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Abstract: Due to the dynamic nature of load changes, arc devices are receivers that generate dis-
turbances to the network that affect the power quality. The main disturbance generated by these
receivers are voltage fluctuations. One of the effects of voltage fluctuations is the flicker of light
caused by lighting receivers. The article presents an analysis of changes indicators flicker of light
measured in networks supplying arc furnaces. The propagation of voltage fluctuations to the lines
supplying lighting receivers was analyzed. The network parameters influencing the amount of light
flicker were estimated. The paper presents a method for calculating the increased flicker of light
when several electric arc furnaces are operated in parallel. The conclusions regarding the use of the
presented research in practical applications are given in the summary.

Keywords: arc furnace; power quality; voltage fluctuations; flicker of light; statistical evaluation

1. Introduction

Arc furnaces are devices that use an electric arc between electrodes and the charge
to melt scrap. Arc devices are among the restless receivers of electricity. Due to the
unstable operation of the arc furnaces experience rapid changes in power consumption
when melting scrap. Very fast changes in the value of the furnace currents cause equally
rapid voltage fluctuations in the supply network. In the case of arc furnaces, voltage
changes range from a few to several changes per second. Arc furnaces also cause voltage
asymmetry and distortion. It is related to the non-linear nature of the electric arc.

The publications [1–7] show the mechanism of the flicker of light, which is the effect
of voltage fluctuations. The publication [8] presents, among others, methods of limiting
voltage fluctuations through the use of energy storage. A new construction of energy
storage devices in a distribution system was proposed. The article [9] presents examples of
power systems to which users are connected, causing voltage fluctuations. Analysis of the
impact of the short-circuit power in the nodes to which the consumers are connected on
the magnitude of voltage fluctuations was carried out. The voltage fluctuations and flicker
of light generated mainly by arc furnaces were discussed in [10–14]. Issues concerning
the effectiveness of the devices reducing voltage fluctuations and flicker of light in the
lines supplying arc furnaces are presented in publications [15–21]. Interesting solution
limiting voltage fluctuations using Unified Voltage Conditioner (UVC) was presented in
publications [22,23].

The significant contribution of the UIE (International Union for Electricity, previously
known as International Union for Electroheat) to the research on voltage fluctuations as a
source of the flicker phenomenon should also be emphasized. The effect of many years
of research was the development of the concept and implementation for production of a
flickermeter [24]. Voltage fluctuations are defined according to the standard [25] as: cyclic
changes of the voltage envelope or a series of random changes of the RMS voltage around
the nominal value. Flicker of light is a phenomenon related to the influence of voltage
fluctuations on lighting receivers. It is defined as a subjective perception of changes in the
luminous flux, whose luminance or spectral distribution changes with time. Fluctuations in
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the voltage supplying lighting receivers cause changes in the luminous flux. With a certain
amplitude and frequency of changes in voltage fluctuations, flicker of light causes people
to become nervous up to the level of irritation, beyond which most people are unable to
perform any work related to the perception of small objects, poorly contrasting with the
surrounding background. In some cases, light flicker may trigger epilepsy attacks [26].

Flicker of light is a phenomenon that is purely physiological. Voltage fluctuations
causing perceivable flickering of light are very difficult to determine objectively. Flickering
to which the eye of one person is sensitive may not be noticed by another person [27,28].

Figure 1 shows the formation and perception of flicker of light caused by arc furnaces.
The currents in the supply line to arc furnaces change rapidly (∆I). As a result of changes in
currents on the impedance of the transformers and the furnace supply line, rapid voltage
fluctuations (∆U) occur.
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Figure 1. The development and perception of flicker of light caused by arc furnaces.

Voltage fluctuations propagate to the supply network and other lines inside the
steelworks, including circuits containing lighting receivers—Figure 2. Changes in the
voltage supplying lighting receivers cause changes in the luminous flux (∆Φ), which at
a certain amplitude and frequency of changes are noticeable by the human eye, causing
the negative effects described above. UIE has established a Committee for the Study
of Disturbances (S.C.), composed of experts from various countries. This committee
undertook research aimed at assessment of various types of voltage fluctuations, including
irregular and time-varying ones, and development of a universal measurement method
and regulations for connecting non-static loads to the network. In the first years, several
series of comparative measurements were carried out, using measuring devices developed
in different countries, to assess their advantages and disadvantages. The effect of long-term
experimental and theoretical research was the development of a device for measuring
flicker of light, called UIE-flickermeter [29,30].

The purpose of measuring flicker by using a flickermeter is to quantify the degree of
flickering caused by changes in the luminous flux due to voltage fluctuations. The input
signal of the meter is the voltage measured at the point at which the level of flickering
light is assessed. The further operation of the meter is to model the “lamp–eye–brain”
system. The measuring device is designed to reproduce the physiological disturbances
felt by the person receiving the flux changes produced by the reference lamp, which is a
60 W/230 V bulb.

Two dimensionless quantities form the units of measurement for flicker: short-term
flicker severity Pst and long-term flicker severity Plt.
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Figure 2. RMS value changes (a) and voltage fluctuations (b) recorded in the power supply line
lighting receivers.

The long-term flicker severity Plt is determined on the basis of the following twelve
short-term flicker Pst indicators from Formula (1):

Plt =
3

√√√√ 12

∑
i=1

P3
st

12
(1)

The short-term flicker Pst is determined in a ten-minute period. From the twelve Pst
values, the long-term flicker rate Plt for a period of 2 h can be calculated.

Currently, measurements of flicker indicators provide the best way to identify a voltage
disturbance that results in the flicker phenomenon. In the case of arc furnaces, the cause of
flickering light is voltage fluctuations, the source of which is an electric arc dynamically
changing its parameters. The flicker severity assessment uses the direct measurement of
flicker indices, and the values of the long-term flicker Plt are compared with the permissible
levels given in the relevant standards and regulations [31–34].

The aim of this article is to evaluate the flicker of light as a result of voltage fluctuations
generated by arc furnaces in the power system. In order to estimate network parameters in-
fluencing the amount of light flicker, steel plants with different supply conditions (different
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short-circuit powers) were selected. Several measurement cycles of indicators character-
izing the power quality were carried out. Both ten-minute and ten-second measurement
intervals were used to record the flicker indicators. The use of measurement intervals of
several seconds allowed for a detailed analysis of the impact of arc furnaces on the power
system during individual melts. A method for calculating the increase in light flicker in
the case of parallel operation of several electric arc furnaces is proposed. The presented
method was compared to the method recommended by UIE. In the discussion chapter,
reference is made to the Commission Regulation (EU) 2019/2020 European Parliament in
relation to the proposed light flicker index PstLM for LED and OLED MLS.

2. Measurement of Flicker of Light Indicators

Measurements of flicker indicators in real conditions allow the best assessment of the
influence of voltage fluctuations generated by arc furnaces on the formation of the flicker
phenomenon. Figure 3 shows the power supply diagram of a steel plant with an electric
arc furnace (EAF) with a transformer capacity of 20 MVA and a device for secondary steel
processing (ladle furnace—LF) with a transformer capacity of 5 MVA. Figure 3 also shows
the connection points of electricity quality analyzers. The following analyzers were used in
the research: Memobox 686, Memobox 800 and QWave. A computer measuring system
was used to record the voltage and current waveforms. The flicker of light indicators
were registered simultaneously at four points: Point A (Un-110 kV/SSC-5000 MVA)—the
main line supplying the smelter, Point B (Un-30 kV/SSC-750 MVA)—supply line for the arc
furnace (EAF), Point C (Un-6 kV/SSC-500 MVA)—supplying the ladle furnace (LF), Point D
(Un-230 V)—circuits supplying lighting receivers. Measurements were made both in long
measurement periods (including one week of recording) and short measurement periods
for individual melts in the arc furnace. Ten-minute measurement intervals were used for
the weekly recording cycle and five-second intervals for the recording of individual melts.
Conducting the tests with shortened time intervals (5 s and 10 s) was aimed at more precise
determination of changes in the light flicker indicators during the smelting. Parallel to the
measurements of light flicker indicators, other parameters characterizing the quality of
electricity were recorded.
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The article also presents an analysis of disturbances caused by arc devices in a steel-
works powered by a Un = 400 kV line with a short-circuit power of SSC = 8774 MVA. The
steel plant is powered by a line with a voltage of U = 110 kV and a short-circuit power
SSC = 1512 MVA.

On the basis of the recorded data of electricity quality parameters, the following
were obtained: evaluation of the propagation of disturbances caused by arc furnaces
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(mainly light flickering phenomena), statistical analysis of changes in light flicker indices,
estimating the value of the KN coefficient determining the increase in voltage fluctuations
with a different number of arc devices working in parallel.

Direct measurement of flicker indicators, simultaneously at several points in the
energy system, seems to be the easiest way to determine propagation. However, it has
some limitations. First of all, this method of propagation analysis uses several light
flicker meters (in the case of an extensive energy system), the unit price of which is quite
significant. Secondly, this method must have several measuring points available at the
same time, in which the meters must be time-synchronized with each other. The indirect
(computational) method is used to determine the change of voltage fluctuations on the
basis of the network parameters and the light flicker indices registered at the reference
point. The considered system takes into account the case where the network is of the radial
type and the flicker source is connected at the end of the track (single furnace or group of
furnaces). The advantage of the presented method is mainly due to the fact that the flicker
emission of the considered disturbed load relates directly to the short-circuit power of the
network. The UIE guide suggests, as a compromise between the required accuracy and
difficulties in obtaining measurement data, the use of an approximate assessment based on
the short-circuit power ratio at the points in the network under consideration [5].

3. Propagation of Disturbances Generated by the Arc Furnace

Issues related to the propagation of disturbances caused by arc furnaces have been
presented, among others, in publications [35–38]. Assessment of the individual emission
of voltage fluctuations caused by a single arc furnace, at different voltage levels, can be
made on the basis of direct measurements of the flicker indicators. In this way, the actual
propagation transfer coefficient TCPstAB is defined [39].

TCPST AB =
Pst(A)

Pst(B)
(2)

Figure 4 shows changes in short-term flicker Pst measured during one week at point A
(110 kV line supplying the steelworks) and point B (30 kV line supplying EAF)—Figure 3.

The correlation coefficient between the short-term flicker severity Pst recorded at
the voltage level: 110 kV and 30 kV is 0.86. Based on Formula (2), the following were
determined: TCPstABmax = 0.18 and TCPstAB 95% = 0.17.

Figure 5 shows the short-term flicker Pst waveforms measured during one smelt-
ing process at point A (110 kV line supplying the steel plant) and point B (30 kV line
supplying EAF).

The correlation coefficient between the short-term flicker severity Pst recorded at
the voltage level: 110 kV and 30 kV is 0.98. Based on Formula (2), the following were
determined: TCPstABmax = 0.20 and TCPstAB95% = 0.19.

The basic parameters for determining voltage fluctuations in point A (Figure 3) there
are short-circuit powers SSC(A), SSC(B) and Pst(B)—indicators of short-term flicker of light
measured at the reference point. The TCAB propagation coefficient can be calculated from
the Formula (3):

TCAB =
SSC(B)
SSC(A)

(3)

Substituting into the formula (B) the values of the short-circuit powers in points A
(Figure 3)—SSC(A) = 5000 MVA and B; SSC(B) = 750 MVA—we get:

TCAB =
SSC(B)
SSC(A)

=
750

5000
= 0.15 (4)
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which allows for the determination of the theoretical values of the index in point A on the
basis of measurements at point B:

Pst(A) = Pst(B)× 0.15 (5)

Figure 6 shows changes of Pst short-term flicker severity recorded simultaneously
during one week of measurements at three points: steelworks supply line—point A, EAF
supply line—point B, LF supply line—point C.

In Figure 7, the waveforms of light flicker indicators measured in the supply network
of the steel plant Pst_Point B and the supply network of the steelworks Pst_Point A-cal
were presented, as well as the theoretically determined by the Formula (5)—Pst_Point A-cal.
Only the Pst_Point-meas and Pst_110 kV-cal indicators are compared.

Figure 8 shows changes of Pst short-term flicker severity recorded simultaneously dur-
ing one week of measurements at two points: steelworks supply line (Pst_Point A_meas),
EAF supply line (Pst_Point B_meas) and determined by Formula (5) (Pst_Point B_cal).
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The article also presents an analysis of disturbances caused by arc devices in a steel-
works powered by a 400 kV line with a short-circuit power of SSC = 8774 MVA. The steel plant
is powered by a line with a voltage of U = 110 kV and a short-circuit power SSC = 1512 MVA.
There are three arc furnaces and two ladle furnaces operating in the steelworks.

The flicker indicators were measured at the voltage level of 110 kV. From the For-
mula (6), the propagation coefficient between the line supplying the steelworks with a rated
voltage of 400 kV and the line supplying the steel plant was determined. The propagation
factor is then:

TCAB =
SSC(B)
SSC(A)

=
1512
8774

= 0.17 (6)
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With the measurement data of the flicker indicators at the level of 110 kV, the values
of the indicators at the level of 400 kV can be determined:

Pst(A) = Pst(B)× 0.17 (7)

Figure 9 shows changes in flicker indicators recorded during one week and determined
theoretically with the calculated TCAB = 0.17 propagation coefficient.
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(Pst_110 kV_meas) and determined by the Formula (5) (Pst_400 kV_cal).

Based on the measurement results, the following attenuation coefficient C values
between individual voltages were proposed in [5]:

- from extra high voltage (EHV) networks to high voltage (HV) networks propagation
factor equals C = 0.8;

- propagation factor from high voltage (HV) networks to medium voltage (MW) net-
works equals C = 0.9;

- from medium voltage (MW) networks to low voltage networks (LW) propagation
factor equals C = 1.
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The above C attenuation coefficient take into account only the influence of the trans-
former, while the influence of the compensator or series reactor, for example, is neglected.

The publication [40] presents the formula for Pst99% taking into account the above
factors:

Pst99% = Kst
Sccf
Sccr

1
RSVC

1
Rself

C (8)

where
RSVC =

Pst99% −with a compensator
Pst99% −without compensator

(9)

and
RSVC =

Pst99% −with a choke
Pst99% −without choke

(10)

Taking into account that the propagation factor C from high-voltage (HV) networks to
medium-voltage (MW) networks equals C = 0.9, we corrected the theoretically determined
course of the flicker Pst_Point B_calc shown in Figure 8.

Figure 10 compares the theoretical courses of the Pst_Point_B_calc light flicker indices
determined on the basis of the Formula (5) and Pst_Point B_calc_C corrected for the
attenuation factor C = 0.9.
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In the analyzed supply system arc furnace, voltage fluctuation compensation devices
were not installed.

4. Statistical Analysis of Flicker of Light Indicators

Statistical analysis of light flicker indices in networks supplying arc furnaces is presented
by the authors of [41]. An analysis was performed for 10-minute measurement intervals of
the flicker indicators. Measurement cycles included long measurement periods—one week.

The statistical analysis of changes in short-term flicker severity Pst in short time
intervals covering individual heats in the arc furnace is presented below. The statistical
analysis of the short-term flicker severity Pst was based on the data recorded during
individual melts (10 s measurement intervals). Figure 11 shows the change of the Pst
coefficient measured in the three phases of the steelworks supply network during one
melt carried out in the arc furnace. Very high values of the flicker coefficient are visible
in particular phases, namely, Pstmax(L1) = 9.81; Pstmax(L2) = 9.60; Pstmax(L3) = 9.69. The high-
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level flicker of lightresults from the relatively low short-circuit power SSC = 750 MVA in
relation to the power at the short circuit of the electrodes with the approximate charge
SSCf = 40 MVA.
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Figure 11. Changes in the short-term flicker severity Pst recorded during one melt in the arc furnace.

A short analysis of the obtained measurement results in three phases is presented below.
The correlation coefficients between the indicators recorded in individual phases are

as follows:
rPst(L1)Pst(L2)

= 0.876rPst(L1)Pst(L3)
= 0.905rPst(L2)Pst(L3)

= 0.889 (11)

The correlation coefficients between the indicators measured in individual phases and
their average values are slightly higher and amount to:

rPst(L1)Pstmean
= 0.963rPst(L2)Pstmean

= 0.955rPst(L1)Pstmean
= 0.969 (12)

This calculation limited to taking into account the results of measurements in the
phase with the greatest voltage fluctuations, as it is adopted by Électricité de France [26].

The conducted analysis reveals that in the case of the disturbing influence of the
electric arc furnaces, it is correct to take both average values and those measured in one
of the line phases—the phase with the highest Pst. As it results from the measurements
carried out by the authors, with the asymmetry coefficient below the permissible value,
light flicker indicators in all phases change within a similar range.

Table 1 shows the basic statistical parameters of the short-term flicker severity Pst
measured during one melt in the arc furnace.

Table 1. Statistical parameters of the short-term flicker severity Pst measured during one melt in the arc furnace.

Class Number Class Range Center Class Amount Periodicity Cumulative Amount Cumulative Periodicity

I Pst Pst ni fi ni* fi*

1 0.15–1.12 0.635 52 0.107 52 0.107
2 1.13–2.09 1.61 58 0.119 110 0.226
3 2.10–3.06 2.58 94 0.193 204 0.420
4 3.07–4.03 3.55 103 0.212 307 0.632
5 4.04–5.00 4.52 64 0.132 371 0.763
6 5.01–5.97 5.49 47 0.097 418 0.860
7 5.98–6.94 6.46 37 0.076 455 0.936
8 6.95–7.91 7.43 18 0.037 473 0.973
9 7.92–8.88 8.4 8 0.016 481 0.990
10 8.89–9.85 8.92 5 0.010 486 1.000
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As in the case of voltage fluctuations, the basic statistical parameters of the recorded
sample (L1 phase—with the highest Pst) during one melt (10 s sampling periods) were
determined for the flicker index. In the first stage, grouping was performed, i.e., the
classification of the measured light flicker indices by dividing the sample into classes. For
the measured short-term flicker severity during one smelting, the number of samples is
n = 443. The number of class intervals per m = 10 was established with the length of the
class interval being 0.97.

Figure 12 shows a graph of the distribution of the obtained samples of short-term
flicker severity, approximated by the function characterizing the normal distribution with
the same mean and standard deviation.
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Figure 12. Distribution of the probability density function of short-term flicker severity: theoretical
and real.

In order to determine the nature of changes in the short-term flicker severity during
several successive heats when operating a single furnace, one day of light flicker measure-
ments (selected from a measurement campaign covering one week) was taken into account.
The measurement was made in accordance with EN—50160 [32] with 10-minute periods of
determining the short-term flicker severity Pst. During one day of measurements, the obtained
144 values of the flicker index varied from Pstmin = 0.25 with the arc furnace off, to Pstmax = 7.69
with the furnace operating in the melting phase. The mean value of the short-term flicker
severity was Pstmax = 3.94. and its standard deviation D(Pst) = 1.69. As in the case of the
amplitudes of voltage fluctuations and the flicker index of light measured for one smelt, as
well as for one-day measurement, the basic statistical parameters of the distribution series
created earlier from the measured values were calculated; they are listed in Table 2.

Table 2. Statistical parameters of the short-term flicker severity Pst measured in one day.

Class Number Class Range Center Class Amount Periodicity Cumulative Amount Cumulative Periodicity

i Pst Pst ni fi ni* fi*

1 0.25–1.31 0.780 8 0.0556 8 0.0556
2 1.32–2.37 1.845 20 0.1389 28 0.1944
3 2.38–3.43 2.905 30 0.2083 58 0.4028
4 3.44–4.49 3.965 30 0.2083 88 0.6111
5 4.50–5.55 5.025 28 0.1944 116 0.8056
6 5.56–6.61 6.085 20 0.1389 136 0.9444
7 6.62–7.67 7.145 8 0.0556 144 1.0000
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The distribution series was divided into m = 7 classes with the class length calculated
as (Pstmax − Pstmin)/m = (7.69 – 0.25)/7 = 1.06.

Figure 13 shows the probability density function for one day of measurements of the
short-term severity flicker Pst.
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To verify the validity of the hypothesis with a normal distribution, the χ2 Pearson
compatibility test was performed at the significance level of 0.05.

Table 3 contains the basic parameters calculated for a given sample (n = 144) with the
mean value Pstmean = 3.94 and the standard deviation D(Pst) = 1.69.

Table 3. Statistical data for the χ2 Pearson test.

Psti ni zi F(zi) pi npi (ni − npi)2/npi

1.31 8 −1.56 0.0594 0.06 8.55 0.0358
2.37 20 −0.93 0.1762 0.12 16.82 0.6015
3.43 30 −0.30 0.3821 0.21 29.65 0.0041
4.49 30 0.32 0.6255 0.24 35.05 0.7275
5.55 28 0.95 0.8289 0.20 29.29 0.0568
6.61 20 1.58 0.9429 0.11 16.42 0.7825
7.67 8 2.21 0.9864 0.06 8.55 0.0358

Sum 144 x x 1.00 144 2.2441

The critical value read from chi-squared tables for the adopted significance level
α = 0.05 and 4 degrees of freedom is χα2 = 9.49 and since the value determined from the
sample is χ2 = 2.24 < χα

2 = 9.49, there is no reason to reject the hypothesisthat the analyzed
distribution is a normal distribution.

5. Assessment of The Increase in Flicker of Light with Parallel Operation of
Arc Devices

The increase in voltage fluctuations resulting from successively connected arc devices
is characterized by the KN coefficient. This factor determines the extent to which volt-
age fluctuations will increase with successively connected arc furnaces in relation to the
fluctuations generated during the operation of a single device.

For the value of the short-term flicker index, KN can be determined from the for-
mula [26]:

KN =
PstN

Pst1
(13)
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According to the method proposed by UIE for the assessment of superposition of
voltage fluctuations, the substitute parameter Pst obtained with the use of the light flicker
meter is assumed, and it is determined from the relationship [42].

Pst = m
√

Pst
m
1 + Pst

m
2 + . . . + Pstm

n (14)

Pstn corresponds to flicker level induced by the n-th disrupting receiver. The value
of the coefficient m, occurring in the above formula, depends upon the characteristics of
unquiet receivers, and can be categorized into five categories:

m = 4—used only for the summation of voltage changes due to arc furnaces specifically
run to avoid coincident melts;

m = 3.2—this choice matches the slope of the straight part of the Pst = 1 curve;
m = 3—this is used for most types of voltage changes where the risk of coincidental

voltage occurring is small. The vast majority of studies combining unrelated disturbances
will fall into this category, and it should be used where there is any doubt over the
magnitude of the risk of coincident voltage changes occurring;

m = 2—this is used where coincident stochastic noise is likely to occur, e.g., coinciden-
tal melts on arc furnaces;

m = 1—the resultant Pst will approach the value given by this coefficient when there
are very high occurrences of coincidental voltage changes.

In the method recommended by UIE, it is proposed to determine the increase in the
flicker index caused by successively connected arc devices by changing the m factor in
Formula (14) from 2 to 4.

An attempt to explain the reasons for the discrepancies in the assessment of voltage
fluctuations occurring with the simultaneous operation of several furnaces, created by
various methods, was made in Poland by Wąsowski [43,44].

The KN coefficient was determined from the formula:

KN =

√
N− 4.4N(N− 1)

Q1
SSC

(15)

The continuation of the research conducted by A. Wąsowski was presented in publica-
tions [13,14,45].

Based on the recorded waveforms of the voltage curve (oscillograms) in the network
supplying the lighting receivers of the steelworks (Figure 3—Point D), the RMS voltage
values were determined (for the period of 20 ms)—Figure 14.

In relation to the voltage value, with the arc devices off, the switching on the arc
furnace causes a decrease in the average RMS voltage value. Switching on other arc
furnaces reduces the RMS voltage value. This is due to an increase in voltage drop across
the power line impedances.

Along with the decrease in RMS voltage, the switching on of arc furnaces causes
voltage fluctuations. The amplitude of the voltage fluctuations increases with the number
of switched on arc furnaces—Figure 15.

The effect of an increase in voltage fluctuations is an increase in flicker. Based on the
analysis of the recorded voltage fluctuations and flicker of light indicators, the correlation
between these values was determined. Figure 16a shows the changes in the amplitude of
voltage fluctuations and the flicker index recorded during one melting in the arc furnace.
A correlation was also established between these values (Figure 16b). The correlation
coefficient is rPst∆U = 0.906.

Taking into account changes in the mean RMS voltage when switching on successive
arc devices and developed power–voltage characteristics, the set of formulae allowing the
determination of the coefficient KN was worked out [45].
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The formula determining an increase in voltage fluctuations for arc devices in the
melting process can be expressed in the following form:

KN =

√
N√

1 +
(N−1)k•qQ1

SSC

(
USN
US1

)2
(16)

and for arc devices of different power,

KN =

√
∑Nr

i=1

(
Sni
Sn1

)2

√
1 + ∑N

j=2

(
k•qQj
SSC

)(
USN
US1

)2
(17)
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Using the relationship determined for power–voltage characteristics, and replacing
the arc by the voltage source in Formulas (16) and (17) at identical devices, we can present
the coefficient KN in the following form:

KN =

√
N√

1 +
(N−1)k∗qSSCf1

SSC

(
USN
US1

)2
(18)

and at different devices,

KN =

√
∑Nr

i=1

(
Sni
Sn1

)2

√
1 + ∑N

j=2

(
k∗qSSCfj

SSC

)(
USN
US1

)2
(19)

In the method recommended by UIE, an increase of flicker caused by consecutive
connecting arc devices is determined by the change of the coefficient m from value of 2 to
4 in Formula (14). For identical furnaces causing identical flicker (Pst1 = Pst2 = . . . = Pstn),
Formula (14) can be transformed to the form:

Pst = m
√

Pst
m
1 + Pst

m
2 + . . . + Pstm

n = m
√

N · Pm
st1 =

m
√

NPst1 (20)

At bordering values m = 2 and m = 4 recommended by UIE, this leads to the formula
for KN:

KN =
√

N and KN =
4
√

N (21)

Figure 17 shows the changes in the KN coefficient depending on the number of parallel
arc furnaces. The curves drawn on the basis of Formula (20) recommended by UIE are
marked in red.
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steel plant.

Based on the proposed Formulae (16)–(19), the values of the KN coefficient can be
determined depending on the short-circuit power of the SSC network, the power of the
transformer at the short-circuit of the electrodes with the charge SSCf, and the voltage in
the line supplying the steel plant: respectively for the operation of the N furnaces and the
operation of a single furnace (furnace with the highest power, reference furnace). Figure 17
also shows the values of the KN coefficient corresponding to the supply conditions of the
steel plant, the supply scheme of which is shown in Figure 3. For point A, the ratio is
SSC/SSCf = 140, and for point B it is SSC/SSCf = 20.



Energies 2021, 14, 3901 18 of 23

The analysis shows that the value of the KN coefficient is decisively influenced by
the short-circuit power on the rails of the steel plant. The higher the short-circuit power,
the greater the KN coefficient, i.e., the arc devices interact to a lesser extent, mitigating the
increase in voltage fluctuations. Obviously, the voltage fluctuations and flicker of light at
SSC/SSCf = 20 are greater than at SSC/SSCf = 140.

6. Discussion

The main disturbances generated by arc devices are voltage fluctuations. Voltage
fluctuations caused by arc furnaces are characterized by high dynamics of change. The
value of the voltage fluctuations depends mainly on the melting phase in the arc furnace
and on the short-circuit power of the network in relation to the power of the arc furnace
transformer. The periodicity of voltage fluctuations (number of changes during a given
time, e.g., a second) changes to a lesser extent.

One of the effects of voltage fluctuations is flicker of light generated by lighting
receivers. The flicker annoyance is assessed on the basis of the analysis of the values of
the flicker Pst and Plt indicators. The volume measured by the flickermeter (or the power
quality parameter analyzer with the flicker index function) is the voltage change. The
remaining elements (functions) must be modeled: the reaction of the lamp–eye–brain
system. A 60 W bulb was adopted as the reference lamp. With the currently widely used
LED lamps, this assumption is debatable. It is therefore appropriate to ask the question:
should the algorithm be modified for determining the flicker indicators by introducing a
new reference lamp? According to the authors, this may create a problem related to the
use of existing flickermeters and the need for further modifications when developing new
light sources.

It seems a more reasonable solution to increase the permissible value of the light flicker
coefficient depending on the light sources used. Another suggestion is to adopt Plt ≤ 1 for
a different registration period, for example, 80% of the time instead of 95% currently used.

Commission Regulation (EU) 2019/2020 of 1 October 2019 lays down ecodesign re-
quirements for light sources and separate control gears pursuant to Directive 2009/125/EC
of the European Parliament proposing flicker PstLM ≤ 1 for LED and OLED MLS. The
determined value shall not exceed the declared value by more than 10%. Adopting a
new Pst LM unit requires the use of specialized photometric equipment that also allows
SVM to be measured (stroboscopic visibility measure), as defined in standards SVM = 1,
represents the visibility threshold for an average observer. The metric for flicker used
in this Regulation is the parameter ‘PstLM’, where ‘st’ stands for short-term and ‘LM’
for light flickermeter method, as defined in the standards. A value of PstLM = 1 means
that the average observer has a 50% probability of detecting flicker. Measurements are
made in a photometric darkroom by placing the meter at a specified distance from the
light source. Another method is to use a meter circuit with an integrating ball, which
allows the verification of the ripple characteristics when measuring the luminous flux.
The measurements proposed by the EU in [46] are designed to test the resistance of light
sources to voltage fluctuations. Before obtaining the certificate, individual types of light
sources are tested. This means that the PstLM indicator is completely different from the
Pst and Plt indicators. Pst and Plt relate directly to supply voltage fluctuations that directly
affect the flickering of light. PstLM is therefore an additional parameter that is taken into
account by manufacturers of LED light sources.

The publication in [47] presents a digital flicker detection method based on proba-
bility resampling. Uniform probability distribution sampling is applied before statistical
evaluation to compress redundant data to reduce storage space and to improve algorithm
execution efficiency. The proposed method based on probability resampling overcomes
the shortcomings of the low efficiency of algorithms and the high requirements of hard-
ware resources brought by the traditional flicker digital measurement, which has excellent
economic significance and practical impact for both new developments of digital flicker
detection instruments and upgrades of traditional power quality instruments [47]. The
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presented method of digital analysis of signal detection used to determine light flicker
indicators allows faster detection of electricity quality parameters in modern analyzers.
This may be of particular importance when modifying the flicker meter to include new
light sources (e.g., LED lamps).

The article presents selected examples (representative) flicker of light indicators recorded
in the lines supplying arc furnaces. Two methods of light flicker evaluation were adopted.
The first one, according to [32–34], consists of the weekly measurement of the parameters
characterizing the power quality and relating them to the permissible values.

Figure 18 shows the changes of long-term severity flicker Plt and short-term severity
flicker Pst recorded in the supply line to the ironworks (a)—Point A (Figure 3) and steel
plant (b)—Point B (Figure 3), during the weekly measurement cycle.
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Assuming for the 110 kV line, in accordance with the EN 50160 standard [32], the limit
value of Plt95% ≤ 0.8, it was found that the acceptable value was exceeded, although to
a small extent. For point A, Plt95% = 0.89, Pltmax = 1.03. During several weekly mea-
suring cycles at point A, similar Plt95% values were obtained. The values of Plt95%
varied from 0.76 through 0.81 to 0.89 (referring to the phase with the highest Plt val-
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ues). At point A (Un-110 kV), the short-circuit power of the network is SSC = 5000 MVA.
The rated power of the furnace transformer is Sn = 20 MVA. Assuming the operational
short-circuit factor ksc = 2, the ratio of the short-circuit power of the network to the
power of the furnace transformer at the short-circuit of the electrodes with the charge is
SSC/SSCT = SSC/(kSCSn) = 5000/40 = 125.

The publication in [48] proposes the minimum value of SSC/SSCT = 80 and in the
publication in [49], SSC/SSCT = 120. On the basis of the conducted research, the authors
concluded that the minimum ratio of the short-circuit power of the network to the short-
circuit power of the electrodes with the charge should be greater than 125.

The use of short measurement intervals (a few seconds) allows the assessment of dis-
turbances caused by the arc furnace during individual melts. On the basis of the performed
statistical analysis, a significant correlation of changes in the flicker coefficients of light in
individual phases of the lines feeding the arc furnaces was found—Formulae (11) and (12).
Therefore, the Pst and Plt analysis was proposed in the phase in which the highest values
were recorded. Comparing the conducted statistical analysis of the Pst light flicker indices
recorded at 10 s (one melt) and 10 min (one day of measurements) measurement intervals,
a very similar probability density function was found—Figures 12 and 13.

7. Summary

Arc furnaces, being one of the largest receivers connected to the electrical system,
generate a number of disturbances affecting the quality of electricity. Voltage fluctuations
are among the major disturbances and the flicker phenomenon presented in the article is
the effect of these fluctuations. Measuring the flicker with power quality analyzers appears
to be the best method of assessing flicker levels. In the case of dynamically changing power
consumed by arc furnaces, it is advisable to shorten the measurement intervals. This allows
for a detailed analysis of disturbances during individual stages of the arc furnace smelting.
The proposed method of determining the KN coefficient defining the increase in light
flickering with arc furnaces operating in parallel in a steel mill, compared to the method
recommended by UIE (Formula (14)), takes into account, among others: different powers
of individual furnace transformers, supply conditions of the steel mill represented by
short-circuit power, voltage reduction in supply network at successively connected electric
arc furnaces and the individual smelting phases in the electric arc furnace. Assuming
that the frequency of voltage fluctuations generated by arc furnaces changes within a
small range from a few to several changes per second, it was found that the proposed KN
factor determines both the degree of increase in voltage fluctuations and light flicker in the
parallel operation of arc furnaces.
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Abbreviations
The following nomenclatures are used in this manuscript:

Plt long-term flicker severity
Pst short-term flicker severity
TCAB transfer coefficient
C coefficient of propagation (attenuation coefficient)
RSVC factor that limits voltage fluctuations through the compensator
Rself coefficient limiting voltage fluctuations through the choke

KN
coefficient determining the increase in flicker of light depending on the number of
parallel operating arc furnaces in steel plant

PstN
value of the short-term light flicker indicator recorded during the operation N of
arc furnaces

Pst1
value of the short-term light flicker indicator recorded during the operation of a single
arc furnace

N number of parallel operating arc furnaces in steel plant
Sscf short-circuit power capacity when shorting the electrodes with the scrap
Ssc short-circuit power capacity of the network
ni* cumulative amount
fi* cumulative periodicity
Sntr power of the furnace transformer
UN rated voltage
∆U voltage fluctuations

k•q; k∗q
slope coefficients of the power–voltage characteristic calculated at a constant arc
voltage and a constant arc resistance, respectively

Qj mean reactive power drawn by j-th furnace

USN ; US1
voltage on the bus-bars of the steelwork at the work of N furnaces and the work of a
single furnace (the furnace of the highest power, reference furnace), respectively

Kst

coefficient characterizing the emission of fluctuations of the considered furnace,
ranging between 48 and 85 with an average value of approx. 60 (Kst changes with the
change of the probability function of not exceeding Pst)

C attenuation coefficient between individual voltage levels
RSVC a factor that limits voltage fluctuations through the compensator
Rself coefficient limiting voltage fluctuations through the choke
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45. Olczykowski, Z. Methods of determination of the voltage fluctuations and light flicker at simultaneous operation of three-phase
arc furnaces. Electr. Power Qual. Util. 2003, 9, 47–58.

46. Commission Regulation (EU) 2019/2020 of 1 October 2019 Laying Down Ecodesign Requirements for Light Sources and
Separate Control Gears Pursuant to Directive 2009/125/EC of the European Parliament and of the Council and Repealing
Commission Regulations (EC) No 244/2009, (EC) No 245/2009 and (EU) No 1194/2012. Available online: https://op.europa.eu/
en/publication-detail/-/publication/33be9f4b-1729-11ea-8c1f-01aa75ed71a1/language-en (accessed on 25 June 2021).

47. Gao, H.; Xu, P.; Tao, J.; S Huang, S.; Wang, R.; Q Zhou, Q. Voltage Flicker Detection Based on Probability Resampling. Energies
2020, 13, 3350. [CrossRef]

48. Hering, M. Fundamentals of Electrothermic, Podstawy Elektrotermii; Scientific-Technical Publishers: Warsaw, Poland, 1992. (in Polish)
49. Arlt, D.; Eberlein, C. Network disturbances caused by Ultra High Power electric arc furnaces and possible reduction methods. In

Proceedings of the Conference Electrical Power Quality and Utilisation, Cracow, Poland, 23–25 September 1997.

http://doi.org/10.1109/TPWRD.2005.864057
http://doi.org/10.3390/en14041076
https://op.europa.eu/en/publication-detail/-/publication/33be9f4b-1729-11ea-8c1f-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/33be9f4b-1729-11ea-8c1f-01aa75ed71a1/language-en
http://doi.org/10.3390/en13133350

	Introduction 
	Measurement of Flicker of Light Indicators 
	Propagation of Disturbances Generated by the Arc Furnace 
	Statistical Analysis of Flicker of Light Indicators 
	Assessment of The Increase in Flicker of Light with Parallel Operation of Arc Devices 
	Discussion 
	Summary 
	References

