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Abstract: Postpartum haemorrhage (PPH) is a significant cause of maternal morbidity and mortality
worldwide, particularly in low-resource settings. This study aimed to develop a predictive model for
PPH using early risk factors and rank their importance in terms of predictive ability. The dataset was
obtained from an observational case–control study in northern Rwanda. Various statistical models
and machine learning techniques were evaluated, including logistic regression, logistic regression
with elastic-net regularisation, Random Forests, Extremely Randomised Trees, and gradient-boosted
trees with XGBoost. The Random Forest model, with an average sensitivity of 80.7%, specificity
of 71.3%, and a misclassification rate of 12.19%, outperformed the other models, demonstrating
its potential as a reliable tool for predicting PPH. The important predictors identified in this study
were haemoglobin level during labour and maternal age. However, there were differences in PPH
risk factor importance in different data partitions, highlighting the need for further investigation.
These findings contribute to understanding PPH risk factors, highlight the importance of considering
different data partitions and implementing cross-validation in predictive modelling, and emphasise
the value of identifying the appropriate prediction model for the application. Effective PPH prediction
models are essential for improving maternal health outcomes on a global scale. This study provides
valuable insights for healthcare providers to develop predictive models for PPH to identify high-risk
women and implement targeted interventions.

Keywords: postpartum haemorrhage; statistical models; machine learning models; sensitivity;
specificity; misclassification rate

1. Introduction

The historical definition of postpartum haemorrhage (PPH) was based on specific
blood loss thresholds after vaginal or caesarean delivery. For vaginal delivery, it was
defined as a blood loss of 500mL or more, while for caesarean section, it was defined as a
blood loss of over 1000mL [1]. However, in 2017, the American College of Obstetrics and
Gynaecology revised this definition. The new definition includes any blood loss exceeding
1000mL accompanied by hypovolemia symptoms within 24 hours post-delivery, regardless
of the delivery method. This revision was prompted by the routine underestimation of
blood loss during delivery [2]. In global clinical practice, there is a lack of consensus on the
definition of PPH [3]. This challenges regional and national comparisons of the prevention
and management of PPH [3].

PPH primarily occurs within the first 24 hours after delivery but can also manifest up to
12 weeks post-delivery [4]. Bleeding within the initial 24 hours is referred to as primary PPH,
while bleeding occurring between 24 hours and 12 weeks post-delivery is termed secondary
PPH [4]. Uterine contractive medication, such as oxytocin, is administered as a first-line
treatment to prevent and manage primary PPH [3]. Other pharmaceutical treatments,
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surgical procedures, and blood transfusion may be advised for further management of
post-delivery bleeding [3].

Globally, pregnancy-related fatalities pose a significant concern and lead to the prema-
ture loss of around 500,000 women each year [5]. Among these fatalities, approximately
one-fourth are linked to PPH [6]. Despite an overall reduction in maternal mortality
rates [7], PPH remains a significant threat, affecting 1–5% of deliveries worldwide and
standing as the leading cause of maternal morbidity and mortality [2]. Additionally, for
every PPH-related death, there are at least 10 cases of "maternal near misses," which encom-
pass severe complications such as multiorgan dysfunction, multiple blood transfusions, or
peripartum hysterectomy [8]. Therefore, the accurate identification of women at a higher
risk of PPH is crucial for improving intervention strategies and reducing maternal deaths
and adverse outcomes.

Individual, socio-cultural, and environmental factors influence the detection and man-
agement of PPH in hospital settings [9]. A qualitative study conducted in Nigeria, Kenya,
and South Africa highlighted knowledge, beliefs about consequences, beliefs about capa-
bilities, and priorities as barriers to PPH detection and management [9]. Semi-structured
interviews with hospital-based healthcare professionals identified variable knowledge of
the recommended practices surrounding PPH. The interviewed professionals believed that
incorrectly identifying a PPH case would bear negative professional consequences. Lack
of self-belief in one’s professional ability to manage PPH was frequently reported. The
interviewees also perceived PPH detection and management as a low priority within their
hospital environments.

Implementing a clinical decision support system (CDSS) can assist healthcare profes-
sionals in navigating the complex factors influencing the detection and management of
conditions such as PPH [10]. A CDSS is a set of digital tools designed to improve healthcare
delivery by supporting higher-quality medical decision-making [10]. Targeted information
and recommendations based on patient characteristics and best practices are supplied to
the clinician by the CDSS at the point of care. The primary objective is to enhance healthcare
professionals’ clinical knowledge, although a CDSS may leverage data sources that are
challenging for the clinician to obtain or interpret. Predictive models are often included as
decision-making tools within a CDSS [10]. A predictive model estimating a patient’s risk of
PPH based on the patient’s characteristics and clinical observations could therefore form
part of a CDSS to support the accurate identification of women at a higher risk of PPH and
reduce maternal deaths and adverse outcomes.

The present research aims to develop a predictive model for PPH using early risk
factors and to rank the importance of these risk factors in terms of predictive ability. It
builds upon an observational case–control study conducted in northern Rwanda in 2021 that
utilised the same dataset from Rwanda [8]. The primary objective of the earlier investigation
was to identify risk factors for PPH and determine its prevalence, which was found to be
25.5%. This prevalence exceeds the global estimated prevalence of 1–5% of deliveries [2].
The 2021 study employed descriptive statistics to assess the overall prevalence of PPH and
utilised inferential statistics, specifically a modified Poisson regression model with robust
error variance, to identify risk factors for PPH.

The study considered various risk factors related to social and demographic aspects,
pregnancy, obstetrics, and factors during and immediately after childbirth. Significant
early risk factors were identified, including having no medical insurance, multiple foetuses,
pre-labour bleeding, intrauterine foetal death, and haemoglobin level at labour, all at a 5%
significance level. Maternal age, body mass index (BMI), multiparity, and a history of PPH
were also found to be statistically significant.

While many of these factors are well-known contributors to PPH, Bazirete et al. [11]
emphasised the significance of pre-labour haemorrhage and intrauterine foetal death. They
recommended a further examination of these factors in subsequent predictive models
for PPH.
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Findings from research conducted in various Eastern African countries both support
and challenge the conclusions of Bazirete et al. [11]. A cross-sectional study conducted at
a university hospital in eastern Ethiopia confirmed the significant roles of maternal age,
multiparity, and a history of PPH as risk factors for PPH, utilising logistic regression in
their analysis [12]. In contrast, a prospective cohort study from Uganda did not establish
a significant association between the risk of PPH and factors such as anaemia during
pregnancy, a history of PPH, or multiparity based on their logistic regression analysis [13].
However, it was found that multiple pregnancy constituted a significant risk factor for
PPH in the case of vaginal delivery, although this was not a consistent risk factor across all
delivery methods.

The variations in findings regarding risk factors underscore the need for further
exploration of these divergent outcomes. The discrepancies observed may be attributed
to the use of different research methodologies and statistical models, highlighting the
importance of considering these factors when interpreting the results.

This study aims to develop an optimal predictive model for PPH using early risk
factors. It employs both statistical and machine learning models, each with unique advan-
tages [14]. According to these authors, statistical models assume data are generated by a
known stochastic model, allowing for direct modelling. Machine learning (ML) approaches
consider the data generation process largely unknown. Statistical models predetermine
features and their interactions. ML models offer adaptability and flexibility. Features and
their interactions do not need to be specified prior to fitting the model to the observed data.
Feature selection and interactions are the result of data-driven processes during model
training. The adaptability and flexibility of ML models minimise the impact of incorrectly
specifying the data generation process in statistical models.

ML models often outperform statistical models in predictive performance but can
be less interpretable. Consequently, ML model specifications and outputs may be poorly
reported in research publications, and assessments of ML model validity may be less
reliable [15]. Consistent interpretations from ML models are a challenge, and they may be
prone to misuse as decision-making tools within a clinical decision support system (CDSS)
in a hospital setting.

A review by Christodoulou et al. [16] examined 71 studies and concluded that ML
techniques did not significantly improve predictive performance compared to logistic
regression in clinical prediction modelling with binary outcomes. However, ML models
outperformed logistic regression in high-bias situations. Venkatesh et al. [17] emphasised
the transparency of statistical models, making them more suitable for clinical practice, while
hybrid techniques combining statistical modelling and ML methods provide interpretable
alternatives.

Venkatesh et al. [17] conducted a study using data from the United States Consortium
for Safe Labor Study to develop predictive models for postpartum haemorrhage (PPH).
ML techniques, specifically Random Forests and gradient-boosted trees with XGBoost,
exhibited superior discriminative power in predicting PPH compared to statistical models
such as logistic regression with/without LASSO regularisation. The study validated the
models using phased and multi-site data, further reinforcing their findings.

2. Materials and Methods
2.1. Dataset

This project utilises a dataset from a study carried out by Bazirete et al. [11] in Rwanda,
aimed at identifying risk factors for postpartum haemorrhage (PPH) and determining its
prevalence, established at 25.5%. The study was an observational case–control analysis
conducted from 1 January 2020 to 30 June 2020 across five health facilities in Rwanda’s
Northern Province, focusing on women aged 18 and older who delivered at or beyond
32 weeks’ gestation. This is part of a broader study aimed at developing a risk assessment
tool (RATP) and investigating preventative factors for postpartum haemorrhage (PPH). The
facilities were selected based on their healthcare performance and location accessibility. It
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included 430 participants (108 cases and 322 controls), with cases defined by clinical criteria
such as blood loss over 500 ml within the first hour post-birth or the need for a blood
transfusion. Controls were women from the same facilities who did not experience primary
PPH. Data were gathered through structured interviews and reviewing comprehensive
medical records to ensure accuracy.

As the goal of this study was to construct the most effective predictive model for
early PPH detection, risk factors known upon labour admission or during labour were
considered the primary variables of interest for predicting PPH. These variables were
selected based on the findings of Bazirete et al. [11], Mesfin et al. [12], and Ononge et al. [13]
from research conducted in East African countries.

However, some pre-labour risk factors were extremely rare within the study popula-
tion, with an incidence of less than 1.5%. As the classification performance depends on
having features that clearly differentiate between the majority and minority classes, it is
crucial to evaluate whether a variable of interest contains enough information to achieve
this separation [18].

As a result, certain variables like uterine anomaly, uterine surgery, gestational diabetes
mellitus, polyhydramnios, anticoagulant medication, and severe preeclampsia were not
considered for this study due to their low prevalence in the dataset. Their limited presence
inhibits a clear separation between cases of PPH and the control group based on these
variables. The relationships between these low-prevalence variables and PPH cases would
be best explored outside of a predictive modelling context.

The risk factors of postpartum haemorrhage (PH) retained for the analysis included
maternal age, haemoglobin level during labour (Haem), body mass index (BMI), multiparity
(MP), multiple pregnancy (MU), medical insurance (IN), previous PPH (Pre), pre-labour
haemorrhage (AH), and intrauterine foetal death (IFD).

2.2. Statistical Analysis

In this study, we utilised two statistical models: logistic regression and penalised
logistic regression with elastic-net regularisation. Penalised regression applies a penalty to
variables with a high variance, resulting in a reduction in the number of variables in the
model and an improvement in prediction quality. Elastic-net regularisation is a combination
of L1 and L2 penalty terms weighted by a mixing parameter [19]. The inclusion of the
logistic regression model with all features was for comparative purposes to consider
the impact of L1 penalty feature selection and L2 penalty regularisation on predictive
performance.

In addition, this study used three distinct tree-based ensemble learning techniques
to construct predictive models for postpartum haemorrhage (PPH): Random Forests, Ex-
tremely Randomised Trees, and gradient-boosted trees utilising the XGBoost library. Tree-
based ensembles work by creating a collection of decision trees and then consolidating
their predictions [20].

At their core, decision trees are simple models that anticipate outcomes from data
observations through recursive binary splits on features within the dataset. The binary splits
are determined based on optimising a certain splitting criterion. This process effectively
partitions the feature space into unique, non-overlapping predictive sub-regions as per a
branching set of decision rules [21]. Each partition results in a node in the decision tree,
grouping observations deemed similar as per the decision rule.

Final predictions are made at terminal nodes when the space can no longer be parti-
tioned further, or when a particular stopping condition is met. For regression trees, these
predictions are continuous in nature and reflect the mean of the target response for the
observations partitioned within the terminal node [20]. Conversely, classification trees
predict class probabilities and class labels. Hence, the prediction of PPH cases and their
probabilities using tree-based methods would be viewed as a classification problem. Here,
all observations within a terminal node are classified according to the majority class of the
observations partitioned within that node.
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To these authors, tree-based ensemble methods may be considered more readily
interpretable than many other machine learning techniques. Every decision rule that is
applied to partition the feature space is transparent to the user, including both the features
and the values or levels on which recursive binary splits are performed.

Random Forests and Extremely Randomised Trees (ERTs) both train trees on random
subsets of features rather than the full feature sets. However, while a Random Forest identi-
fies split points based on a prespecified splitting condition, an ERT selects split points at
random. Due to the randomisation of the splits, an ERT is often observed to perform better
than a Random Forest in classification problems with noisy data [18]. An ERT’s sampling
approach differs from a Random Forest’s bootstrap resampling as trees are trained on
random samples drawn without replacement from the full set of training observations [22].
On the other hand, gradient-boosted trees use a stochastic gradient-boosting algorithm to
train a tree-based ensemble model by optimising an objective function [23].

Hyperparameter tuning was performed via a grid search. Four hyperparameters were
considered for the Random Forest and ERT: the number of random features considered at
each split, the number of trees in the ensemble, the minimum size of terminal nodes, and the
maximum depth of each tree in the ensemble. The following seven hyperparameters were
considered for the gradient-boosted trees with XGBoost: the learning rate, the minimum
loss reduction, the number of boosting iterations, the minimum child weight, the maximum
tree depth, the proportion of features sub-sampled per tree, and the proportion of training
observations sub-sampled per tree.

Data analysis was performed using RStudio [24]. This study employed a 40–60 data
separation, with 60% of the data used for training and the remaining 40% for validation
(30%) and testing (10%). All candidate models were trained, tested, and validated on the
same data separation. As recommended by Mehrnoush et al. [25], while various separations
and approaches for training and test data can be utilised, it is crucial to maintain consistent
separation across all algorithms for meaningful comparisons.

As classification performance often varies with different training sets, this study
identifies the model with the best classification performance across three different data
partitions over 5-fold cross-validation. Using this approach allows the analysis to consider
the stability and generalisability of the predictive models across different subsets of the
data. These data partitions were created using the tidymodels package [26]. To encourage
balanced training sets with respect to the target variable (PPH), training set partitioning
was stratified by the target variable. Each training set consisted of 24.9% of PPH cases, but
the proportions of PPH cases differed in the validation and test sets. Given the sample size
(n = 430), there would be considerable overlap in the training sets (and thus validation and
test sets) if more data partitions were created. Comparing classification performance across
overlapping data partitions would be redundant.

All candidate models were trained to maximise the area under the ROC curve and
were evaluated using sensitivity to PPH cases and specificity to controls as comparative
measures.

The area under the Receiver Operating Characteristic (ROC) curve is a widely recog-
nised metric in machine learning [27]. The ROC curve plots the true positive rate (TPR)
against the false positive rate (FPR) at different probability thresholds. In this application,
the ROC curve plots the proportion of correctly predicted PPH cases against the proportion
of incorrectly predicted PPH cases. The area under this ROC curve is then used to assess
the performance of a classification model at different probability thresholds.

Sensitivity refers to the proportion of true PPH cases accurately predicted by a given
model, while specificity denotes the proportion of true PPH controls accurately predicted.

Candidate models were trained with 5-fold cross-validation using the caret pack-
age [28], and probabilities of PPH were predicted. Each candidate model’s sensitivity to
PPH cases and specificity to controls were calculated separately for each data partition.
The classification probability threshold providing the optimal trade-off between sensitivity
and specificity was identified graphically using the area under the ROC curve. The means



Int. J. Environ. Res. Public Health 2024, 21, 600 6 of 13

of these partition-specific metrics were calculated to obtain an average sensitivity and
specificity across the three data partitions for each candidate model.

The best-performing predictive model of PPH provides a good balance between both
sensitivity and specificity across folds and data partitions. Practical applicability is a further
consideration when recommending the best-performing predictive model for medical
professionals.

The average misclassification rate across the data partitions was also reported for the
final model to provide a practical representation of the model’s predictive performance. The
misclassification rate (MR) describes the proportion of all predictions that were incorrectly
classified.

A ranking of feature importance in predictors of PPH was obtained from the best-
performing predictive model. Considering feature importance across data partitions may
provide a ranking that is more stable and generalisable than if a single partition was
considered.

3. Results

The mean sensitivity and specificity of candidate models across all folds and data
partitions were compared in both the training and validation sets. Figures 1 and 2 show
the candidate models’ performance averaged across the three data partitions. Below is a
summary of the findings and conclusions:

Considering both the training and validation sets in Figure 1, the Random Forest
model exhibited the highest sensitivity to PPH cases, with average values of 0.79 in training
and 0.71 in validation. The average specificity to the controls was similar (0.76 in training;
0.70 in validation). On average, the penalised logistic regression exhibited slightly lower
sensitivity to PPH cases than the logistic regression without an elastic-net penalty (0.72 in
training and 0.69 in validation, compared to 0.73 in training and 0.73 in validation).

No L1 penalty terms were applied to any features in the penalised logistic regression
model over cross-validation in all data partitions. All features were retained in the penalised
model, subject to a small L2 penalty constraining the regression coefficient size. The
penalised logistic regression hyperparameters that maximised the ROC for each data
partition are summarised in Table 1.
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Table 1. Penalised logistic regression hyperparameters that maximised ROC for each data partition.

Data Partition L1 Penalty Hyperparameter L2 Penalty Hyperparameter

1 0 0.26
2 0 0.03
3 0 0.14

On average, the penalised logistic regression exhibited higher specificity to controls
than the logistic regression without an elastic-net penalty (0.76 in training and 0.72 in valida-
tion, compared to 0.69 in both training and validation). Considering the penalised logistic
regression hyperparameters summarised in Table 1, constrained regression coefficients may
support the model’s specificity to the controls but not its sensitivity to PPH cases.

Although the Extremely Randomised Tree model had the highest specificity values of
0.81 in training and 0.74 in validation (see Figure 2), the average sensitivity to predicting
PPH cases was somewhat lower than in the Random Forest model (0.74 in training and
0.70 in validation).

Considering these results, the Random Forest model was selected as the final predictive
model for PPH due to its good average sensitivity to PPH cases and comparable specificity
to the controls in training and validation. The Random Forest hyperparameters that
maximised the ROC for each data partition are summarised in Table 2.

Table 2. Random Forest hyperparameters that maximised ROC for each data partition.

Data Partition Number of Random Features Minimum Terminal Node Size

1 2 20
2 2 25
3 2 20

The number of random features considered at each split was consistent across the
data partitions (n = 2). However, there were some differences in the minimum size of the
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terminal nodes, with a minimum size of 20 in two data partitions and a minimum size of
25 in the remaining partition. The Random Forest model performance metrics on unseen
test data, averaged across three data partitions, are plotted in Figure 3.
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In two out of the three data partitions, the Random Forest model performed well on the
unseen data—both in terms of its sensitivity to PPH cases and its specificity to the controls.
In Partition 2, the Random Forest model shows poor sensitivity to PPH cases compared
to Partitions 1 and 2. However, the model’s specificity to the controls is similar across all
the partitions. Although there are performance differences across the data partitions, the
Random Forest model provides the best balance between sensitivity and specificity. The
average sensitivity across all the partitions is 0.81, and the average specificity is 0.71.

The average misclassification rate (12.19%) was calculated across the data partitions to
provide a practical representation of the model’s predictive performance. Most misclas-
sifications correspond to controls misclassified as PPH cases. This corresponds with the
core objective of developing a predictive model for PPH: to identify high-risk women for
targeted interventions.

After identifying the best predictive model for PPH, the next objective was to rank the
importance of features in predicting PPH. Relative feature importance was estimated using
the caret package by applying the final models to the test data for each data partition [28].
For Random Forest models, feature importance was determined using Gini impurity. This
metric considers how many times a feature is used to create a partition (weighted by the
number of bootstrap samples including that partition), then averages the decreases in
Gini impurity resulting from splitting on that feature over all trees in the ensemble [29].
Estimates are scaled between 0 and 100 within each partition for comparison.

The variable importance estimates obtained from the final model for each data partition
are summarised in Figure 4. According to the figure, haemoglobin level and maternal age
are influential features in predicting PPH across all the partitions.

Maternal age has a higher relative importance in the first data partition than in the
second and third partitions. On the other hand, haemoglobin level during labour has a
lower relative importance in the first data partition than in the second and third partitions.
The importance of maternal BMI, intrauterine foetal death, and multiple pregnancy is lower
but more consistent across the data partitions.
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Although there are differences in relative importance across the data partitions, it
is evident that maternal age and haemoglobin level have a high relative importance as
predictors of PPH across all the partitions. Intrauterine foetal death and multiple pregnancy
show a modest and consistent relative importance across the folds.
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4. Discussion

The research evaluated various predictive models—logistic regression, logistic regres-
sion using an elastic net, Random Forests, Extremely Randomised Trees, and XGBoost’s
gradient-boosted trees—for predicting postpartum haemorrhage (PPH).

The logistic regression model with all features had a lower sensitivity to PPH cases
but a greater specificity to the controls. As only a small L2 penalty was applied to constrain
the regression coefficients, this difference in performance may reflect the small feature set
of early risk factors considered in this analysis. If all features are needed to model the
variability in a target response, penalised logistic regression may not improve predictive
performance.

The Random Forest model emerged as the most effective classifier for PPH across all
folds and data partitions. Upon assessment with unseen test data, this model demonstrated
impressive performance across the three data partitions. It achieved an average sensitivity
of 80.7% in identifying PPH cases and a specificity of 71.3% in recognising controls, and it
maintained an average misclassification rate of 12.19%.

Previous comparative studies by Venkatesh et al. [17] demonstrated that tree-based
ensemble techniques, such as gradient-boosted trees with XGBoost and Random Forests,
outperformed statistical models like logistic regression and lasso regression in predicting
PPH. Similar findings were observed in other studies comparing various machine learning
techniques in clinical predictive modelling for diseases, where tree-based ensemble tech-
niques showed excellent predictive performance compared to neural networks, Support
Vector Machines, and Bayesian approaches [30,31].

Machine learning techniques offer greater flexibility than statistical models, which
appears necessary in this application to achieve the required separability between PPH
cases and controls for good predictive performance. For medical professionals who intend
to apply predictive modelling techniques to their own research, this flexibility may provide
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a practical advantage over statistical models, which require features and interactions to be
prespecified.

The variable importance in the best-performing predictive model differed across the
data partitions. However, despite these differences, it was possible to identify clear trends
in relative importance regardless of the data partition. Maternal age and haemoglobin level
have a high relative importance as predictors of PPH across all the partitions.

This analysis highlights the value of considering the relative importance of predictors
across multiple data partitions (see Figure 4). For example, if only Partition 1 were consid-
ered, medical insurance would be identified as a feature of similar relative importance to
multiple pregnancy. However, in Partitions 2 and 3, medical insurance is an unimportant
predictor of PPH relative to the other features. This insight may be relevant for medical pro-
fessionals who would like to obtain a stable, generalisable estimate of variable importance
from predictive models within their own research.

The variable importance of the final model did not completely align with the expecta-
tions based on the original study by Bazirete et al. [11] and the other literature reviewed
at the beginning of this study. Bazirete et al. [11] found pre-labour haemorrhage and
having no medical insurance to be significantly associated with PPH based on the p-values
(p < 0.05) associated with the estimated risk ratios. Maternal age, haemoglobin level during
labour, BMI, and multiparity were also found to be statistically significant in the original
study. Mesfin et al. [12] identified a maternal age of 35 years and older as a significant
risk factor of PPH when considering specific maternal age categories. However, features
such as intrauterine foetal death and multiple pregnancy, which were highly significant in
Bazirete et al. [11], had lower relative importance in the final model. A previous history of
PPH, although identified as a significant risk factor for PPH by Bazirete et al. [11], was not
considered an important predictor in the final model.

The discrepancies observed in the variable importance between this analysis, Bazirete
et al.’s analysis, [11] and the other literature reviewed may be attributed to the use of differ-
ent predictive modelling techniques. Medical practitioners may benefit from considering
several candidate models and estimating variable importance from the best-performing
model. Estimating variable importance at an optimally selected classification threshold
may provide medical practitioners with greater flexibility.

The discrepancies observed in variable importance may be attributed to the use of
different research methodologies and statistical models. Bazirete et al. [11] performed a
Poisson regression, and the dataset was produced by an observational case–control study.
Mesfin et al. [12] performed a logistic regression, and the dataset was produced by an
institution-based cross-sectional study. Probability threshold selection for the classification
of PPH cases was performed in this analysis, but not by Mesfin et al. [12]. This highlights
the impact of variable importance from predictive models within their own research.

5. Conclusions

The objective of this study was to develop an accurate predictive model for postpartum
haemorrhage (PPH) using early risk factors and to rank the most significant predictors
of PPH.

The dataset consisted of 430 observations from a previous study in Rwanda. Models,
including logistic regression, elastic-net-regularised logistic regression, Random Forests,
Extremely Randomised Trees, and Extreme Gradient Boosting, were trained and evaluated
using cross-validation in three different train–test data partitions.

The logistic regression model with all features had a lower average sensitivity to PPH
cases than the penalised logistic regression model across all folds and data partitions. This
performance difference may reflect the small feature set of early risk factors considered in
this analysis. When deciding whether to implement penalised logistic regression, medical
practitioners should be guided by the characteristics of their dataset—especially by the
number of features.
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The Random Forest model performed the best, demonstrating a good average sensi-
tivity and specificity across all the folds and data partitions. Differences in classification
performance were observed across the different data partitions. Considering classification
performance across data partitions may therefore help identify a predictive model with
more stable and generalisable performance.

This analysis highlights the tree-based ensemble technique of a Random Forest as a
promising method for medical practitioners to apply in their own research. Its flexibility
provides a practical advantage over statistical models for medical practitioners who intend
to implement predictive modelling techniques in their own research. The transparency of
the Random Forest partitioning process makes predictions from this technique more readily
interpretable for medical practitioners than in many other machine learning techniques.

The most important predictors of PPH identified by the model were maternal age
and haemoglobin level during labour. This was observed across all the data partitions,
despite a higher relative importance for maternal age and a lower relative importance for
haemoglobin level in the first partition. The importance of maternal BMI, intrauterine foetal
death, and multiple pregnancy was lower but more consistent across the data partitions.
The variations in findings regarding risk factors underline the value of considering the
relative importance of predictors across multiple data partitions. Medical practitioners
who wish to obtain a stable, generalisable estimate of variable importance from predictive
models within their own research may wish to avoid considering a single data partition.

The analysis has limitations, including a narrow focus on variables before and at
labour admission as well as a small dataset, limiting generalisability. Given the small
dataset, certain variables with low prevalences could not be considered, including uterine
anomaly, uterine surgery, gestational diabetes mellitus, polyhydramnios, anticoagulant
medication, and severe preeclampsia. The relationships between these low-prevalence
variables and PPH cases would be best explored outside of a predictive modelling context.

To address these limitations, it is recommended to validate the findings with larger
datasets and diverse populations. Validation using data from different time periods and
conducting a cross-sectional study using medical records would enhance reliability. Fur-
thermore, incorporating more intrapartum and immediate postpartum features should be
considered for improved predictive performance, requiring further analysis and compari-
son of modelling techniques.

Validating the findings in different settings and populations, including additional
features, would strengthen the reliability and applicability of the developed predictive
model for PPH. This validation is especially relevant given the lack of consensus in global
clinical practice regarding the definition of PPH [3].

A validated predictive model estimating a patient’s risk of PPH based on early risk
factors could form part of a clinical decision support system (CDSS) to support the accurate
identification of women at higher risk of PPH. Receiving targeted information and recom-
mendations at the point of care may help healthcare professionals navigate the complex
factors influencing the detection and management of PPH in hospital settings for improved
healthcare delivery.
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