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Abstract: Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial chal-
lenges in treatment. This study explores a novel strategy by investigating the concurrent use of
cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our
results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed
produce a superior effect when compared to these compounds individually, significantly enhancing
therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines
IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared
to treatments with each compound alone. Radiographic analyses further confirm the preservation
of joint integrity and a reduction in osteoarthritic damage, highlighting the association’s efficacy
in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and
indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage
and fosters the production of protective cytokines. This study underscores the potential benefits of
integrating natural products with pharmaceuticals in OA management and stresses the importance
of further research to fully understand the mechanisms underlying the observed potentiated effects.

Keywords: new drugs agents; osteoarthritis treatment; pharmacological interactions with herbal
supplements

1. Introduction

Osteoarthritis (OA) is the most prevalent form of arthritis globally, posing signifi-
cant socioeconomic challenges. It arises from a complex interplay of factors including
mechanical stress, genetics, metabolic components, and lifestyle factors such as physical
activity and obesity, with the latter and aging identified as primary risk factors [1–3]. OA
is characterized by cartilage degradation, synovial inflammation, and pain, which impact
overall joint health and can lead to disability due to the limited healing capacity of cartilage,
largely influenced by inflammatory mediators [4].
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The burden of the disease is exacerbated by the aging global population, affecting
individuals’ quality of life and imposing substantial healthcare costs, primarily from pain
management and the necessity for joint replacement surgeries [2,5]. As the population
ages, the prevalence and public health concerns of OA are expected to rise [6]. Current
treatments, primarily nonsteroidal anti-inflammatory drugs (NSAIDs), offer symptomatic
relief but are associated with risks such as gastrointestinal issues and cardiovascular effects,
highlighting the need for careful patient monitoring [7,8].

The search for alternative treatments has expanded, with herbal medicines showing
potential in managing OA symptoms, offering benefits such as fewer side effects and
environmental sustainability. These alternatives, recognized for their anti-inflammatory and
joint-protective properties, align with the trend toward greener medical solutions [9–11].

Our research has advanced this exploration by assessing the anti-inflammatory and
antinociceptive effects of cuminaldehyde, comparing them to indomethacin, a conventional
NSAID, within a sodium monoiodoacetate (MIA)-induced OA model. This comparison
revealed cuminaldehyde’s comparable efficacy to indomethacin, suggesting its potential as
an effective OA treatment [12]. This study aimed to evaluate whether there is a potentiated
effect of cuminaldehyde when combined with indomethacin, to potentially improve the
treatment outcomes of OA, emphasizing the importance of integrating traditional and
novel treatments in the management of this complex disease.

2. Results
2.1. In Vivo Clinical Assays

The Rotarod test was used to assess forced locomotion or motor activity, indicating a
uniform reduction in locomotion scores across all osteoarthritis (OA)-induced groups by
Day 7, thereby confirming the successful induction of OA. The SHAM group underwent no
interventions. The association therapy of cuminaldehyde and indomethacin demonstrated
a statistically significant improvement in locomotion scores compared to the individual
treatments with cuminaldehyde or indomethacin separately on Days 7, 14, and 28, as
evidenced by gradual improvements in march parameters. As expected, throughout the
study period, the combined therapy exhibited significant differences in efficacy when
compared to saline-treated controls. By Day 28, the gait score of the group treated with the
association was statistically equivalent to that of the SHAM (normal) group, whereas the
march score of the indomethacin group remained significantly compromised (Figure 1A).

The SHAM group exhibited balanced weight distribution on hind paws at both the
start and end points, indicating an absence of joint pain with an average score of 50%. The
group treated with the association of cuminaldehyde and indomethacin demonstrated
significant improvement compared to the group treated with either indomethacin sepa-
rately or the saline group (p < 0.05) on all days. No significant difference was observed
between the association group and the group treated with cuminaldehyde alone. By Day 28,
paw weight distribution in both the cuminaldehyde and association treatment groups had
normalized, whereas the group treated with indomethacin alone still showed compromised
weight distribution, as depicted in Figure 1B.

Following OA induction, all groups exhibited similar increases in spontaneous pain,
as measured by the Rat Grimace Scale (RGS). From Day 14, animals treated with cuminalde-
hyde + indomethacin demonstrated a marked and significant pain reduction (p < 0.001)
compared to the cuminaldehyde, indomethacin, and saline-treated groups, without show-
ing signs of pain on days 21 and 28 (Figure 1C).

Radiographic evaluations using the Ahlback Score, which measures the severity of
articular damage, showed that OA induction in rats led to a significant decrease in joint
space. The group treated with cuminaldehyde + indomethacin demonstrated a significantly
lower Ahlback Score, indicating reduced bone loss when compared to the cuminaldehyde
and negative control groups. However, there was no significant difference in the extent
of bone loss reduction between the combined treatment and the individual indomethacin
treatment (Figure 1D).
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Figure 1. Motor activity was evaluated using the Rotarod test score (A), disability extent through 
weight distribution (B), spontaneous pain via the Rat Grimace Scale (C), and joint involvement 
graded by the Ahlback scoring system (D). Treatments included saline, indomethacin, 
cuminaldehyde (50 mg/kg), and an association of cuminaldehyde (50 mg/kg) + indomethacin (2.5 
mg/kg), administered orally from three days post-OA induction until the study’s end, with 
evaluations on days 7, 14, 21, and 28. The presented data, shown as mean ± SEM, are compared 
against findings from the SHAM, Saline, Indomethacin, and Cuminaldehyde groups previously 
reported in our previous paper [12], serving to provide a comprehensive view and enhance 
understanding of the new treatment’s efficacy involving cuminaldehyde + indomethacin. This 
comparison is aimed at illustrative and comparative purposes. Statistical analysis utilized two-way 
ANOVA and Tukey’s test, with significance denoted by *** (p < 0.001), and **** (p < 0.0001) for the 
cuminaldehyde + indomethacin group versus saline, # (p < 0.05), ## (p < 0.01), ### (p < 0.001); #### (p 
< 0.0001) versus indomethacin alone, and @ (p < 0.05) and @@@@ (p < 0.0001) versus cuminaldehyde 
alone. (D = day). 
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Figure 1. Motor activity was evaluated using the Rotarod test score (A), disability extent through
weight distribution (B), spontaneous pain via the Rat Grimace Scale (C), and joint involvement
graded by the Ahlback scoring system (D). Treatments included saline, indomethacin, cuminalde-
hyde (50 mg/kg), and an association of cuminaldehyde (50 mg/kg) + indomethacin (2.5 mg/kg),
administered orally from three days post-OA induction until the study’s end, with evaluations on
days 7, 14, 21, and 28. The presented data, shown as mean ± SEM, are compared against findings
from the SHAM, Saline, Indomethacin, and Cuminaldehyde groups previously reported in our
previous paper [12], serving to provide a comprehensive view and enhance understanding of the
new treatment’s efficacy involving cuminaldehyde + indomethacin. This comparison is aimed at
illustrative and comparative purposes. Statistical analysis utilized two-way ANOVA and Tukey’s
test, with significance denoted by *** (p < 0.001), and **** (p < 0.0001) for the cuminaldehyde +
indomethacin group versus saline, # (p < 0.05), ## (p < 0.01), ### (p < 0.001); #### (p < 0.0001) versus
indomethacin alone, and @ (p < 0.05) and @@@@ (p < 0.0001) versus cuminaldehyde alone. (D = day).

2.2. Radiological Assessment

Radiological evaluations indicated that the sham group maintained nearly perfect joint
integrity, scoring between 0 and 1, reflecting intact articulating surfaces and bone structure
(Figures 2A,B and 1D). The separate cuminaldehyde- and indomethacin-treated groups showed
mild to moderate articular changes, scoring 2.1 and 1.6, respectively, with damage primarily in
the lateral and patellofemoral compartments (Figures 2C–F and 1D). The combined treatment
of cuminaldehyde and indomethacin resulted in mild lesions mainly in the patellofemoral
compartment, scoring 1.4 (Figures 2G,H and 1D). The saline-treated group exhibited severe OA
features, scoring 3.4, including complete cartilage erosion, bone loss, and, in severe cases, joint
subluxation (Figures 2I,J and 1D).
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Figure 2. Anteroposterior (AP) and lateral radiographs demonstrating congruence between the tibial
and femoral condyles and the intercondylar space in the lateral view showing intact space between
the patella and femur (A,B; Sham Group); bicompartimental patellofemoral and lateral lesion [red
arrowhead] (C,D; Cuminaldehyde Group); bicompartimental patellofemoral and lateral lesion [red
arrowhead] (E,F; Indomethacin Group); unicompartimental patellofemoral component only lesion
[yellow arrowhead] (G,H; cuminaldehyde + indomethacin Group); and dystrophy, osteopenia, and
bone loss with incongruence between the sizes of the condyles and intercondylar space associated with
reduction in the joint space; in the lateral view, we observe destruction of the articular cartilage, bone
loss of the patella, and complete destruction of the knee joint induced with MIA with calcifications
and joint subluxation [cyan arrowhead] (I,J; Saline Group).

2.3. Cytokine Analysis

The levels of IL-6 in the group treated with the association of cuminaldehyde and in-
domethacin were significantly lower than those of the groups treated with saline (p < 0.0001)
and indomethacin (p < 0.05) and it did not present significant differences from the Sham
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group. The indomethacin group exhibited a significantly higher level of this cytokine when
compared to the Sham group (p < 0.005). For the levels of IFN-γ, a significant difference
was only detected compared to the saline group (p < 0.0001). The combined therapy of
cuminaldehyde with indomethacin showed a level of IL-10 that did not statistically differ
from the level of the SHAM group, in addition to being significantly higher than in the
indomethacin group (p < 0.05). The levels of this cytokine were significantly lower in the
indomethacin (p < 0.02) and cuminaldehyde (p < 0.008) groups (Figure 3).
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Figure 3. Concentration of cytokines IL-6 (A), INF-γ (B), and IL-10 (C) was evaluated by ELISA of
the serum of the animals used in the experiments. The results are presented as means ± standard
error of the mean (SEM). Data from the saline, indomethacin, and cuminaldehyde groups have been
previously reported in [12]. These data are presented again solely for illustrative and comparative
purposes with the new treatment combining cuminaldehyde + indomethacin, whose trial was
conducted concurrently with the assays of the previous data. ***, **** Significant differences at
p < 0.001 and 0.0001, respectively, cuminaldehyde + indomethacin compared to the saline group
(CTRL−); # at p < 0.001 cuminaldehyde + indomethacin compared to the indomethacin group; &,
&& at p < 0.05 and 0.005, respectively, indomethacin compared to the sham group; %% at p < 0.005,
respectively, cuminaldehyde compared to the sham group. (one-way ANOVA; Tukey).

3. Discussion

The sodium monoiodoacetate (MIA)-induced rat knee model is highly esteemed
in osteoarthritis (OA) research for its ability to replicate changes in mobility, sensitivity,
and joint degeneration, observable both via X-ray and microscopically in the synovial
membrane. It provides insights into chondrocyte degradation, marked by the inhibition of
glyceraldehyde-3-phosphate dehydrogenase, a critical marker for OA evaluation [13,14].

Moreover, this model is notable for simulating blood vessel formation, bone necrosis,
and collapse [6], making it invaluable for testing pharmaceuticals aimed at pain relief. Its
efficacy in mirroring human OA symptoms renders it an essential tool for investigating OA
interventions [15,16]. Additionally, the model aids in understanding the role of neuromod-
ulators on pain-sensing nerve endings, leading to conditions like allodynia, hyperalgesia,
and increased sodium channel activity [17,18], providing a comprehensive framework for
OA study.

Natural products have been extensively researched as potential novel treatments for
OA, with promising results emerging from various studies [6,10,11,19]. Cuminaldehyde, a
compound found in the oil of Cuminum cyminum L. (Apiaceae), is thought to influence pain
perception through its action on the receptor ankyrin 1 (TRPA1), a protein crucial for pain
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signaling [20]. This underscores a significant need for more detailed investigations into its
mechanisms of pain relief.

Animal-based research has confirmed the efficacy of cuminaldehyde in reducing
pain, as demonstrated in tests such as the hot plate, formalin, and acetic acid-induced
writhing tests. These results suggest its potential for peripheral action in pain management.
The findings underscore the importance of continued research into the clinical utility of
cuminaldehyde for pain treatment [21].

The essential oil from Cuminum cyminum L., with a high cuminaldehyde concentra-
tion (48%), has been shown to effectively reduce the expression levels of various mR-
NAs, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the
cytokines interleukin-1 (IL-1) and interleukin-6 (IL-6) in RAW 264.7 cells activated by
lipopolysaccharide (LPS). It also inhibited the LPS-induced activation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) and the phosphorylation of extra-
cellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), highlighting its
anti-inflammatory properties [22]. Furthermore, cuminaldehyde has been demonstrated to
lower tumor necrosis factor (TNF-α) and IL-1β in rodent models, acting as an inhibitor of
the 15-lipoxygenase (15-LOX) and COX-2 enzymes [12,21,23].

Studies comparing cuminaldehyde with gabapentin have found it to exhibit antihy-
peralgesic and antiallodynic effects similar to those of gabapentin. The analgesic effect of
cuminaldehyde was significantly diminished by naloxone, suggesting its potential action
on opioid receptors, particularly the µ subtype, indicating its potential as an opioid receptor
agonist [12,21]. Naloxone, known for reversing opioid effects without agonistic activity,
underscores the opioid-like action of cuminaldehyde in pain modulation [24].

The integration of natural products with traditional pharmaceuticals is highlighted
in pharmacology and integrative medicine. This is driven by the hypothesis that combin-
ing substances could enhance their individual effects, potentially revealing synergistic,
antagonistic, or neutral interactions [25–30]. Such an approach aims to improve therapeutic
efficacy, possibly allowing for lower dosages and reducing adverse side effects. It shows
promise for addressing drug resistance and managing pain and inflammation in chronic
conditions, such as osteoarthritis [31–35]. In the present study, we found that combining
cuminaldehyde with indomethacin produces a potentiated effect. The outcomes from
animals treated with the association significantly differed from those treated with each
compound separately, across all clinical trials and at various points in time evaluated. This
was further corroborated by radiographic analyses.

The Ahlbäck scoring system, a radiographic evaluation tool, measures the severity
of osteoarthritis (OA) in the knee by identifying changes such as joint degeneration and
osteophyte formation, with higher scores indicating greater OA severity. When applied
in a rat model of OA, this system tracks disease progression and evaluates the efficacy of
treatments. In this study, treatment with cuminaldehyde combined with indomethacin
showed significantly lower degrees of joint degeneration and bone remodeling in animals
with OA, compared to those treated with indomethacin alone and the saline control,
according to Ahlbäck scores.

The combination of indomethacin and cuminaldehyde is interesting from many per-
spectives. Although indomethacin suppresses the expression of type II collagen, pre-
dominant in cartilage, the combined treatment with cuminaldehyde likely provided the
observed beneficial effects due to cuminaldehyde’s action or its potentiation. Further-
more, comparing the combined regimen with other COX-2 preferential inhibitors like
meloxicam highlights that meloxicam not only improves the OARSI scores and suppresses
COX-2 production but also inhibits type II collagen degradation [36,37]. The beneficial
impact of the combination on joint degeneration aligns with previous findings that utilized
meloxicam [38].

Cytokines play an indispensable role in modulating inflammation and are instrumen-
tal in OA pathogenesis. IL-6, known for its pro-inflammatory properties, exacerbates OA
by fostering synovial inflammation, cartilage breakdown, and catabolic processes within



Pharmaceuticals 2024, 17, 630 7 of 13

joints. Elevated levels of IL-6 have been associated with increased pain and disease sever-
ity [39,40]. IFN-γ, linked to Th1 immune responses, possesses both pro-inflammatory and
protective characteristics in OA, having the capacity to suppress inflammation and cartilage
degradation, thereby offering a multifaceted strategy for managing the onset of OA [41].

Interleukin-10 (IL-10), an anti-inflammatory cytokine, plays a pivotal role in OA
management by inhibiting the production of pro-inflammatory mediators and enzymes
responsible for tissue and cartilage damage, underscoring its chondroprotective capabili-
ties [40,42,43]. It modulates the immune response and curtails pro-inflammatory cytokines,
thus mitigating cartilage breakdown. IL-10’s importance extends to maintaining bone and
cartilage homeostasis, notably through the upregulation of osteoprotegerin (OPG) and the
inhibition of the receptor activator of nuclear factor Kappa-B ligand (RANKL), preventing
osteoclast maturation and reducing bone resorption [44,45]. The cytokine’s capacity to
decrease IL-6 and TNF-α levels indirectly hampers osteoclastogenesis, emphasizing its
therapeutic potential in OA management [46,47]. Moreover, IL-10’s inhibition of TNF-α
synthesis and release safeguards osteoblasts against apoptosis, thereby supporting bone
formation and integrity. It further attenuates the stimulatory impacts of TNF-α on IL-6
and matrix metalloproteinases (MMP-1 and MMP-3) production, vital for cartilage matrix
degradation, thus protecting cartilage integrity [48]. By promoting chondrocyte genesis
markers and hindering chondrocyte apoptosis, IL-10 is crucial in preserving cartilage struc-
ture and function, regulating inflammatory responses in chondrocytes, and diminishing
the effects of inflammation induced by joint trauma.

The observed imbalance between pro-inflammatory cytokines, such as IL-6, and anti-
inflammatory cytokines, like IL-10, underscores the chronic inflammation, pain, and joint
deterioration characteristic of OA. The combined treatment regimen of cuminaldehyde
and indomethacin effectively reduced IL-6 levels while elevating IL-10 concentrations,
surpassing the efficacy of indomethacin alone. These findings suggest that the combined
therapeutic approach not only impedes OA progression but also safeguards articular
cartilage by fostering the production of protective cytokines. These findings are consonant
with the results of a similar study utilizing meloxicam [38], wherein comparable reductions
in IL-6 levels were noted. The ability of diverse treatments to modulate these cytokines
may be crucial in developing more effective therapies against osteoarthritis. This dual
action illustrates a promising avenue for OA treatment, emphasizing the necessity of
further investigation into combined therapies that leverage both natural compounds and
pharmaceuticals to ameliorate inflammation and promote joint health in OA management.

Indomethacin’s role in binding to and inhibiting phospholipase A2, as shown through
X-ray crystallography and in studies involving polymorphonuclear leukocytes from rabbits
and human endometrium, highlights its significance in anti-inflammatory pharmacol-
ogy [49–51]. Furthermore, reports of indomethacin inhibiting phospholipase C [52–54]
underscore its broad impact on inflammatory pathways.

Phospholipases, especially A2 and C, are crucial in the inflammation and pain mech-
anisms, initiating the release of arachidonic acid from cell membranes, a precursor for
prostaglandins and leukotrienes synthesis. These enzymes are instrumental in producing
inflammatory mediators and modulating immune cell activation and sensory neuron ex-
citability [55]. The subsequent conversion of arachidonic acid via COX and LOX pathways
leads to the production of prostaglandins, thromboxanes, and leukotrienes, which are
key players in mediating inflammation, pain, fever, platelet aggregation, and bronchocon-
striction [56,57]. This elucidates the complex interplay between phospholipases and the
enzymatic pathways in propagating inflammatory and pain processes.

In light of the discussion regarding the pharmacological interaction between cumi-
naldehyde and indomethacin, it is pertinent to consider the implications of indomethacin’s
phospholipase inhibition. Indomethacin potentially limits the availability of substrates
for COX-2 inhibition through its action on phospholipase, a mechanism that could os-
tensibly restrict the efficacy of cuminaldehyde in inhibiting the COX and LOX pathways,
which are subsequent to phospholipase activity. However, our experimental evidence
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has demonstrated that cuminaldehyde continues to make a significant contribution to the
anti-inflammatory and antinociceptive responses, even in the presence of indomethacin.
This observation suggests that cuminaldehyde exerts its therapeutic effects through mul-
tiple pharmacological mechanisms, a property that can be described as polyvalent or
multi-targeted. Such a compound, by virtue of its ability to interact with several biological
pathways simultaneously, offers a comprehensive approach to treatment, transcending
the potential limitations imposed by the inhibition of a single enzymatic pathway. There-
fore, despite the theoretical constraints posed by indomethacin’s mechanism of action,
cuminaldehyde’s multi-faceted pharmacological profile enables it to maintain its efficacy,
underscoring the importance of further research into compounds with multiple mecha-
nisms of action for the management of conditions such as osteoarthritis.

Once again, cuminaldehyde is shown to be a safe compound. During the entire 28-day
duration of our study, no fatalities were observed among the animals, suggesting that
extended or long-term administration of cuminaldehyde associated with indomethacin
seems to be non-toxic. This aligns with earlier findings reported in the literature [12].

Future research should focus on understanding the precise mechanisms by which cumi-
naldehyde and indomethacin modulate inflammation and pain in osteoarthritis through
studies on their interaction with cellular signaling pathways and receptors. Developing
combined formulations of these compounds in optimal ratios to enhance efficacy while re-
ducing side effects is crucial, alongside assessments of their chemical stability and bioavail-
ability. Additionally, investigating pharmacological interactions between cuminaldehyde,
indomethacin, and other osteoarthritis medications is essential. This comprehensive ap-
proach aims to deepen the knowledge of their pharmacological actions and improve their
clinical application, potentially advancing osteoarthritis treatment significantly.

4. Materials and Methods
4.1. Origin of Cuminaldehyde

Cuminaldehyde was sourced from a commercial supplier (Product #135178, Sigma-
Aldrich, St. Louis, MO, USA) with a certified purity of 98%. The compound was stored at
ambient temperature until required for use.

4.2. Experimental Animals and Ethical Considerations

The study utilized 30 adult male Wistar rats (Rattus novergicus) from the Central
Vivarium of the Federal University of Maranhão, with each of the five groups consisting
of six rats. These rats, approximately 30 days old, had continuous access to standard
laboratory feed and water. The environment was maintained at 23 ± 1 ◦C with 40–60%
humidity and a 12:12 light-dark cycle. Ethical approval for the study was secured from the
UFMA’s Ethics Committee in Animal Use on 3 December 2019, under protocol number
23115.031386/2019-28, adhering to the International Association for the Study of Pain’s
(IASP) guidelines for animal research.

4.3. Experimental Design

The animals were randomized into groups of six. The SHAM group received no
interventions, while the other groups were administered a sodium monoiodoacetate (MIA)
injection (2 mg in 25 µL) to induce osteoarthritis in the right knee, mirroring the method-
ology of [12], which was conducted simultaneously, being saline solution (NaCl 0.9%) at
a dose of 1 mL/kg/day (vehicle) (CTL−), Indomethacin® at a dose of 2.5 mg/kg/day
(CTL+), and cuminaldehyde at a dose of 50 mg/kg/day. An additional group was included,
wherein participants were administered a combined treatment of Indomethacin at a dosage
of 2.5 mg/kg/day + cuminaldehyde at a dosage of 50 mg/kg/day. From the third day
onwards until the twenty-eighth day following the induction of osteoarthritis, the daily
treatments were administered orally via gavage.

Antinociceptive effects were assessed every seven days after induction using the
Weight Bearing, Rotarod, and Rat Grimace Scale tests. At the study’s end, animals were
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euthanized for blood collection and radiographic analysis of the affected knee, following
an intraperitoneal euthanasia solution of ketamine (300 mg/kg) and xylazine (30 mg/kg).

4.4. In Vivo Clinical Assessments Evaluations
4.4.1. Assessment of Motor Activity Using Forced Deambulation (Rotarod Test)

During the forced ambulation evaluation, animals were placed on a rotating rod (IITC
model, Life Science, Victory Blvd, Woodland Hills, CA, USA) rotating at 16 rotations per
minute for 300 s. To assess the use of the affected limb, animals were observed and scored
on a scale from 1 to 5, where a score of 5 represented normal paw usage, 4 indicated minor
limping, 3 denoted significant limping, 2 was for intermittent non-use of the affected paw,
and 1 signified total non-use of the affected paw [58].

4.4.2. Incapacitation/Weight Distribution Test on Hind Paws (Weight Bearing)

To assess the use of the affected paw, animals were placed in an inclined glass enclosure
with each hind paw on distinct platforms. The force exerted by each hind paw was
measured in grams over five seconds, with the final value calculated as the average of three
repetitions [59].

The formula employed for calculating weight distribution alterations is as follows:

Weight distribution (%) = APW/(APW + CPW) × 100 (1)

where APW represents the weight of the affected paw and CPW represents the weight of
the contralateral paw.

4.4.3. Rat Grimace Scale (RGS)

The Rat Grimace Scale (RGS) serves as a reliable method for assessing spontaneous
pain in laboratory animals through the observation of changes in facial expressions [60].
The scoring system ranges from “0” indicating no pain, “1” for mild pain, to “2” for severe
pain, based on adapted criteria for evaluating subjective facial pain perceptions. This
involves examining alterations in features such as orbital tightness, nasal and cheek bulge,
ear positioning, and whisker alterations.

All clinical assessments were conducted by three independent assessors who did not
have access to each other’s evaluations.

4.5. Radiological Assessment

Images were acquired using a Portable Digital X-ray Unit with an image capture
sensor from Diox®, employing the following parameters: focus-to-film distance of 10 cm,
input power of 600 W, potential difference of 60 kV, and a voltage switch of 22.2 V. The
images were analyzed and a technical report was generated by a single specialist in imaging
diagnostics. For the interpretation of the report, the modified AHLBACK [61] classification
by KEYES et al. [62] was utilized. This classification is divided into five ascending degrees
of severity and is based on changes observed in radiographic images of the knee in the
anteroposterior (AP) and lateral (Table 1) views.



Pharmaceuticals 2024, 17, 630 10 of 13

Table 1. Scoring criteria for the assessment of radiological images.

Classification Radiological Findings

Grade 0 No Osteoarthritis: Normal radiology

Grade I Doubtful Osteoarthritis: Questionable joint narrowing, possible
marginal osteophyte

Grade II Minimal Osteoarthritis: Possible narrowing, defined osteophyte

Grade III Moderate Osteoarthritis: Defined narrowing, multiple
osteophytes, some subchondral sclerosis, possible bone deformity

Grade IV Severe Osteoarthritis: Marked joint narrowing, severe
subchondral sclerosis, large osteophytes, defined deformity

4.6. Assessment of Cytokine Amount

Cytokine levels (IFN-γ, IL-6, and IL-10) in the serum samples, taken from the rats at
D28 time of euthanasia, were measured using the enzyme-linked immunosorbent assay
(ELISA) assay. This quantification was according to the manufacturer’s protocols provided
with the cytokine measurement kits and the analytical instruments used. The ELISA kits
utilized for this study were acquired from R&D Systems® (McKinley Place NE, Minneapolis,
MN, USA).

4.7. Statistical Analysis

To analyze the mean differences among the experimental groups, statistical analysis
was executed utilizing the Student’s t-test or the two-way Analysis of Variance (ANOVA)
for bivariate data, with subsequent application of Tukey’s post-hoc test. The two-way
ANOVA was specifically selected to assess dual sources of data variation. The threshold
for statistical significance was established at a p-value below 0.05. The data were processed
using GraphPad Prism® software (version 9.0, GraphPad Software, San Diego, CA, USA).

5. Conclusions

In our osteoarthritis (OA) study using animal models, the combined administration of
cuminaldehyde and indomethacin revealed a potentialized effect, markedly outperforming
treatments with each compound alone. This result suggests effective pharmacodynamic
interactions that enhance therapeutic efficacy beyond individual effects. Radiological
assessments and cytokine profiles supported these findings; the association therapy notably
improved joint integrity and reduced OA markers compared to controls, with significant
reductions in pro-inflammatory cytokines IL-6 and IFN-γ, alongside an increase in anti-
inflammatory IL-10. Future research should extend beyond this association to include other
anti-inflammatory agents, aiming to fully harness cuminaldehyde’s therapeutic potential.
Detailed studies on its action mechanisms, focusing on intracellular signaling, receptor
interactions, and formulation optimization, are essential to amplify efficacy and reduce
side effects. Moreover, understanding interactions between cuminaldehyde, indomethacin,
and other OA treatments will be essential. This comprehensive approach will significantly
contribute to our understanding of these compounds’ pharmacological activities and their
potential integration into clinical practice for OA management.
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