiety and its substitutions, as well as molecular properties such as the number of
hydrogen bond donor–acceptor functions and the carbon–chlorine distance, in modulating
the binding affinity of these inhibitors to HDAC6, thereby influencing their potency. Ad-
ditionally, the study revealed that substitutions such as the chloroethyl group and bulky
quinazolinyl cap group could impact the interaction of the cap function with amino acid
residues near the catalytic site of HDAC6, potentially leading to both stabilization and
destabilization of the cap function following the occupation of the hydrophobic catalytic
site by the aryl hydroxamate linker–ZBG functions [279].

4.3. Limitations of Computational Techniques

Advancements in computing technology and algorithmic sophistication have signif-
icantly enhanced the capability of executing computationally demanding biomolecular
modeling tasks. Computer-aided drug design methods leverage these advancements to
improve the accuracy and efficiency of molecular modeling predictions. Particularly note-
worthy are the multilayered computational strategies employed in the quest for potential
HDAC inhibitors, which harness the predictive capabilities of various scoring functions for
effective filtering. For instance, empirical scoring functions are commonly utilized to predict
ligand binding pose and affinity in structure-based drug design initiatives [280]. Yet, formu-
lating active compounds or identifying them solely through computational modeling poses
a formidable challenge. In certain cases, specific benchmarking techniques are required
to manage extensive ligand datasets. Another consideration is the complete flexibility of
the protein during molecular docking, which remains a concern even when induced fit
and entropy effects do not significantly influence binding [281,282]. Contemporary trends
in integrating MM-GBSA/MM-PBSA calculations of ligand binding affinity in the quest
for potential HDAC inhibitors aim to enhance the precision of hit selection [223,283]. This
is particularly significant considering that in certain studies employing multilayered ap-
proaches, the identified hits underwent no experimental validation. Overall, the utilization
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of combined computational methods has demonstrated efficacy in facilitating the design of
both class- and isoform-selective inhibitors.

In LBVS, Support Vector Machines (SVMs) are commonly employed for binary prop-
erty or activity predictions. For instance, they are utilized to differentiate between drugs
and nondrugs [284,285], or between compounds with specific activity and those with-
out [286,287]. They are also applied for predicting synthetic accessibility [288] or aqueous
solubility. The scores generated by SVM classification have proven effective in ranking
database compounds based on their decreasing likelihood of activity [289]. This ranking is
often determined by the signed distance between a candidate compound and the hyper-
plane. Two studies have proposed specialized ranking functions for virtual screening to
enhance SVM ranking accuracy, addressing the tendency of SVMs to prioritize classification
performance over ranking optimization [290,291].

Various new kernel functions have been introduced for SVMs, including ligand and
target kernels, which capture distinct information for a similarity assessment [292,293].
These kernels utilize different metrics such as graph or descriptor similarity for compounds
and sequence, or binding site similarity for target proteins. For instance, graph kernels [294]
facilitate the overall similarity computation between labeled graphs, eliminating the need
to compute or store a vector representation of compounds. However, they entail high
computational costs and require parameter tuning.

Decision tree (DT) models offer simplicity in understanding, interpreting, and vali-
dating predictions. However, they are prone to high variance, where even slight changes
in the data can lead to different split sequences, complicating interpretation. This instabil-
ity stems from the hierarchical process, where errors in higher splits cascade downward,
affecting subsequent splits. Additionally, DT structure is sensitive to minor variations in
the training data; small datasets can significantly impact the learning process, while large
datasets may induce overfitting. To address these challenges, it is advisable to maintain a
moderate training dataset size and a balanced tree structure with a reasonable number of
levels. Heuristic approaches can be used to enhance classification accuracy by adjusting
subtrees at lower levels. The performance of DTs also relies on selecting splitting attributes
sorted by importance, ensuring that the most crucial attributes guide the splits at each
level. To mitigate high variance, pruning techniques are commonly employed, utilizing
either model complexity parameters or cross-validation. While individual DTs may not
yield high-performance models, ensemble methods, such as bagging [294], boosting [295],
and stacking [296], outperform individual learners by leveraging the variability among
ensemble members, thereby capitalizing on the variance of DTs. In particular, Random
Forest (RF) models have shown promise in enhancing the performance of individual DTs
in ligand-based virtual screening (LBVS) and have applications in post-docking scoring
functions and predicting protein-ligand binding affinity.

In ligand-based virtual screening (LBVS), Bayesian modeling methods are utilized
to forecast the likelihood of a compound’s activity based on its descriptor vector. By
leveraging known active (A) and inactive (Z) training compounds, these methods esti-
mate conditional probability distributions P(B/A) and P(B/Z) given the representation
B, respectively. Consequently, Bayesian classifiers excel in ranking compound databases
according to their probability of activity. However, a significant drawback arises when there
are substantial conditional dependencies between variables, rendering the naive Bayesian
model unsuitable for such scenarios.

The kNN algorithm, a straightforward technique used to predict the class [297], prop-
erty [298], or rank [299] of a molecule based on its nearest neighbors in the feature space,
heavily relies on the local structure of the data. Hence, it is particularly effective for predict-
ing properties with strong locality, such as protein function [300,301]. Despite its intuitive
nature, the kNN method does have its limitations. Firstly, since it depends solely on the
nearest k neighbors to predict a new compound, it is vulnerable to noisy data. A single
misclassified training data point could lead to an incorrect prediction for a new molecule.
Additionally, the inclusion of irrelevant descriptors may result in erroneous predictions.
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Moreover, the predicted value cannot exceed the maximum or minimum activity levels
present in the training set.

In the field of medicinal chemistry, Artificial Neural Networks (ANNs) find applications
in compound classification, QSAR studies, primary virtual screening of compounds, identifi-
cation of potential drug targets, and the localization of structural and functional features of
biopolymers [301,302]. Originally inspired by the structure and function of the brain, ANNs
have evolved into versatile nonlinear regression models [303], offering flexibility in modeling
complex relationships. However, one common challenge with ANN simulations is their
‘black box’ nature, where resulting classification models lack interpretability or explanation in
physical or chemical terms. Nevertheless, ANNs excel at capturing and modeling nonlinear
relationships, which is a significant advantage in many applications.

4.4. Achieving Selectivity for Each HDAC Isoform

The selectivity of HDAC inhibitors has emerged as a critical matter for their applica-
tion in cancer therapy. First-generation HDAC inhibitors, such as Vorinostat, Belinostat and
Panobinostat, target multiple isoforms, leading to cellular toxicities due to their hydroxamic
acid functional group, as discussed elsewhere [304]. Seeking safer alternatives, the next gen-
eration of HDAC inhibitors predominantly aims for class or isoform selectivity, with various
studies highlighting alternative zinc-binding groups (ZBGs) exhibiting high inhibitory ac-
tivity along with selectivity [304]. For instance, imidazole thione-containing molecules have
shown promise against HDAC8 [305]. Also, pyrimido[1,2-c][1,3]benzothiazin-6-imines
have demonstrated high selectivity [306]. Further research, based on molecular docking
and dynamic simulations, allowed for the identification of tropolone derivatives as selective
HDAC2 inhibitors [307], while 3-hydroxypyridin-2-thione (3-HPT) was associated with
the selective inhibition of HDAC6 [308]. Compounds with benzoylhydrazide as ZBG have
exhibited potent inhibitory activity against Class I HDACs, particularly when possessing
a 3-carbon-length β-nitrogen alkyl substituent chain [309]. Additionally, trifluoromethy-
loxadiazolyl moiety has shown selectivity for Class IIa HDACs [310], and 2-substituted
benzamide has been used as a ZBG for selective inhibitors of HDAC3 [216]. Notably, an
alternative approach proposed by Maolanon et al. focuses on disrupting protein–protein
interactions essential for HDAC activity rather than chelating the active site zinc ion [311].
Employing a top-down combinatorial in silico approach, Ganai et al. explored strategies
to selectively inhibit HDAC1 and HDAC2 (sequence identity: 94%), revealing distinct
pharmacophore features for each isoform. According to the results of pharmacophore
analysis, Dacinostat (LAQ824) showed a higher affinity towards HDAC1 when a positive
ionizable group was present in the linker region. On the other hand, the ring in the linker
region displayed a stronger interaction with HDAC2 [224]. Previously, Abdizadeh et al.
used combined 3D-QSAR and molecular docking approaches to design biaryl benzamides
as potent HDAC1 inhibitors [312]. Cao et al. conducted a review of different modifications
carried out to the cap and linker groups to achieve selectivity for HDAC3. Meanwhile,
Suzuki et al. identified specific compounds with phenyltriazole cap groups that exhibit
greater selectivity for HDAC3 when compared to other Class I members [313,314].

HDAC6, although sharing structural similarities with HDAC10, presents slight dis-
tinctions compared to Class I HDACs, particularly in active site dimensions and surface
residues. In the quest for HDAC6-selective inhibitors, a series of compounds incorpo-
rating 2-mercaptoquinazolinone as the cap moiety were developed. This effort focused
on modifying the surface recognition group (utilizing the quinazolinone core as a cap)
and linker, while preserving hydroxamic acid side chains at either the C-2 or N-3 posi-
tion [218]. Recently, researchers have explored various avenues to design HDAC6-selective
inhibitors. For instance, a 3D-QSAR analysis, leveraging the classical pharmacophore of
HDAC inhibitors, was employed to devise potential HDAC6-selective compounds [315].
Pharmacophore models, notably HypoGen-based 3D QSAR, based on the crystal struc-
ture of HDAC6 (PDB ID: 5EDU), have been instrumental in identifying potent HDAC6
inhibitors and assessing their selectivity. Further assessment of these inhibitors involved
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MD simulations and analysis of protein–ligand interaction energy (PLIE) [283]. Lastly, in
a separate initiative, Moi et al. utilized a cheminformatics approach to develop HDAC6
inhibitors, resulting in the surprising identification of aminotriazole with subnanomolar
inhibitory potency and significant selectivity for Class I HDAC1 and HDAC8 [316].

Another successful virtual screening approach was applied to HDAC7 by our research
group. Specifically, in line with our research, and to figure out novel anticancer strategies,
an in-house chemical database of extracted molecules from both edible and non-edible
mushrooms was adopted [317]. The SBVS pointed out the ibotenic acid as a promising
HDAC7 inhibitor based on its theoretical binding affinity. In vivo studies demonstrated the
capability of the ibotenic acid in decreasing the cellular viability on MCF-breast cancer cells,
providing an interesting example of repurposing natural products to fight cancer disease.

What is highly interesting is, while single isoform inhibition has been extensively
investigated, recent studies highlight the efficacy of dual/multi-targeting HDAC inhibitors
in achieving synergistic and enhanced cancer therapy outcomes [318,319].

Therefore, in order to enhance antineoplastic activity and reduce undesirable effects,
the world of research is focusing on the pursuit of dual binders capable of simultaneously
inhibiting, for example, specific HDAC isoforms and tubulin, the Vascular Endothelial
Growth Factor, Tyrosine kinase receptors, Hepatocyte growth factor receptor, Cyclin-
dependent kinases, A2A adenosine receptor, Poly ADP-ribose polymerase and others [320].

5. In Vitro Validations Using Cell Lines

It is critical to ensure the accuracy and reliability of computational predictions by
subjecting them to laboratory experiments for validation. This process verifies computa-
tional results through in vitro tests, which allow researchers to evaluate the robustness
of computational methodologies and their applicability to real-world biological systems.
In vitro validation also provides empirical evidence to support hypotheses and compu-
tational insights, thereby improving the credibility and reproducibility of computational
studies. By identifying any discrepancies or limitations in computational models, experi-
mental validation drives refinements and improvements for future analyses. Integrating
in vitro validation with computational studies is critical in advancing our understanding
of complex biological phenomena and facilitating the translation of computational results
into practical applications.

Numerous in vitro validations utilizing cell lines have significantly contributed to
our understanding of the molecular functions and regulatory roles of HDACs. These
investigations typically involve the manipulation of HDAC expression levels or the ap-
plication of HDAC inhibitors to cultured cell lines representing a spectrum of tissues and
disease contexts [252,321,322]. Techniques such as immunoblotting, chromatin immuno-
precipitation assays, and quantitative PCR analyses are commonly employed to dissect
the intricate mechanisms underlying HDAC-mediated transcriptional regulation, cell cy-
cle control, apoptosis, and cellular differentiation [111,323]. Moreover, cellular models
have been instrumental in elucidating the crosstalk between HDACs and other signaling
pathways, shedding light on their involvement in various physiological and patholog-
ical processes [111,324]. Additionally, the development and optimization of cell-based
assays have facilitated the screening and validation of novel HDAC inhibitors, guiding the
identification of promising candidates for therapeutic intervention [321,325].

One obstacle in identifying isoform-selective inhibitors stems from the limitations
in current compound-screening technologies. The most commonly used in vitro deacety-
lation assay relies on monitoring the fluorescent signal resulting from HDAC-mediated
degradation of the Fluor-De-Lys peptide substrate (Enzo Life Sciences). While this assay
is robust and straightforward, screening for selectivity typically involves using purified,
recombinant HDAC isoforms from baculovirus overexpression systems [326]. However,
testing mammalian-cell derived HDAC proteins via immunoprecipitation of overexpressed
isoforms from cell extracts introduces a typical error rate ranging from 30% to 60% [326].
Due to the significant error and labor-intensive nature of immunoprecipitation, many
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selective compounds have been exclusively tested against baculovirus-derived isoforms,
such as tubastatin [327]. Yet, discrepancies arise when comparing inhibition data obtained
from baculovirus- and mammalian cell–derived HDAC isoforms. For instance, apicidin
exhibited potent activity against mammalian cell–derived HDAC1 (IC50 = 23 nM) [328],
yet displayed variable potency against baculovirus-expressed HDAC1 (IC50 >10,000 nM or
0.7 nM in different reports) [326,329]. Although technical differences may account for these
disparities, the similar assay formats suggest that the source of the HDAC isoforms can also
impact screening results. Addressing this issue, Padige et al. introduced an enzyme-linked
immunosorbent assay (ELISA)–based HDAC activity assay, aimed at utilizing mammalian
cell–derived HDAC isoforms. Screening several known HDACis with diverse selectivity
profiles validated the utility of this assay for inhibitor screening, suggesting its potential as
a valuable tool for characterizing isoform-selective HDAC inhibitors against mammalian
cell–derived HDAC isoforms [330].

Overall, the wealth of information garnered from in vitro studies using cell lines has
been instrumental in advancing our knowledge of HDAC biology and in informing the
development of targeted therapeutic strategies for a wide array of diseases.

6. Conclusions

In conclusion, undertaking a thorough examination of the conformational relationship
of HDACis will facilitate the rational design of drugs and the development of effective
and innovative treatments. Approved HDACis demonstrate efficacy against hematological
malignancies, while numerous HDACis under evaluation show promise in various stages
of clinical trials. In this scenario, computational techniques, including structure- and ligand-
based virtual screening, pharmacophore modeling 3D-QSAR, molecular docking, dynamics
simulations, and MM-PBSA/MM-GBSA ligand binding affinity calculations, have pro-
moted and favoured the design of HDACis, by improving potency and/or selectivity. In
particular, in this review it has been highlighted that combined computational strategies,
through the application of multiple tools/force fields or scoring functions, stimulated the
discovery of new lead compounds to optimize, leading to promising anticancer drugs
within few years.

Although HDACis are still in the early stages of study, they have the potential to rev-
olutionize our approach in fighting tumors, offering an attractive avenue for treating this
complex pathology. Through the continued exploration of HDAC inhibition using computa-
tional methods, we establish the groundwork for revolutionary strides in cancer treatments,
emphasizing the profound clinical and societal impact inherent in this field of inquiry.
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