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Abstract: Background: Accurate detection of axillary lymph node (ALN) metastases in breast cancer
is crucial for clinical staging and treatment planning. This study aims to develop a deep learning
model using clinical implication-applied preprocessed computed tomography (CT) images to enhance
the prediction of ALN metastasis in breast cancer patients. Methods: A total of 1128 axial CT images
of ALN (538 malignant and 590 benign lymph nodes) were collected from 523 breast cancer patients
who underwent preoperative CT scans between January 2012 and July 2022 at Hallym University
Medical Center. To develop an optimal deep learning model for distinguishing metastatic ALN
from benign ALN, a CT image preprocessing protocol with clinical implications and two different
cropping methods (fixed size crop [FSC] method and adjustable square crop [ASC] method) were
employed. The images were analyzed using three different convolutional neural network (CNN)
architectures (ResNet, DenseNet, and EfficientNet). Ensemble methods involving and combining the
selection of the two best-performing CNN architectures from each cropping method were applied to
generate the final result. Results: For the two different cropping methods, DenseNet consistently
outperformed ResNet and EfficientNet. The area under the receiver operating characteristic curve
(AUROC) for DenseNet, using the FSC and ASC methods, was 0.934 and 0.939, respectively. The
ensemble model, which combines the performance of the DenseNet121 architecture for both cropping
methods, delivered outstanding results with an AUROC of 0.968, an accuracy of 0.938, a sensitivity
of 0.980, and a specificity of 0.903. Furthermore, distinct trends observed in gradient-weighted class
activation mapping images with the two cropping methods suggest that our deep learning model
not only evaluates the lymph node itself, but also distinguishes subtler changes in lymph node
margin and adjacent soft tissue, which often elude human interpretation. Conclusions: This research
demonstrates the promising performance of a deep learning model in accurately detecting malignant
ALNs in breast cancer patients using CT images. The integration of clinical considerations into image
processing and the utilization of ensemble methods further improved diagnostic precision.

Keywords: deep learning; convolutional neural network; axillary lymph node metastasis; computed
tomography; breast cancer
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1. Introduction

Breast cancer stands as the most prevalent form of malignancy and a leading con-
tributor to cancer-related fatalities among women worldwide [1]. In breast cancer, the
axillary lymph node (ALN) is the most common site of metastasis. Accurately determining
the presence of ALN metastasis is crucial for clinical staging, prognosis evaluation, and
treatment planning for breast cancer patients [2].

To confirm ALN metastasis pathologically, sentinel lymph node dissection and ALN
dissection are recommended. Although sentinel lymph node dissection is less invasive com-
pared to ALN dissection, both procedures are invasive and can lead to lifelong complications,
such as lymphedema and restricted shoulder movement. Therefore, non-invasive radio-
logic methods (ultrasound, magnetic resonance imaging [MRI], computed tomography [CT],
positron emission tomography [PET]-CT) are recommended preoperatively. The clinical stage
and treatment plan are determined based on the results of the radiologic examination.

CT is valuable due to its accessibility, ease of examination, and reproducibility. For
these reasons, it is performed as a baseline examination for breast cancer patients and as a
surveillance method to evaluate recurrence after treatment completion. Traditionally, the CT
diagnostic criteria for metastatic lymph node (LN) include structural features such as size,
shape, texture, margin, and enhancement patterns. Among these criteria, size, except for
factors that may be influenced by a radiologist’s subjective decision, remains the most reliable
factor. A short axis diameter > 1 cm is generally accepted as a threshold for malignancy [3,4].
However, the sensitivity of CT is often compromised by a high false-negative rate, as up to
67–74% of metastatic LNs have been reported to have a normal size of less than 1 cm [5,6].

In predicting ALN metastasis in breast cancer patients, CT demonstrates a sensitivity
of 76–78% and a specificity of 75–97% [7,8]. The consistently observed low sensitivity
may lead to the underestimation of the clinical stage, which can result in mistreatment.
Therefore, supplementary diagnostic methods are required to enhance the accuracy of ALN
detection by radiologic methods, including CT.

With the current advances in artificial intelligence (AI), specifically deep learning and
machine learning, these technologies can enhance traditional diagnostic methods for ALN
metastasis detection in breast cancer. Researchers have developed various AI models to
detect LN metastasis of breast cancer using radiologic images, with several models—mainly
employing MRI and ultrasonographic images—showing high performance, with area under
the receiver operating characteristic curve (AUROC) values ranging from 0.71–0.99 [9].

In contrast to other radiologic methods, AI-based studies using CT scan to detect ALN
metastasis in breast cancer are limited. To our knowledge, only two retrospective studies
using CT scan have been conducted, with reported AUROC values of 0.817–0.969 [10,11].
Since studies using CT scan are very limited, it has not been clearly established which image
preprocessing protocol or optimal convolutional neural network (CNN) model should be
used for the best analysis results. Therefore, we conducted this study to develop a novel
deep learning-based model to differentiate metastatic ALN in breast cancer patients from
benign ALN based on CT scan and to validate the diagnostic performance of the system.

2. Materials and Methods
2.1. Study Subjects

A total of 1128 axial CT images of ALN, comprising 538 malignant and 590 benign lymph
nodes, were collected. These images were obtained from 303 and 220 breast cancer patients,
respectively, who underwent preoperative CT scans between January 2012 and July 2022 at
Hallym University Medical Center. The characteristics of all malignant or benign LNs were
pathologically confirmed by either percutaneous core needle biopsy or surgery. All images were
obtained from contrast-enhanced chest CT scans, and non-enhanced CT/low-dose CT images
were not included in this study. Patients who had received neoadjuvant treatment prior to their
CT scan were excluded from the study. This retrospective study protocol was approved by
the Ethics Committee of the Institutional Review Board at Hallym University Medical Center,
Anyang-si, South Korea (IRB no. HALLYM 2023-07-017).
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2.2. CT Imaging

All CT images were obtained using 64- to 128-channel multidetector CT scanners
(SOMATOM Definition Flash, SOMATOM Definition Edge, Somatom Force, Siemens
Medical Solutions, Erlangen, Germany; Brilliance, Philips Medical Systems, Eindhoven,
The Netherlands). The tube voltage varied in the range of 80, 100, 120, or 140 kVp, and
the current ranged from 45 to 714 mAs. The pitch factor was 0.6 or 1.2, and the detector
collimation was 128 × 0.6 mm or 192 × 0.6 mm. The gantry rotation time ranged from
0.25 to 0.5 s. The pixel size ranged from 0.55 to 0.99 mm, and the slice thickness and spacing
of axial images were 3 mm, respectively. Iterative reconstruction was applied using the
ADMIRE version 2 reconstruction method (Siemens Healthineers, Erlangen, Germany).

2.3. Image Analysis Methods

In this study, we employed various CNN architectures, two different cropping meth-
ods, and an ensemble method to develop an optimal deep learning model that incorporates
clinical implications for distinguishing metastatic ALN from benign ALN. Figure 1 illus-
trates the overall structure of the proposed methods. The steps include data collection,
image conversion, cropping techniques, data augmentation, CNN model training, and
the final integration using the ensemble method. Detailed information is described in the
following subsections.
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Figure 1. Overview of the CNN-based workflow.

2.3.1. Image Conversion

Acquired CT images are composed of Hounsfield Unit (HU) values and have a range
of 4096 (12 bits). For deep learning-based analysis, the CT images are converted into
grayscale images with a range of 256 (8 bits) by applying the same window level of 60 and
window width of 40 as used in CT interpretation.

2.3.2. Protocol for LN Bounding Box Generation

The acquisition of ALN images was performed by following protocol. (i) Axial CT
image which crossing center line of target LN; (ii) one axial CT image for one target LN;
(iii) a maximum five target LNs from one patient. After acquiring axial CT images for
the target LNs, a clinical expert manually annotated a region of interest (ROI) using the
software “Labelme, version 5.4.0”. This ROI was delineated with a bounding box designed
to encompass both the margin and the adjacent soft tissue of the LNs. The sum of margins
was set to be 40% of the maximum diameter of the LN (as shown in Figure 2).
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Figure 2. Illustration of Bounding box strategy: detailing margin and adjacent soft tissue around
target lymph node.

2.3.3. Crop Strategies for Image Analysis

After obtaining the image of the target LN, it underwent processing using two distinct
cropping methods prior to analysis with various CNN architectures (Figure 3). These
cropping methods differed based on whether they incorporated the actual size information
of the LN, which is a crucial criterion for distinguishing malignant LNs.
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Figure 3. Two different cropping methods. (A) illustrates the fixed size crop method that reflects
the actual size information, and (B) illustrates the adjustable square crop method that adjusts and
equalizes the size information.

The first method is the fixed size crop (FSC) method, which reflects the actual size
information of the LN. In this method, bounding box images are converted to their actual
size in mm2 using the pixel spacing information from the DICOM header and aligned with
the center point of a preset, fixed-size area. The fixed-size area is set at 55 mm square to
encompass the majority of ALN images, with an additional 5 mm margin on each side. If a
bounding box image exceeds the fixed-size area, it is resized to fit within that area.

The second method is the adjustable square crop (ASC) method, which adjusts and
equalizes the actual size information of the LN. In this method, bounding boxes are adjusted
to form a square shape based on the longer side by applying zero padding. The longer side
of the extracted bounding box is used as a reference for the square adjustment, while the
shorter side is compensated using zero padding, resulting in a square shape.

2.3.4. CNN Architectures

Since different CNN architectures exhibit varying performance in image classification,
this study aims to explore the unique features and effects of each architecture and evaluate
their performance in accurately distinguishing between benign and malignant LNs in CT
images. ResNet [12] introduces residual connections, a structure that directly adds the
output from the preceding layer to the input of the current layer. This mitigates the van-
ishing gradient problem and effectively trains very deep neural networks. DenseNet [13]
employs a densely connected structure where each layer is closely connected to the pre-
ceding layer, often referred to as “dense connections”. This design facilitates efficient
gradient propagation and information reuse, leading to more efficient training and higher
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accuracy. EfficientNet [14] is designed to optimize network depth and width, achieving
high performance with fewer parameters. It comes in various versions, such as B0 to B7,
each suitable for different applications.

2.3.5. Ensemble Method

The primary objective of our study is to accurately distinguish between malignant
and benign LNs using CNN architecture. To achieve this goal, we applied ensemble
methods to enhance overall performance, reduce prediction variance, and improve the
final classification results [15,16]. This approach involves selecting the two best-performing
CNN architectures from each cropping method (FSC and ASC methods) and combining
them using the unweighted average ensemble method to generate the final results. Figure 4
provides an illustration of the ensemble method.
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2.3.6. Learning the Network

The pretrained weights from the ImageNet dataset [17] were used to initialize the
trainable parameters. The CNN classification models were trained using an augmented
dataset that involved ±20◦ rotation and flipping to balance the class ratios, all on the same
set of training samples. The training data were resized to 224 × 224, and the optimization
of the training was performed using the Adam optimizer. The total number of epochs
was set to 100, and the learning rate was set to range from 10−3 to 10−5. Two different
strategies were employed for decreasing the learning rate: reducing it by a factor of 10 every
10 epochs and by a factor of 10 if no additional decrease was observed in the tuning dataset.
The training process was conducted on a server equipped with an Intel(R) Xeon(R) Silver
4216 CPU @ 2.10 GHz, 256 GB RAM, and NVIDIA GeForce RTX 3090 (24 GB) in Ubuntu 20.04.1.

3. Results

This study included a total of 1127 LN images acquired from 523 patients. The entire
dataset was randomly split into training, tuning, and test datasets in a ratio of 80%, 10%,
and 10% three times independently. To ensure that ALN images of the same class from
a single patient were not included simultaneously during the splitting process, the data
were divided based on the patient identification number. The detailed composition of the
first split is shown in Table 1. The training dataset consisted of 890 ALN images from
417 patients, while the tuning dataset included 113 ALN images from 53 patients. The test
dataset consisted of 124 ALN images obtained from another 53 patients.
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Table 1. Detailed composition of the training, tuning, and test datasets in the initial dataset split.

Whole Dataset Training Set Tuning Dataset Test Dataset

Image N Patient N Image N Patient N Image N Patient N Image N Patient N

Overall 1127 523 890 417 113 53 124 53
Malignant 538 303 422 241 53 31 63 31

Benign 589 220 468 176 60 22 61 22

3.1. CNN Performance Based on Cropping Methods

Tables 2 and 3 present the results for each model using two different crop methods. Per-
formance was evaluated using accuracy, AUROC, specificity, sensitivity, negative predictive
value (NPV), positive predictive value (PPV), and F1 Score, with calculations performed
at the threshold that maximizes Youden’s J statistic [18]. For each metric, the mean value
and standard deviation of the results are calculated through independent training and
evaluation using datasets created from three random splits. Furthermore, we selected the
model that demonstrated the best performance and conducted a statistical comparison of
its AUROC result with those of the other models using the DeLong test.

In the results with the ASC cropping method (Table 2), DenseNet121 demonstrates
excellent performance in terms of AUROC, accuracy, sensitivity, and specificity, effectively
classifying true positive and true negative cases. High PPV and NPV emphasize the accuracy of
positive and negative predictions, ultimately achieving a high F1 score. Although EfficientNet
B7 and ResNet152 also demonstrate good overall classification performance, EfficientNet B7
generally exhibits lower performance compared to DenseNet. ResNet152 shows relatively
lower specificity, resulting in lower PPV, NPV, and F1 scores as well. To assess the statistical
significance of these differences, we conducted the DeLong test using the same dataset that
generally showed the best performance among the datasets created from three random splits.
The DeLong tests were performed to compare the AUROC results between DenseNet121,
which demonstrated the best performance, and ResNet152 as well as EfficientNet B7, resulting
in p-values of 0.292 and 0.274, respectively. These outcomes indicate that there are no statistically
significant differences in AUROC between DenseNet121 and the other models.

Table 2. Performance of three CNN architectures using ASC method with three independent random splits.

Accuracy AUROC Sensitivity Specificity PPV NPV F1 Score p-Value *

ResNet 152 [12] 0.83 ± 0.039 0.929 ± 0.021 0.874 ± 0.068 0.878 ± 0.024 0.868 ± 0.02 0.885 ± 0.062 0.869 ± 0.028 0.292
DenseNet 121 [13] 0.87 ± 0.043 0.939 ± 0.026 0.900 ± 0.043 0.883 ± 0.037 0.878 ± 0.033 0.904 ± 0.045 0.889 ± 0.038

EfficientNet B7 [14] 0.862 ± 0.019 0.927 ± 0.020 0.874 ± 0.075 0.884 ± 0.052 0.876 ± 0.052 0.888 ± 0.064 0.87 ± 0.013 0.274

The results include the mean values and their corresponding standard deviations. Bold represents the best performance
in each metric. * Comparing AUROC result of DenseNet 121 with ResNet and EfficientNet using a DeLong test.

In the results with the FSC cropping method (Table 3), DenseNet121 also demonstrates
great performance in AUROC, sensitivity, and NPV, effectively classifying both positive and
negative cases. Furthermore, the F1 score reflects a balance between model accuracy and
positive predictions, highlighting its exceptional classification performance. EfficientNet
B7 shows good classification performance in certain aspects, but it exhibits relatively lower
accuracy compared to DenseNet121 and ResNet152. ResNet152 excels in specificity and
PPV, but shows relatively lower performance in sensitivity, NPV, and AUROC. As indicated
by the DeLong test results, there were no significant differences in the AUROC results
between DenseNet121 and the other models.

Table 3. Performance of three CNN architectures using FSC method with three independent random splits.

Accuracy AUROC Sensitivity Specificity PPV NPV F1 Score p-Value *

ResNet 152 [12] 0.851 ± 0.024 0.929 ± 0.023 0.858 ± 0.024 0.9 ± 0.041 0.891 ± 0.034 0.872 ± 0.033 0.874 ± 0.025 0.171
DenseNet 121 [13] 0.875 ± 0.038 0.934 ± 0.03 0.921 ± 0.059 0.844 ± 0.042 0.847 ± 0.03 0.921 ± 0.063 0.881 ± 0.034

EfficientNet B7 [14] 0.814 ± 0.038 0.933 ± 0.024 0.893 ± 0.034 0.857 ± 0.039 0.853 ± 0.025 0.896 ± 0.037 0.872 ± 0.021 0.118

The results include the mean values and their corresponding standard deviations. Bold represents the best performance
in each metric. * Comparing AUROC result of DenseNet 121 with ResNet and EfficientNet using a DeLong test.
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3.2. Performance of Ensemble Model

Table 4 presents the performance and 95% confidence intervals for three ensemble
models based on each CNN architecture and Figure 5 shows the receiver operating char-
acteristic (ROC) curves. For each cropping method, DenseNet121 consistently showed the
best performance compared to other CNN architectures, and in the result of the ensemble
model, DenseNet121 also exhibits the highest performance across all evaluation metrics. It
achieves a sensitivity of 0.980 and specificity of 0.903, along with PPV and NPV of 0.893 and
0.982, respectively. The model demonstrates its effectiveness in classifying both positive and
negative cases, as indicated by its F1 Score of 0.935, accuracy of 0.938, and AUROC of 0.968.

Table 4. Performance for the three ensemble models based on different CNN models using two
crop methods.

Accuracy AUROC Sensitivity Specificity PPV NPV F1 Score

ResNet 152 0.912
(0.859–0.964)

0.958
(0.952–0.960)

0.961
(0.868–0.988)

0.871
(0.765–0.933)

0.860
(0.746–0.927)

0.964
(0.879–0.989)

0.907
(0.9–0.914)

DenseNet 121 0.938
(0.894–0.982)

0.968
(0.965–0.971)

0.980
(0.897–0.995)

0.903
(0.804–0.954)

0.893
(0.785–0.949)

0.982
(0.908–0.996)

0.935
(0.930–0.940)

EfficientNet B7 0.894
(0.837–0.951)

0.962
(0.960–0.966)

0.902
(0.790–0.956)

0.887
(0.784–0.944)

0.868
(0.751–0.934)

0.917
(0.819–0.963)

0.885
(0.879–0.892)

The results include 95% confidence intervals. Bold represents the best performance in each metric.
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3.3. Gradient-Weighted Class Activation Mapping (Grad-CAM)

We utilized Grad-CAM to assess whether applying clinical implications to image pro-
cessing affects the result of the deep learning-based analysis. Figure 6 shows representative
images of original and overlaid Grad-CAM for malignant ALN using two different cropping
methods (ASC and FSC methods) with DenseNet121. In the FSC method, which preserves
actual size information, Grad-CAM for malignant ALN highlights the lymph nodes themselves.
However, in the ASC method, which adjusts and equalizes size information, Grad-CAM tends
to emphasize the margin and adjacent soft tissue of malignant lymph nodes.
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4. Discussion

The primary aim of this study was to differentiate between malignant and benign ALN
in axial CT images of breast cancer patients using CNN architectures. Our methodology
incorporated a predefined protocol for image processing, different cropping methods
based on clinical implications, architectural considerations, and ensemble methods. The
study yielded promising results in detecting malignant LNs in terms of AUROC, accuracy,
sensitivity, and specificity.

In our study, the ensemble model, which combines the performance of the DenseNet121
architecture for both FSC and ASC cropping methods, delivered outstanding results with
an AUROC of 0.968 and an accuracy of 0.938. These results significantly outperformed
the prediction accuracy of clinical experts. When compared to the prior best-performing
AI model that used the DA-VGG19 model on 401 breast cancer patients (which reported an
AUROC and accuracy of 0.969 and 0.909, respectively) [10], our results were comparable or
slightly superior. To ensure the reliability of the analysis results, we trained and evaluated each
CNN architecture with datasets created from three random splits and experimented with three
CNN architectures separately. Additionally, clinical experts, including one radiologist and
one medical oncologist, reviewed the Grad-CAM images to determine whether AI identified
specific regions of clinical interest to distinguish malignant from benign LNs.

An important feature of our research, setting it apart from previous studies, is the
incorporation of a unique predefined protocol during the early phase of image processing,
specifically during bounding box generation. Rectangular bounding boxes were created
according to a predefined protocol wherein the sum of the free margins was set at 40%
of the LN’s maximum diameter. This protocol holds clinical significance, as it not only
evaluates the LN itself, but also observes the changes in its margin and adjacent soft tissue
in the event of metastasis.

During image processing, two distinct cropping methods were applied: the FSC
method and the ASC method. Notably, a high level of AUROC and accuracy was also



Curr. Oncol. 2024, 31 2286

attained with ASC methods in which the size of the LNs—a criterion conventionally deemed
pivotal by radiologists—was adjusted and equalized. This result suggests that AI’s strength
lies not merely in evaluating size, but in discerning subtler features such as LN margin
characteristics and adjacent soft tissue changes which often elude human interpretation.
The trends observed in Grad-CAM images using ASC cropping methods support this
hypothesis. Considering that metastasis is often confirmed after the biopsy of small (<1 cm)
lymph nodes in actual clinical practice, this pivot towards a comprehensive nodal feature
assessment may augment clinical diagnostic precision and address the false-negative issue.

The contrast in trends between Grad CAM images obtained using the FSC method
and the ASC method is intriguing. The regions of interest identified with AI exhibit
complementary features for each cropping method, and from a clinical perspective, these
findings suggest that ensemble methods, which leverage the strengths of individual models
while compensating for their weaknesses, could potentially yield a robust synergistic effect
in the detection of malignant LNs.

Recently, an AI-based approach using radiologic images to predict ALN metastasis
in breast cancer patients is actively underway. The most common radiological methods
used in radiomics for classifying ALNs are MRI and ultrasound. After the release of
multiple promising results from MRI-based AI models (AUROC of 0.913–0.996) [19,20]
and ultrasonography-based AI models (AUROC of 0.912–0.916) [21,22], the latest machine
learning/deep learning approaches for predicting malignant LN incorporate a multi-modal
analysis model that combines radiomics and clinicopathological features [23,24]. Together
with other currently published studies, our findings and the image processing protocol
used in our study can be applied to develop optimal multi-modal models that combine
different radiomics to maximize diagnostic accuracy.

To our knowledge, this study analyzed the largest data set from the largest number
of breast cancer patients compared to previous studies predicting ALN metastasis using
CT scan and achieved the best performance to date. The promising results of this study
imply that a predefined image processing protocol considering the clinical features of
lymph node metastases may have influenced the performance of the AI-based diagnostic
model. Results using the ASC method also suggest that our model may have the ability to
distinguish subtle radiological features that are difficult for humans to recognize.

A limitation of this study is that there is a need for external validation on diverse
datasets to ensure the model’s robustness and generalizability. Furthermore, to create a
fully automated model that can be used in actual clinical practice as a clinical decision
support model, an additional system that automatically detects ALN node location in
CT scan should be developed.

5. Conclusions

In conclusion, this study successfully demonstrates the potential role of CNN architec-
tures in improving the accuracy of detecting malignant ALN using CT images in breast
cancer patients. The combination of tailored image preprocessing, architecture selection,
and ensemble techniques has the potential to advance AI-assisted medical diagnostics,
offering timely and precise treatment to breast cancer patients.
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