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Abstract: Bat species have been observed to have the potential to expand their distribution in response
to climate change, thereby influencing shifts in the spatial distribution and population dynamics
of human rabies cases. In this study, we applied an ensemble niche modeling approach to project
climatic suitability under different future global warming scenarios for human rabies cases in Brazil,
and assessed the impact on the probability of emergence of new cases. We obtained notification
records of human rabies cases in all Brazilian cities from January 2001 to August 2023, as reported
by the State and Municipal Health Departments. The current and future climate data were sourced
from a digital repository on the WorldClim website. The future bioclimatic variables provided were
downscaled climate projections from CMIP6 (a global model ensemble) and extracted from the
regionalized climate model HadGEM3-GC31-LL for three future socioeconomic scenarios over four
periods (2021–2100). Seven statistical algorithms (MAXENT, MARS, RF, FDA, CTA, GAM, and GLM)
were selected for modeling human rabies. Temperature seasonality was the bioclimatic variable
with the highest relative contribution to both current and future consensus models. Future scenario
modeling for human rabies indicated a trend of changes in the areas of occurrence, maintaining
the current pace of global warming, population growth, socioeconomic instability, and the loss of
natural areas. In Brazil, there are areas with a higher likelihood of climatic factors contributing to
the emergence of cases. When assessing future scenarios, a change in the local climatic suitability is
observed that may lead to a reduction or increase in cases, depending on the region.

Keywords: human rabies; climate change; distribution modeling; CMIP6; Brazil

1. Introduction

Human rabies is a neglected disease that has a profound impact on public health in
impoverished communities and low- to middle-income countries [1]. With the global fatal-
ity rate of 98.4%, rabies has an annual incidence of approximately 60,000 cases spanning
over 150 countries. It is characterized by an acute ailment affecting the central nervous
system, clinically manifesting as progressive encephalitis [2]. The virus is primarily trans-
mitted through the saliva and secretions of infected animals, with susceptibility across
all mammalian species, thus contributing to disease dissemination [3]. Globally, rabies is
responsible for more than 59,000 annual fatalities, with African and Asian regions collec-
tively accounting for over 95% of the confirmed human cases [4,5]. The mass vaccination
of domestic animals has proven to be a highly effective strategy for reducing the disease
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prevalence of rabies in various regions, including Africa, Asia, Europe, and the Ameri-
cas [6]. Furthermore, more than 15 million individuals worldwide receive pre-exposure
prophylaxis annually, and over 29 million individuals receive post-exposure vaccination,
thereby contributing to disease prevention and reducing mortality on a global scale [2].

In Brazil, the National Rabies Prophylaxis Program (PNPR) has instituted four primary
surveillance strategies, which include an annual national vaccination campaign for dogs
and cats, human rabies prophylaxis, case notification and investigation, and the monitoring
of viral circulation [7]. With the implementation of these strategies over the past decades,
the country has achieved significant results in the control of urban rabies, marked by
a sharp decline in the number of cases, with only sporadic and accidental occurrences
prevailing [8]. Through its specific variant, dogs were the focus of public health in Brazil as
the primary rabies transmitter to humans in urban areas [9]. However, since 2016, there
has been an increase in cases attributed to bats, and rabies cases in dogs and cats have been
identified with variants of wildlife [7]. In 2017, among the six detected rabies cases, none
were related to dog bites, five cases were attributed to bats, and one case was associated
with a feline bite. In 2018, all 11 cases described were attributed to bats; additionally, in
2019, the single reported case was caused by a feline bite from an animal infected with
the AgV-3 bat antigenic variant. In 2020, the Ministry of Health reported only one case of
bat-transmitted rabies. In 2021, a case of human rabies was recorded, linked to a variant
of a wild canid (Cerdocyon thous); moreover, in 2022, the five confirmed rabies cases were
associated with the antigenic variant of bat AgV-3 [8].

These observations complicate rabies control and support a shift in public health
focus, as bat population control measures are not targeted in Brazil [10]. Bats have a
significant epidemiological importance in the sylvatic aerial cycle. Among the 182 officially
registered species in Brazil, the rabies virus has been isolated in 31 species, with the
hematophagous bat species Desmondus rotundus (D. Rotundus) being the primary vector for
viral transmission in rural areas, especially among production animals, such as cattle and
horses [11,12]. Factors such as habitat alterations due to deforestation and the increasing
availability of livestock for hematophagous species, driven by the expansion of cattle
farming as a food source in Brazil, may have favored bat-transmitted rabies in recent years,
resulting in a shift in the epidemiological profile [13,14]. It is estimated that in the entire
Latin American region, rabies in herbivores causes annual losses of hundreds of millions
of dollars due to the deaths of thousands of cattle, in addition to indirect expenditures on
bovine vaccination and post-exposure treatments (post-bite vaccination) for individuals
who have had contact with suspected animals [15].

Moreover, the current rabies scenario in Brazil is marked by concerns about the
potential mass reintroduction of urban rabies through variants from sylvatic reservoirs,
with the potential to reverse the epidemiological profile [16,17]. Bats play an increasingly
significant role in urban environments, with periodic colony displacements becoming more
pronounced [18,19]. This is because of the deforestation associated with urban expansion,
resulting in the loss of natural habitats of bats, such as forests and riparian areas, and
reducing the availability of shelter, breeding, and feeding sites for these species [20,21].
These alterations directly impact the dynamics of bat communities in various regions of
Brazil, leading cities to become favorable locations by offering better shelter conditions
(pipes under highways, sewers, and building crevices) and food, resulting in an increased
proximity to humans and elevated susceptibility to rabies [22,23].

Climate change also influences the ecology and population dynamics of bats and has
significant implications for rabies transmission [24]. Environmental temperature varia-
tion, for example, has both direct and indirect effects on hematophagous bats, impacting
their activities, feeding patterns, reproduction, and migration [25–27]. Studies have indi-
cated that extreme temperatures can affect thermoregulation in these species, triggering
metabolic changes. Excessively low temperatures tend to reduce bat activity, while exces-
sively high temperatures may force them to remain inactive during daylight hours [28,29].
Climate-related variations in temperature and precipitation also influence the geographic
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distribution of hematophagous bats and availability of food sources [30]. In regions where
temperature and precipitation patterns undergo changes that affect the migration of prey,
such as wildlife, birds, and livestock, bats may adjust their movement patterns to seek food
elsewhere [31]. As climatic conditions undergo transformation, the areas inhabited and
frequented by these bats may shift, prompting the search for new territories that offer more
suitable conditions for their survival [32]. This, in turn, can result in an increased proximity
to human communities and other animals, potentially heightening interactions and the
associated risks of coexistence.

This array of transformations in the habitats of hematophagous bats, including defor-
estation, the conversion of natural ecosystems into pastures for intensive livestock farming,
and local and regional climate variations resulting from global warming, has the poten-
tial to alter the range of bat species, with implications for the occurrence of rabies cases
in previously unaffected regions [33,34]. The studies investigating the spatiotemporal
distribution of the rabies virus in bats and other mammalian species have emphasized
the influence of factors such as temperature, precipitation, and the El Niño–Southern Os-
cillation phenomenon on the emergence of rabies outbreaks in specific locations during
different seasons of the year [28,30]. Furthermore, studies have highlighted environmen-
tal conditions, particularly temperature variations, when analyzing the effects of climate
change on rabies virus transmission, especially in livestock, such as cattle [35,36].

The application of species distribution modeling to assess the extent of dispersal and
the impact of climate change on future suitability plays a pivotal role in the development
of appropriate management strategies for the conservation and sustainability of species
habitats [37]. By projecting future scenarios for hematophagous bats in the border region
between the USA and Mexico, researchers identified areas in South Texas that could become
suitable for the occurrence of these species by 2070 [38]. Additionally, in a study utilizing a
predictive analysis based on future climate scenarios for D. rotundus, the authors identified
highly favorable habitats for the species across Mexico and Central America, demonstrating
that temperature and precipitation variations could explain the expansion of these species
in these regions [29]. However, owing to the associated uncertainty, the climate models
have not reached unanimous conclusions regarding future scenarios.

Rabies poses a significant risk to public health and should therefore be included in the
scope of health surveillance services. This is particularly relevant in the context of research
on the monitoring and prediction of rabies cases. Such studies should not only consider
socioeconomic and cultural factors, but also climatic parameters that affect animals serving
as disease reservoirs in a daily manner. Therefore, our study aimed to analyze the spatial
distribution of human rabies cases in Brazil, considering different global warming scenarios
to assess their impact on the likelihood of new cases emerging.

2. Material and Methods
2.1. Health Data

We obtained the records of reported cases of human rabies in all Brazilian cities from
January 2001 to August 2023 provided by the State and Municipal Health Departments
through the Information System for Notifiable Diseases [39]. The collected data were
subjected to georeferencing, resulting in the creation of central geographic coordinates
(centroids) for each municipality with the reported cases. All data were analyzed using an
Excel spreadsheet. Brazil, situated in South America, ranks as the fifth largest country in
the world in terms of the territorial area and the sixth largest with respect to its population.
Its remarkable geographic and climatic diversity spans a vast range of ecosystems from the
Amazon Rainforest to the Pantanal and the Cerrado (Supplementary Materials Figure S1).
The Brazilian territory is subdivided into five regions: the northern, northeastern, midwest-
ern, southeastern, and southern regions. Each region has distinct characteristics influenced
by factors such as the climate, topography, and natural resources (Figure 1) [40,41].
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Figure 1. South American political map showing Brazil with international borders, neighboring
countries, states, and regions.

2.2. Climate Data

The meteorological data, including temperature, relative humidity, and precipitation
records, were acquired from a digital repository available on the WorldClim website [42].
Additionally, these data include bioclimatic variables calculated based on the monthly time
series of temperature and precipitation. These bioclimatic variables encompass the annual
and monthly patterns, seasonality, and exceptional or limiting climatic elements, such as
extreme temperatures observed during the warmest or coldest months [43]. These variables
have significant relevance in the context of species distribution modeling, ecological niche
investigations, and research dedicated to climate change dynamics.

The WorldClim climatic variables include a series of parameters, such as the annual
mean temperature (BIO1), mean diurnal temperature range (BIO2), isothermality (BIO3),
temperature seasonality (BIO4—standard deviation100), maximum temperature of the
warmest month (BIO5), minimum temperature of the coldest month (BIO6), the annual
temperature range (BIO7), the mean temperature of the wettest quarter (BIO8), the mean
temperature of the driest quarter (BIO9), the mean temperature of the warmest quarter
(BIO10), the mean temperature of the coldest quarter (BIO11), annual precipitation (BIO12),
precipitation of the wettest month (BIO13), precipitation of the driest month (BIO14),
precipitation seasonality (BIO15—coefficient of variation), precipitation of the wettest
quarter (BIO16), precipitation of the driest quarter (BIO17), precipitation of the warmest
quarter (BIO18), and precipitation of the coldest quarter (BIO19).

For the analysis of the current climatic conditions, georeferenced files containing
19 bioclimatic variables corresponding to the period 1970–2000 were acquired at four spatial
resolutions—30 s, 2.5 min, 5 min, and 10 min—with area sizes ranging from 0.86 km2 to
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344 km2 at the equator. The selected resolution for the model was 2.5 min (0.86 km2).
Each download comprises a compressed file in “zip” format containing 12 GeoTiff files,
one for each month of the year (from January to December), with image dimensions of
2160 × 1080 pixels and a resolution of 96 dpi.

In the context of future climatic condition analysis, bioclimatic variable data were
generated through future climate projections at the same 2.5 min resolution (0.86 km2).
These projections were made available through the digital repository on the WorldClim
website [40], downscaled from CMIP6 (a global model ensemble used in the Intergov-
ernmental Panel on Climate Change (IPCC) climate change analyses), and relied on the
regionalized climate model HadGEM3-GC31-LL. This model represents a specific variant of
a global climate model developed by the Met Office Hadley Center in the United Kingdom.
The HadGEM3 (Hadley Centre Global Environment Model, version 3) is part of a family
of climate models used to simulate atmospheric and oceanic conditions of the Earth on a
global scale. The designation “regionalized” indicates that it can be configured to simu-
late climate conditions at more detailed regional scales than conventional global models.
These models play crucial roles in understanding climate change, forecasting the future
climate, and assessing the potential impacts of different greenhouse gas (GHG) emission
scenarios [44].

Three future socioeconomic scenarios were considered, which are components of
a set of shared socioeconomic pathways (SSP): CO2 emissions (SSP1-2.6, SSP2-4.5, and
SSP5-8.5) for four distinct periods spanning 2021–2100 (2021–2040, 2041–2060, 2061–2080,
and 2081–2100). These scenarios were designed to explore various potential trajectories
of global socioeconomic development considering the different levels of GHG emissions
over time. Their construction is based on the assumptions regarding the demographic,
technological, economic, and political changes; additionally, their utility lies in exploring
distinct paths for global development. These scenarios enable climate models to project the
evolution of climate change in diverse socioeconomic contexts [45].

The SSP1-2.6 scenario, titled “Sustainability”, outlines a sustainable future charac-
terized by low GHG emissions. The SSP2-4.5 scenario, labeled “Middle of the Road”,
represents a trajectory of moderate emissions, reflecting a world in which measures for
emissions reduction are implemented moderately without extreme policy or technological
changes. However, the SSP5-8.5 scenario, titled “Fossil-fueled Development”, portrays a
future in which GHG emissions continue to increase due to a persistent dependence on
fossil fuels [46].

2.3. Data Analysis

To generate current and future climate suitability maps for rabies, we applied a niche
modeling approach employing seven distinct algorithms. This approach was implemented
using the biomod2 package in R “https://www.R-project.org/ (accessed on 18 October
2022)”. The algorithms used included Generalized Linear Regression (GLM), Generalized
Additive Model (GAM), Classification Tree (CTA), Flexible Discriminant Analysis (FDA),
Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), and Maximum
Entropy (MAXENT). These algorithms are based on the presence/absence of data, esti-
mations of environmental similarities, and the identification of the points of intersection
between known locations of species occurrence and regions that remain unknown. Thus,
areas showing greater similarity to the locations where the species has been recorded are
considered regions with a high suitability probability [47].

During the modeling process, human rabies cases were considered as binomial out-
comes (dependent variables), while bioclimatic variables were used as explanatory vari-
ables to fit the models. For this purpose, we selected variables with the highest percentage
contributions for the seven predictive algorithms (GLM, GAM, CTA, FDA, MARS, RF,
and MAXENT) in both current and future scenarios. We adopted the default settings
for all algorithms, considering 10,000 pseudo-absences as the background data for each
algorithm. The models were developed using training sets, and those that demonstrated

https://www.R-project.org/
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the best performance were selected. After the selection of the bioclimatic variables that
best matched the model performance, we evaluated the Area under the Receiver Operating
Characteristic Curve (AUC-ROC). The AUC values range from 0 to 1, with ranges of 0.5
to 0.7 indicating low model performance, 0.7 to 0.9 suggesting an acceptable model, and
values above 0.9 indicating excellent model performance. For the final model generation,
we retained those with ROC scores ≥ 0.9.

We mapped the binary distributions (0 and 1) of the raw dependent variables. After
the modeling process, we produced consensus maps with ensemble models in which we
assessed the climate suitability using an index ranging from 0 to 1. In this index, 0 represents
areas with a low predicted probability of adaptation to climate conditions (indicated in
blue), whereas 1 represents regions with a high probability of suitable climate conditions
(indicated in red) for human rabies cases. We developed a final ensemble model for each
combination of climate scenarios and periods using the average of the individual ensemble
models. As a result, we obtained one ensemble prediction for current climate suitability
and four ensemble predictions for the period from 2021 to 2100 (2021–2040, 2041–2060,
2061–2080, and 2081–2100), reflecting three future socioeconomic scenarios related to CO2
emissions (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The selected scenarios for the climate model
are integrated into the CMIP6 (Coupled Model Intercomparison Project Phase 6), which
encompasses a series of socioeconomic scenarios known as SSPs (Shared Socioeconomic
Pathways). These SSPs are categorized according to levels of greenhouse gas emissions and
are developed to represent various potential trajectories of socioeconomic development.
When used in conjunction with climate models, it becomes possible to assess the impacts of
climate change under a variety of conditions [48].

To gauge the magnitude of regional modifications leading to climatic suitability in
future scenario models, we calculated the percentage variation using the following formula:
[(Future Analysis − Current Analysis)/Current Analysis × 100]. This method quantifies
the proportion of model projections that categorize a specific cell on a map as an area of
climatic suitability, elucidates regions that have undergone changes over the years, and aids
in the understanding of potential patterns and trends. To more clearly visualize the regions
that exhibited a greater inclination towards climatic suitability, a grayscale representation
was adopted. White indicates the areas where no changes contributing to climatic suitability
were observed, whereas black indicates transformations that resulted in an increase in
suitability under future climatic conditions. For these analyses, we used R Studio software
version 1.4, with the biomod2, raster, rgdal, and ncdf4 packages [49]. Maps were created
using QGIS software version 3.28.

3. Results

The variables that stood out in the consensus model, revealing climate suitability
for the occurrence of human rabies in Brazil, included temperature seasonality (BIO4),
minimum temperature of the coldest month (BIO6), and precipitation seasonality (BIO15).
Among these variables, BIO4 showed the most significant relative contribution to the
consensus models, as shown in Table 1.

Table 1. Values of the relative contribution of bioclimatic variables for human rabies modeling in the
period from 2001 to 2023, Brazil.

Dependent Variables Bioclimatic Variables
Statistical Algorithms

GLM GAM CTA FDA MARS RF MAXENT

Rabies Human

Temperature seasonality
(BIO4) 0.514 0.447 0.721 0.427 0.258 0.706 0.266

Minimum temperature of the
coldest month (BIO6) 0.083 0.330 0.532 0.246 0.414 0.483 0.176

Precipitation seasonality
(BIO15) 0.019 0.216 0.245 0.141 0.186 0.578 0.122
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The consensus models developed using human rabies data to assess the climate suit-
ability in current and future scenarios averaged an Area Under the Curve (ROC) value of
0.90, with a sensitivity of 87% and specificity of 81%. These results demonstrate the robust-
ness of the model in predicting climate suitability. Under the current climatic conditions,
the model highlighted areas represented in red on the map, indicating locations with high
climatic suitability. This implies a higher likelihood that climatic factors contribute to the
emergence of new rabies cases in humans. These areas of higher probability were primarily
concentrated in the northern and northeastern regions, as shown in Figure 2.
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Figure 2. Modeled climatic suitability for human rabies cases in Brazil. Modeled climatic suitability
(consensus model) for all seven algorithms under current climate conditions is presented. The data
were provided by WorldClim [42]. For visualization, the maps were built using QGIS version 3.16
“https://qgis.org/pt_BR/site/ (accessed on 4 October 2022)”.

The consensus models applied to three future socioeconomic scenarios (SSP1-2.6,
SSP2-4.5, and SSP5-8.5) revealed a trend of modification in the areas of occurrence, while
maintaining the current pace of global warming, population growth, socioeconomic in-
stability, and the loss of natural areas. It was observed that some current areas, such
as the northern and northeastern regions, remained continuously suitable under future
climate conditions, both in the optimistic (SSP1-2.6) scenario of CO2 emissions and in the
pessimistic (SSP5-8.5) scenario, characterized by a significant increase in CO2 emissions
over time (Figure 3).
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Figure 3. Future climate suitability for human rabies in Brazil. Modeled climate suitability (consensus
model) for all seven algorithms under future climate conditions using three updated scenarios
(SSP1-2.6, SSP2-4.5, and SSP5-8.5) during four CMIP6 periods in the period 2021–2100. The data
were provided by WorldClim [42]. For visualization, the maps were built using QGIS version 3.16
“https://qgis.org/pt_BR/site/ (accessed on 4 October 2022)”.

In the analysis of the percentage change in the consensus models for future scenarios,
it was possible to visualize the percentage of local suitability change in all scenarios and
periods using grayscale. By 2060, certain regions (northern, northeastern, and southeastern
regions) maintained their suitability in all scenarios; the southern region experienced a
decrease in suitability, and the central–western region showed increased climate suitability,
both in the optimistic (SSP1-2.6) and the most pessimistic (SSP5-8.5) scenarios regarding
CO2 emissions over time. Furthermore, disparities in the patterns of climate suitability
intensity were observed in the southern region of the national territory during the time
interval between 2041 and 2060, as outlined in the scenarios under consideration. In both
analyzed scenarios (SSP1-2.6 and SSP2-4.5), which were considered optimistic and interme-
diate, respectively, regarding greenhouse gas emissions (GHG), there was an increase in the
intensity of climate suitability. Conversely, in the pessimistic scenario (SSP5-8.5), there was
a notable reduction in intensity over the same period. From 2081 onwards, especially in the
most pessimistic scenario of gas emissions (SSP5-8.5), a substantial increase in the climate
suitability was noted in the northeastern, central–western, southern, and southeastern
regions. By analyzing the local changes in climate suitability in future scenarios, a trend of
modification in the areas of occurrence and an increase in the likelihood of new cases of
rabies in humans were observed (Figure 4).
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Figure 4. Percentage change in the predicted future climate suitability for human rabies in Brazil. The
modeled climate suitability (consensus model) for all seven algorithms under future climate condi-
tions using three updated scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) over four periods (2021–2100)
from CMIP6 have been depicted. The data were provided by WorldClim [42]. For visualization,
the maps were built using QGIS version 3.16 “https://qgis.org/pt_BR/site/ (accessed on 4 Octo-
ber 2022)”.

4. Discussion

The use of species distribution modeling to determine the extent of dispersion and
the impact of future climate changes is a crucial component when developing appropriate
management practices aimed at the conservation and sustainability of species habitats in
the future [37,49]. Over the past few decades, the Earth’s increasing global temperature has
led to significant changes in ecological niches, resulting in the expansion and contraction of
these niches to which animal species have had to adapt [50,51]. Various niche modeling
studies have focused on the analysis of animal species to map their current habitats and pre-
dict the impact of climate change on the suitability of these habitats in the future [29,52–54].
In this study, a pioneering effort was made to map the occurrence locations using records
of reported human rabies cases under different global warming scenarios. The goal was to
identify the areas most potentially suitable for the emergence of new cases of this disease.
Our results demonstrated robustness in predicting the climatic suitability, as they exhibited
ROC values of 0.90, and illustrated how the combination of disease distribution models and
the use of ensemble mapping can constitute useful tools for developing testable hypotheses
related to disease distribution and potential future dissemination patterns, considering the
impact of future climatic conditions.

The modeling approach employed in this study provides predictions that resemble the
analyses conducted on the distribution of vampire bats, D. Rotundus, under the current and

https://qgis.org/pt_BR/site/
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future climatic scenarios [28–30]. For instance, the bioclimatic variables that stood out in
the consensus model of this study paralleled the findings of other researchers and aligned
with the ecological requirements of D. rotundus, which needs to inhabit warmer regions and
avoid areas with severe winters [55,56]. These variables included temperature seasonality
(BIO4) and the mean temperature of the coldest month (BIO6). The data from this study
agree with those of previous studies, indicating that the distribution of D. rotundus is pri-
marily restricted by winter temperatures below 15 ◦C [29]. Previous studies have suggested
that vampire bats are sensitive to temperature fluctuations, because effective thermoregu-
lation is essential for their metabolic activity. Decreases and increases in temperature can
directly affect bat activity, influencing the metabolic rates and activity patterns [38,57]. In
warm-blooded animals, maintaining a constant body temperature is vital for proper physio-
logical functioning. Changes in thermal conditions may necessitate behavioral adjustments
and migrations in search of regions with milder temperatures [58,59].

Our results also align with those of studies that have analyzed the impact of climate
change on bovine rabies cases. Researchers have reported that temperature has a positive
effect on viral transmission and mortality associated with bovine rabies, whereas precipita-
tion can have a negative effect on the frequency of bovine rabies outbreaks [30]. Studies
indicate that this negative association with precipitation can be attributed to the effects of
rain on bat foraging, as well as the difficulty of vampire bats in locating cattle when there
is a reduction in the surface body temperature of livestock, affecting the thermoreceptors
used by common vampire bats to locate their prey [50,60]. Furthermore, abundant rain
after a heat wave can reduce the fertility of vampire bats because of decreased common
activity among vampire bats and mating between different roosts [61]. These findings
demonstrate that climate change can directly affect vampire bat species and, consequently,
influence cases of rabies in humans either directly or indirectly.

Regarding the analysis of future scenarios, our model revealed a trend of change in
the areas of disease occurrence. Areas located in the northern and northeastern regions
continued to be consistently suitable under future climate conditions, while the south-
ern region showed a reduction in suitability and the central–west region experienced an
increase in climatic suitability. In other words, under the current trajectories of global
warming, population growth, socioeconomic instability, and the loss of natural areas, there
is a probability of climate change impacts, especially those related to temperature, in both
the optimistic and pessimistic scenarios. When analyzing the economic development of
some Brazilian regions, it is possible to identify activities related to agriculture, extensive
livestock farming, mining, industrial activities, and agro-industries [62]. These activities
have various environmental impacts that directly affect the biome and its ecosystem ser-
vices, leading to modifications to the natural habitats of various animal species. These
environmental changes also have significant implications for climatic conditions, human
health, and the quality of life of the affected populations because they can influence the
spread of various infectious diseases [63]. Moreover, predicting the most likely scenario is
challenging because of the current noncompliance of most countries with carbon dioxide
(CO2) reduction treaties, compromising the reliability of optimistic scenarios and potentially
substituting them with pessimistic projections.

Studies conducted using spatial analyses to assess the environmental impact and
climate change in relation to cases of bovine rabies in Uruguay have revealed that the
outbreak of paralytic bovine rabies coincided geographically and temporally with the
increased fragmentation of native grasslands to create mono-specific forests for timber and
cellulose production [64,65]. Furthermore, these analyses have indicated that fragmentation,
along with minimum winter temperatures, enhanced the connectivity between colonies
of vampire bats, facilitating the sharing of feeding areas, and consequently increasing
the spatial persistence of the rabies virus in these bat groups [65]. By comparing these
findings with those of our modeling approach, we reaffirmed the influence of climate
change, especially temperature, on the distribution and occurrence of new cases of rabies in
both animals and humans. Modeling studies of the distribution of vampire bats in current
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and future scenarios have also demonstrated the existence of suitable habitats in much of
North and Central America, as well as in the Brazilian plateau, for the occurrence of these
bats [29]. Additionally, these studies identified temperature seasonality as a limiting factor
for species expansion, which is consistent with the findings of the present study.

Rabies control is a challenging task due to the epidemiological profile of bats, requiring
a comprehensive “One Health” approach, despite social vulnerabilities, and the lack of
population awareness [66]. Several documented rabies outbreaks in Brazil and South
America have occurred in riverine regions, indigenous communities, rural areas, and
extractive reserves, particularly in low-income populations and children who come into
contact with bats near sylvatic cycles [67–69]. These areas are characterized by a low
population density, lack of access to electricity, vulnerable housing, and limited access
to healthcare services [68]. In this context, there is an urgent need to adopt integrated
approaches that consider human and wildlife aspects. Public awareness of the risks
associated with contact with bats and prevention strategies are the key components of
rabies control initiatives. Furthermore, socioeconomic disparities and unfavorable living
conditions in certain areas exacerbate the challenges of disease outbreaks, underscoring the
urgency for interventions targeting these vulnerable communities.

Our model has certain inherent limitations, such as the inability to discern whether
the climate variables identified in this study indirectly influenced the occurrence of rabies
by affecting wild animal populations or by triggering direct effects on viral particles or
replication. Additionally, predictive modeling for future scenarios is not intended to
accurately replicate real-life occurrences, but rather to indicate the potential areas where
climate change may influence disease dynamics. In the context of rabies, in addition to
climatic variables, economic factors, particularly those related to agricultural activities, play
a significant role in disease dissemination [70]. An illustrative example of this interaction
is the common practice of cattle migration, which is often observed in regions of the
Amazon, in search of more favorable pastures. Previous studies have shown that the
movement of cattle correlates with the movement of vampire bat populations. This joint
migration of cattle and bats can lead to rabies outbreaks without strict dependence on
climate change [13]. It is worth noting that the occurrence of rabies cases is often associated
with the proximity of grazing areas, where susceptible animals may come into contact
with vampire bats, establishing a critical link in rabies virus transmission [71]. Thus, a
comprehensive understanding of rabies dynamics involves not only climatic factors, but
also economic and livestock management considerations.

Nonetheless, the results obtained hold intrinsic value, as they can contribute to direct-
ing rabies prevention and control efforts. Additionally, they can be used for monitoring
current disease occurrences, as well as for projections of future scenarios, integrated with
other patterns, such as rabies transmission epidemiology, migratory flows of animal popula-
tions, and epidemiological outbreaks [72]. Predictive modeling in this approach unifies the
elements of spatial and environmental epidemiology, providing a holistic understanding
of disease transmission geography. This integration across disciplines is crucial for the
surveillance and monitoring of infectious diseases, enabling the elucidation of the spatial
and temporal contexts of past, present, and emerging diseases [73]. Moreover, it allows for
an in-depth investigation of the role played by environmental changes in the climate and
landscape in relation to disease transmission dynamics, enhancing the capacity to respond
to and prevent these diseases [74,75].

5. Conclusions

This study provides significant preliminary insights into the influence of climatic con-
ditions on various scenarios of global warming in human rabies. Our results demonstrate
a remarkable performance in predicting climate suitability, with an ROC value of 0.90.
Furthermore, the standout bioclimatic variables in the consensus model, namely, tempera-
ture seasonality and the average temperature of the coldest month, were aligned with the
ecological requirements of D. rotundus, which is recognized as the primary host responsible
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for maintaining the sylvatic cycle of the rabies virus. Within the Brazilian context, we
identified the areas with a high likelihood of climatic factors contributing to the emergence
of rabies cases. Looking towards future scenarios, we observed regional variations in
climate suitability. These fluctuations could imply both an increase and decrease in the
cases, depending on the region under consideration. It is essential to emphasize that these
conclusions play a fundamental role in monitoring and predicting human rabies cases, and
provide insights to guide future epidemiological surveillance efforts. Furthermore, they
serve as a starting point for subsequent investigations involving newly modeled projections
and enrich our understanding of the mechanisms underlying rabies transmission dynamics
in the context of climate change.
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