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Abstract: Future index prices are viewed as a critical issue for any trader and investor. In the
literature, various models have been developed for forecasting index prices. For example, the
geometric Brownian motion (GBM) model is one of the most popular tools. This work examined
four types of GBM models in terms of the presence of memory and the kind of volatility estimations.
These models include the classical GBM model with memoryless and constant volatility assumptions,
the SVGBM model with memoryless and stochastic volatility assumptions, the GFBM model with
memory and constant volatility assumptions, and the SVGFBM model with memory and stochastic
volatility assumptions. In this study, these models were utilized in an empirical study to forecast the
future index price of the energy sector in the Saudi Stock Exchange Market. The assessment was led
by utilizing two error standards, the mean square error (MSE) and mean absolute percentage error
(MAPE). The results show that the SVGFBM model demonstrates the highest accuracy, resulting in the
lowest MSE and MAPE, while the GBM model was the least accurate of all the models under study.
These results affirm the benefits of combining memory and stochastic volatility assumptions into the
GBM model, which is also supported by the findings of numerous earlier studies. Furthermore, the
findings of this study show that GFBM models are more accurate than GBM models, regardless of the
type of volatility. Furthermore, under the same type of memory, the models with a stochastic volatility
assumption are more accurate than the corresponding models with a constant volatility assumption.
In general, all models considered in this work showed a high accuracy, with MAPE < 10%. This
indicates that these models can be applied in real financial environments. Based on the results of
this empirical study, the future of the energy sector in Saudi Arabia is forecast to be predictable and
stable, and we urge financial investors and stockholders to trade and invest in this sector.

Keywords: energy sector; GBM; GFBM,; stochastic volatility

1. Introduction

The Kingdom of Saudi Arabia is the largest producer and exporter of oil in the world.
For this reason, Saudi Arabia recognizes the significance of diversifying its energy mix
to maintain long-term economic prosperity. Both domestic and foreign partners in the
energy sector play an important role in the Kingdom's transition toward a sustainable and
renewable future. Therefore, the energy sector is very important in the Saudi Exchange stock
market. The energy sector in Saudi Arabia consists of six companies with a total capital
exceeding SAR 7 trillion (USD 1.86 trillion). Hence, there are a large number of investors,
traders, and speculators involved in this sector. Therefore, the future performance of this
sector is considered a fundamental issue for all types of traders to gain profits and avoid
possible losses. For this purpose, a need for a tool that can forecast future prices as precisely
as possible arose. There are two approaches to describing and forecasting index prices:
discrete time setting and continuous time setting. Since the intuitive setting for market
trading is typically continuous, we are motivated to focus on the study of continuous time
setting in a financial environment. Scholars have proposed several continuous models
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as tools that employ historical data to forecast future prices, such as random walk, jump-
diffusion, Brownian motion process, and geometric Brownian motion (GBM) models. This
work investigates some of the GBM models by incorporating the assumptions of stochastic
volatility and memory.

2. Geometric Brownian Motion Models

The econophysics concept of the GBM model explains the nature of stock price random-
ness and arbitrary fluctuation calculations more accurately (Kumar et al. 2024). Occasionally,
the GBM model has been called “the standard model of finance” (Ibe 2013), where it is
employed in forecasting the price of a stock over time. The GBM model is the adapted
version of the Brownian motion (BM) process.

Definition 1. A Wiener Process or Brownian motion (BM) is a stochastic process By that satisfies
the following conditions:

i.  Byisa continuous function of time with By = 0.
ii. By has independent increments (By — Bs and B, — By, are independent forallv > v > t > s).
iti. By—Bs ~ N(0, t—s) forallt > s.

According to the above definition, the BM process is continuous everywhere, but it is
not differentiable anywhere. The BM is self-similar (i.e., if any part of the BM time-series
trajectory is like the entire trajectory). If the BM touches any specific value, it will return to
this value again an infinite number of times.

These properties encouraged Ross (1999) to model stock prices directly depending on
the BM. However, this way of modeling has faced reasonable blame because of the nature
of the BM, which permits the price to be negative when the stock price is supposed to be a
normal random variable. As a treatment of this issue, the GBM model has been presented
as an adaptation of the BM.

Model 1. Geometric Brownian Motion (GBM)

The stochastic process X; is said to follow GBM if it satisfies the following stochastic
differential equation (SDE):
dXt = ]/lXtdt + (TXtdBt (1)

where B; is a BM, and p and ¢ are drift and volatility, respectively. The general solution of
this SDE is provided by the following equation:

X = Xgexp{ (y — ;az) t+ UBt} 2)

where Xj is an initial value.

The GBM model is a non-negative variation of the BM. Consequently, the GBM model
can be employed in many financial applications, such as index prices, exchange rates, option
pricing, mortgage insurance, and value at risk. The GBM model is valuable for modeling
random price fluctuation over time and investigating a commodity’s price performance.
Hence, the GBM model is used widely to predict future prices.

The classical GBM model assumes the independence of prices. Meanwhile, many
researchers have drawn attention to the existence of memory in the GBM model, for
example Han et al. (2020), Rejichi and Aloui (2012), Alhagyan and Yassen (2023), Painter
(1998), Alhagyan (2018), Grau-Carles (2000), and Kim et al. (2020).

The results of these studies indicated the necessity of further developing the GBM
model by incorporating the properties of memory. The improved model is called the
geometric fractional Brownian motion (GFBM) model. The GFBM model is obtained
by replacing the classical BM process (no memory) with a developed process called the
fractional Brownian motion (FBM) process (with memory).
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Definition 2. The fractional Brownian motion (FBM), { By (t) }, with Hurst parameter H € (0,1)
is a centered Gaussian process whose paths are continuous with probability 1, and its distribution is
defined by the following covariance structure:

E[Bir (1B (5)] = 5(PH 452 — |t —sPH)

The correlation between the increments of FBM (B (t) — By(s) and By (v) — By (u)
forallv > v > t > s) fluctuates conveniently with self-similarity or Hurst parameter H. The
Hurst parameter name refers to Harold Edwin Hurst (1880-1978), who examined the erratic
rainfall and drought circumstances along the Nile River over a long period. Three types
of memories appeared according to the value of H: a short memory when 0 < H < 0.5,
no memory if H = 0.5, and a long memory when 0.5 < H < 1. Now, by replacing BM in
Equation (1) with FBM, we obtained the GFBM model that is presented as follows:

Model 2. Geometric Fractional Brownian Motion (GFBM)
The stochastic process X; is said to follow GFBM if it satisfies the following SDE:

adX; = thdt + o X} dBH1 (i’) 3)

where By, (t) is FBM, and y and ¢ are drift and volatility, respectively. The solution is
provided by the following equation:

X(t) = Xoepry - ;O'thHll)t—l—O'BHl(t)] 4)

where X is an arbitrary initial value.

The GFBM model is considered a developed version of the GBM model, so it can be
employed in the same financial applications, such as option pricing (Misiran 2010; Misiran
et al. 2012; Alhagyan et al. 2016), index prices (Alhagyan and Alduais 2020; Abbas and
Alhagyan 2022; Xiao et al. 2015), value at risk (Alhagyan et al. 2021; Wang et al. 2017),
exchange rate (Gozgor 2013; Mansour and Ayasrah 2022; Alhagyan 2022), and mortgage
insurance (Bardhan et al. 2006; Alhagyan et al. 2021; Chen et al. 2013).

A constant assumption of volatility () was used in the GBM models to simplify
calculations. However, this assumption was not supported by some empirical studies, such
as those of Stein (1989), Bakshi et al. (2000), and Ait-Sahalia and Lo (1998), which concluded
that the assumption of constant volatility does not describe the real-life situation accurately.
For this reason, there have been many attempts to address this issue by replacing the
constant volatility (¢) in the deterministic function of the stochastic process or volatility
process o(Y;) in GBM models, where Y; is the solution of other stochastic differential
equations (SDEs) that is driven by other stochastic volatility noise. Examples of this
research are reported in the efforts of Scott (1987), Hull and White (1987), Alhagyan et al.
(2016), Stein and Stein (1991), Heston (1993), Alhagyan and Yassen (2023), Hagan et al.
(2002), Alhagyan (2022), Comte and Renault (1998), Chronopoulou and Viens (2012a, 2012b),
Wang and Zhang (2014), and Alhagyan (2018).

SV models are considerable in the environment of the financial market because of their
ability to capture the effect of time-varying volatility. SV models permit both volatility and
the common dependence between variables to fluctuate over time. This implies that SV
models have two sources of randomness. Table 1 presents some SDE equations describing
the stochastic process Y;.
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Table 1. Models of stochastic processes describing Y; in SV models.

Name Model
Lognormal process dY: = aYidt + BY;dBy;
Cox-Ingersoll-Ross (CIR) process dYe = 0(w — Y )dt + &/YrdBy;
Ornstein—Uhlenbeck (OU) process dYy = a(m — Yy)dt + BdBy;
Not mean reverting process dY: = aY;dBy;
Fractional Ornstein-Uhlenbeck (FOU) process Yy = a(m — Yy)dt + BdBp, (t)

In what follows, two models of SV under study are presented.
Model 3. GBM perturbed using FOU (SVGBM)

The stochastic process X; is said to follow GBM perturbed by SV (FOU) if it satisfies
the following SDE:
dXt = thdt + U(Yt)XtdBlt (5)

where y is a mean of return, Y; is a stochastic process, By; is a BM, and o(Y;) = Y; is a
deterministic function. Let the dynamics of volatility Y; follow the fractional Ornstein—
Uhlenbeck (FOU) process, which is the solution of the following SDE:

dY; = a(m — Y;)dt + PdBy, (t) ©6)

where «, B, and m are the mean reverting of volatility, volatility of volatility, and mean of
volatility, respectively. By, (t) is an FBM which is independent from By;.

Model 4. GFBM perturbed using FOU (SVGFBM)

The stochastic process X; is said to follow a GFBM perturbed by SV (FOU) if it satisfies
the following SDE:
dX; = u Xtdt—FU'(Yt)XtdBHl (t) 7

where y is the mean of return, Y; is a stochastic process, By, (t) is an FBM with Hurst
index Hy, and o(Y;) = Y; is a deterministic function. Let the dynamics of volatility Y; be
described by the fractional Ornstein—-Uhlenbeck (FOU) p rocess, which is the solution of
the following SDE:

aYy = a(m — Yy)dt + ,BdBHz(t) (8)

where «, B, and m are constant parameters that represent the mean reverting of volatility,
volatility of volatility, and mean of volatility, respectively. By, (t) is an FBM, which is
independent from By, ().

3. Forecasting

This study employs the four models mentioned in the previous section to forecast the
future index prices of seven companies in the energy sector in Saudi Arabia depending
on historical data. In this empirical study, we examine the influence of incorporating both
memory and stochastic volatility into the GBM model.

We relied on two measures of error to evaluate and compare the performance of each
model under study. These measures are the mean square error (MSE) and mean absolute
percentage error (MAPE):

2 n IYi_Fi‘
?:1(Yi - F) i=1 Y
n

MSE = L and MAPE = —" " |

n
where F; and Y; represent the forecast and actual price at day i, respectively, while n
represents the total forecasting days. Lawrence et al. (2009) recapped the judgment on any
forecasting method using MAPE in Table 2.
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Table 2. MAPE judgment accuracy of forecasting method.

Judgment of Accuracy MAPE
Highly accurate MAPE < 10%
Good accuracy 10% < MAPE < 20%

Reasonable 20% < MAPE < 50%
Inaccurate MAPE > 50%

3.1. Description of Historical Data

The historical energy index data are available online at https: / /www.saudiexchange.sa
(accessed on 12 February 2024). The total working days are 43 days, from 1 November
2023 to 31 December 2023. To avoid high fluctuation in data, the return series is considered

in logarithm (i.e., r, = In(S/S,_1)). Figures 1 and 2 show the close prices and their
return series.

Close
6350.00
6300.00
6250.00
6200.00
6150.00
6100.00
6050.00 - T
\\\\\

Figure 1. Daily energy index close price.

Return

Figure 2. Daily returns of energy index.

3.2. Forecasting and Evaluation

According to the historical data of energy sector indices, all parameters involved in
the four models under study were calculated by using Mathematica 10 software and then

employed to compute constant volatility and stochastic volatility. Table 3 lists all computed
parameters and volatilities.

Table 3. Parameter and volatility values.

Parameter Value Parameter Value
H; 0.3279 B 0.00002
H, 0.2520 m 0.00001
U 0.00004 o 4.62705
Computed Volatility
o 0.0036
o(Yy) 0.0010

Then, the close price of the next month (January 2024) was forecast based on the
values of the parameters in Table 3. The forecasting was computed using the following four
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models: GBM, GFBM, SVGBM, and SVGFBM. Table 4 shows the accuracy of each model.
Meanwhile, Table 5 shows the forecast prices beside the actual prices of the energy indices.

Table 4. The accuracy ranking level of the forecasting model is based on MAPE and MSE values.

Model MAPE MSE
SVGFBM 2.753% 44,861
GFBM 2.758% 44,921
SVGBM 2.759% 44,946
GBM 2.887% 48,457

Table 5. Actual and forecast prices.

Date Actual GBM GFBM SV GBM SV GFBM
1/1/2024 6231.24 6240.65 6230.96 6228.20 6231.33
1/2/2024 6234.45 6243.74 6231.77 6231.27 6231.74
1/3/2024 6208.98 6244.15 6230.47 6231.68 6231.56
1/4/2024 6231.12 6244.03 6228.52 6231.59 6231.21
1/7/2024 6264.88 6243 6232.38 6230.56 6232.46
1/8/2024 6298.10 6245.29 6232.93 6232.84 6232.8
1/9/2024 6258.55 6247.55 6230.89 6235.09 6232.42
1/10/2024 6194.68 6243.82 6233.67 6235.34 6233.37
1/11/2024 6184.72 6243.25 6233.11 6230.77 6233.4
1/14/2024 6185.47 6244.28 6233.75 6234.82 6233.76
1/15/2024 6104.82 6245.72 6235.91 6233.24 6234.54
1/16/2024 6026.77 6246.9 6233.81 6234.45 6234.14
1/17/2024 5989.73 6246.56 6235.95 6234.11 6234.92
1/18/2024 6014.71 6246.06 6233.42 6236.59 6234.4
1/21/2024 6030.20 6246.09 6235.19 6236.62 6235.07
1/22/2024 5973.57 6248.83 6235.01 6236.35 6233.2
1/23/2024 5978.97 6247.24 6233.49 6236.75 6234.97
1/24/2024 5987.34 6246.39 6236.14 6236.91 6235.89
1/25/2024 5958.15 6246.5 6236.04 6234.04 6233.04
1/28/2024 5932.13 6247.66 6234.01 6235.19 6235.66
1/29/2024 5904.70 6243.1 6237.73 6236.62 6236.87
1/30/2024 5896.26 6247.03 6235.71 6234.57 6235.5
1/31/2024 5766.84 6247.19 6236.92 6234.71 6237.01

In light of the smaller MSE and MAPE values, the results show that the SVGFBM
model has the highest accuracy. This was due to the presence of two sources of memory
(H; and Hj) along with the stochastic volatility assumption. The GBM model placed last
because of the existence of one source of randomness in addition to the constant volatility
assumption. The outcomes demonstrated that the models under memory assumption
(SVGFBM and GFBM models) are more appropriate for forecasting future stock costs than
the models without memory (SVGBM and GBM models).

As per Lawrence’s table (Table 2), all models achieved MAPE < 10%, which indicates a
high forecasting accuracy in these models. Moreover, one can observe that the MSE values
of the SVGFBM, GFBM, and SVGBM models are close together in number, while the MSE
value of the GBM model is larger. These outcomes are in line with many experimental
studies, for instance, Willinger et al. (1999), Rejichi and Aloui (2012), Alhagyan (2022),
Painter (1998), Alhagyan and Yassen (2023), and Abbas and Alhagyan (2022).

Figure 3 illustrates the comparison between the actual close prices versus forecast
close prices. One can see that the historical prices appearing in Figure 1 are more stable
than the actual prices appearing in Figure 3. This stability in the historical time series
affected the computations of all parameters, including the forecasting methods under study.
Therefore, the forecast prices fluctuate less than the actual prices, which ensures that the
forecast prices are closer together.
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Figure 3. Actual prices vs. forecast prices.

4. Conclusions

Index price reflects financial stability and economic growth. Therefore, forecasting the
future performance of index prices is one of the top tasks of stakeholders and investors.
For this task, several models have been presented in the literature. The GBM model is
one of the most popular and important forecasting models. Furthermore, a number of
models have been developed based on the classical GBM model, which depends on the
assumption of the existence (or absence) of memory in time-series financial data in addition
to the assumption of volatility (constant or stochastic). To discuss the benefits of these
assumptions, this work examined four GBM models, including the classical GBM model
(absence of memory and constant volatility), the GFBM model (existence of memory and
constant volatility), the SVGBM model (absence of memory and stochastic volatility), and
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the SVGFBM model (memory and stochastic volatility). These models are described in
Section 2 of this manuscript. The examination in this study was conducted by applying
these models to forecast the energy sector in the Saudi Stock Exchange Market. Two
statistical criteria of error were utilized (MSE and MAPE) to evaluate the performance of
each model.

The findings of this empirical examination show that the SVGFBM model achieved
the smallest MSE and MAPE and, therefore, the best performance. This result was achieved
because of the existence of two sources of randomness with memory (dBy, and dBy,)
and the assumption of stochastic volatility. The GBM model ranked last because of the
existence of one source of randomness without memory (H = 0.5) and the assumption of
constant volatility.

The results demonstrate that GFBM models are more accurate than GBM models for
forecasting future stock prices. Furthermore, under the same assumption of memory, the
models of stochastic volatility assumption are more accurate than the models of constant
volatility assumption. This outcome proved the direct positive benefits of incorporating
memory and stochastic volatility together into GBM models.

Moreover, the MSE values for the SVGFBM, GFBM, and SVGBM models were close in
number and thus more stable, while those of the GBM model were moderately larger than
the others. Generally, according to Lawrence’s table of judgment accuracy (Table 2), all the
models exhibited a high performance because of the MAPEs < 10%, which indicates that
all the models under study can be used as tools for forecasting future index prices of the
energy sector in Saudi Arabia.

In general, the empirical results of this study agree with earlier empirical studies, such
as those by Abbas and Alhagyan (2022, 2023), Mansour and Ayasrah (2022), Alhagyan
and Yassen (2023), Alhagyan (2022), Willinger et al. (1999), Painter (1998), and Rejichi
and Aloui (2012). Therefore, under normal circumstances, we encourage investors and
traders to invest in Saudi Arabia’s energy sector because of its demonstrated predictability
and stability.
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