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Abstract: The aim of this work is to schedule the charging of electric vehicles (EVs) at a single
charging station such that the temporal availability of each EV as well as the maximum available
power at the station are considered. The total costs for charging the vehicles should be minimized w.r.t.
time-dependent electricity costs. A particular challenge investigated in this work is that the maximum
power at which a vehicle can be charged is dependent on the current state of charge (SOC) of the
vehicle. Such a consideration is particularly relevant in the case of fast charging. Considering this
aspect for a discretized time horizon is not trivial, as the maximum charging power of an EV may also
change in between time steps. To deal with this issue, we instead consider the energy by which an EV
can be charged within a time step. For this purpose, we show how to derive the maximum charging
energy in an exact as well as an approximate way. Moreover, we propose two methods for solving
the scheduling problem. The first is a cutting plane method utilizing a convex hull of the, in general,
nonconcave SOC–power curves. The second method is based on a piecewise linearization of the SOC–
energy curve and is effectively solved by branch-and-cut. The proposed approaches are evaluated
on benchmark instances, which are partly based on real-world data. To deal with EVs arriving
at different times as well as charging costs changing over time, a model-based predictive control
strategy is usually applied in such cases. Hence, we also experimentally evaluate the performance of
our approaches for such a strategy. The results show that optimally solving problems with general
piecewise linear maximum power functions requires high computation times. However, problems
with concave, piecewise linear maximum charging power functions can efficiently be dealt with by
means of linear programming. Approximating an EV’s maximum charging power with a concave
function may result in practically infeasible solutions, due to vehicles potentially not reaching their
specified target SOC. However, our results show that this error is negligible in practice.

Keywords: electric vehicles; charging scheduling; state-of-charge dependent maximum charging
power; mixed integer linear programming

1. Introduction

The number of electric vehicles (EVs) is rapidly increasing. At the end of 2020, there
were around 10 million EVs on the world’s roads, and the number of EV registrations
increased by 41% in 2020 [1]. The uncontrolled charging of this rising number of EVs,
together with an increasing share of renewable energy, imposes significant challenges for
the stable operation of the power grid in terms of the power quality, voltage stability, peak
demand, and reliability [2]. In addition to further measures, like time-of-use prices [3]
and dynamic pricing schemes [4], smart charging [5,6] is considered a promising strategy
to mitigate these issues. Smart charging refers to the coordination of the charging of a
number of EVs in an intelligent way. Numerous approaches for smart charging, considering
different objectives and different constraints have been proposed in the literature [7–14].

These approaches typically assume that the maximum charging power of an EV
remains constant over the planning horizon. However, in practice, the maximum charging
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power depends on the state of charge (SOC) of the EV’s battery. Typically, with an increasing
SOC, the maximum charging power is regulated down by the battery controller. For slow
AC charging, the decrease of the maximum power is usually only marginal and can be
neglected for most applications. For modern, fast DC charging, however, the effect of
the decreasing maximum power can be substantial as can be seen from the exemplary
SOC–power curve shown in Figure 1.
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Figure 1. Maximum charging power of a Hyundai Kona Elektro in dependence of the EV’s SOC;
data obtained from Fastned [15].

The exact form of the curve not only depends on the type of battery and its charging
controller but also on other factors, including the ambient temperature or the state of
health of the battery [16]. In most cases, the curve is highly nonlinear, making it difficult to
consider it in mixed integer linear programming (MILP) approaches, which are frequently
used for charging planning. However, not considering the SOC-dependent maximum
charging power in the charging planning is likely to result in suboptimal or even infeasible
charging schedules, particularly in the case of fast charging.

For example, Frendo et al. [17] concludde from numerical experiments that, under
the constraint of a limited total charging power, up to 21% more energy can be charged if
the SOC-dependent maximum charging power is considered in the planning, compared
to not considering it. Frendo et al. also indicated that, in the literature on smart charging,
the integration of nonlinear SOC–power curves is frequently mentioned as future work.
However, to date, the number of works that actually address this issue are still limited.

In the present paper, we assume a basic use case of smart charging with the objective
of minimizing the energy cost under time-varying electricity prices and with the constraint
of a limited total charging power per time step. In order to allow a better integration of
nonlinear SOC–power curves, we formulate the scheduling problem in terms of planning
the charging energy instead of the charging power. Therefore, we consider two approaches
for converting the SOC–power curves to SOC–energy curves. The first approach is an
exact approach; however, it can only guarantee that the average total charging power does
not exceed the limit in a time step. The second approach is an approximate approach,
which guarantees that the total charging power never exceeds the limit, but it might lead
to suboptimal costs.

We propose two methods for solving the resulting problems. The first one is an
extension of a cutting plane method proposed by Korolko and Sahinoglu [18] and utilizes a
convex hull of the, in general, nonconcave SOC–power curves. The second method makes
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use of a piecewise linearization of the SOC–energy curve and is accelerated by branch-
and-cut. In extensive numerical experiments, we evaluate and compare the proposed
approaches. The key contributions of the present paper are

• a reformulation of the scheduling problem in terms of the control of charging energy,
which facilitates the integration of SOC-dependent maximum charging power,

• a proposal of two transformations of SOC–power curves into SOC–energy curves, and
• a proposal and evaluation of two mixed integer linear programming based solution

methods that consider SOC-dependent maximum charging powers.

The current work is based on parts of Schaden’s master thesis [19], where more details
and further results can be found. The rest of the paper is organized as follows. The
next section discusses related work. In Section 3, our EV charging scheduling problem
is formalized. Additionally, we show how to derive the exact as well as an approximate
maximum charging energy function from the maximum charging power function. Next,
Section 4 presents the different problem solving approaches. Section 5 explains how we
generated problem instances for the empirical evaluation, and respective experimental
results are presented in Section 6. Finally, Section 7 concludes this work and outlines
promising future research directions.

2. Related Work

Some works consider an SOC-dependent maximum charging power by integrating
nonlinear physical battery models in the charging schedule optimization. Sundström and
Binding [20] compare the use of a linear and a quadratic approximation of such a model
in the optimization of EV schedules with the goal of minimizing charging costs. They
concluded that, although the linear approximation results in small violations in the SOCs
requested by the EV drivers, the benefit of the quadratic approximation does not justify the
increase in computation time.

Morstyn et al. [21] proposed a nonlinear battery circuit model and integrated it in
an optimization model in the form of a second-order cone program. They considered
the maximization of charged energy taking into account network constraints and the
constraints of a limited total charging power. They demonstrated that problem instances
with up to 500 vehicles can be solved within less than 100 s. In practice, the behavior of the
battery (controller) can significantly differ from an idealized battery model. Thus, other
works—including the present work—abstract from a specific battery model.

Different battery model-free heuristic approaches for smart charging with SOC-
dependent maximum power can be found in the literature. Cao et al. [22] proposed
a rule-based approach for EV charging control with the objectives of energy cost reduction
and load flattening, respecting the SOC-dependent maximum charging powers of EVs.
Frendo et al. [17] described the use of a data-driven approach for the prediction of power
curves of EVs. The authors proposed a rule-based control, which schedules the charging of
the EVs with the objective of a fair distribution of the available energy taking into account
the predicted power curves.

El-Bayeh et al. [23] proposed a model-free exact approach. They approximated a
nonlinear power curve with a piecewise linear function. Subsequently, they drew a com-
parison between the charging costs resulting from charging with a constant maximum
charging power and the charging costs resulting from charging with a vehicle specific
SOC-dependent piecewise linear function. For solving the optimization problem, they
use mixed integer nonlinear programming, which distinguishes their approach from our
problem solving techniques.

Han, Park, and Lee [24] considered a problem setting similar to that considered
in the present paper. The authors assumed that the charging station has limited grid
capacity, which may be exceeded at the price of paying penalty costs. They presented a
MILP formulation of the problem, which integrates nonlinear power curves with help of a
discretization of SOC levels. In contrast to the present work, it was assumed that EVs can
only charge with maximum or zero power, which is quite restrictive and hardly the case in
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practice. Two network flow approaches in Schaden’s Master thesis [19] extend the MILP
formulation from [24] with the possibility to charge with power levels from a discrete set
of values. However, we refrain from considering these approaches here as they were found
to be uncompetitive—primarily due to the much larger memory requirements even when
the number of EVs is low.

A further model-free exact approach was proposed by Korolko and Sahinoglu [18].
They assumed a problem setting similar to that considered in [24] but with continuous
charging power values. A nonlinear problem formulation was presented and solved as
a series of linear problems with the help of a cutting plane approach. The described
approach, however, requires the power curve to be concave. Our approaches partly build
upon this work.

The approaches proposed in the present paper are model-free linear exact approaches
for a continuous power modulation, which are applicable to concave and nonconcave
power curves. None of the previous works considered the issue that the variable maximum
charging power varies within a time step of the planning horizon. To the best of our
knowledge, we are the first to consider this aspect in detail.

3. Problem Description

The EV charging scheduling problem with SOC-dependent maximum charging power
(EVS-SOC) we consider formalizes the task of scheduling the charging of a number of EVs
such that the total charging costs are minimized. The charging schedule is preemptive,
which means that the charging process of an EV may be interrupted an arbitrary number
of times. It is assumed that electricity costs change over time and that they are known in
advance. Discrete finite time steps T = {0, . . . , tmax} are used to model the considered time
horizon. Each of these represents a time interval of constant duration ∆t.

The charging is controlled by a single central entity, the so-called aggregator. The total
power that can be used from the grid at any time is limited by Pgridmax > 0. Electricity
costs per unit of consumed energy are given by ct individually for each time step t ∈ T.
Note that these costs may also be negative in practice.

The set of EVs to be considered is V = {1, . . . , n}, and they are all assumed to be
currently connected to the charging station, i.e., immediately available for charging. Each
vehicle is associated with an initial state of charge sv,0 ∈ [0, 1], i.e., the SOC at the beginning
of time step zero, and a minimum required state sdep

v ∈ [sv,0, 1] that must be reached at the
vehicle’s known departure time tdep

v ∈ T.
Additionally, for each vehicle v ∈ V, the energy capacity Cv > 0 of its battery is

known as well as a function Pmax
v : [0, 1] 7→ R+ for the battery’s maximum charging power

given its SOC. Note that Pmax
v must be strictly positive for any SOC less than one and is

zero for SOC one. Otherwise, we do not restrict this function in any way, in particular it
does not necessarily have to be concave or continuous. Note that we neglect the effect of
minor further factors, like the battery temperature and its state of health, on the maximum
charging power. Furthermore, we assume a charging efficiency of 100%.

We remark that, in practice, the domain of Pmax
v is often not defined on the entire

SOC interval [0, 1] but only for some restricted [smin
v , smax

v ], 0 ≤ smin
v < smax

v ≤ 1. In the
following, we regard this issue as an implementation detail and assume the domain of
Pmax

v to be [0, 1].
The goal of EVS-SOC is to find a feasible charging schedule that minimizes the total

charging costs while charging each vehicle v from SOC sv,0 to (at least) SOC sdep
v by time step

tdep
v such that the total power used from the grid at any time does not exceed Pgridmax > 0.

Since the maximum charging power function Pmax
v depends on the SOC, it is, in

general, not constant within a single time step of duration ∆t. This may lead to the problem
that a charging power value set for a time step is not allowed throughout the whole
charging interval. The vehicle’s charging controller will then dynamically adjust (reduce)
the actually used power to never exceed the SOC-dependent maximum power. One may
argue that the resulting error may be reduced by increasing the resolution of the time
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discretization until it becomes negligible. A larger number of time steps, however, directly
affects the problem size and practical solvability. Therefore, we refrain here from increasing
tmax only because of this reason.

Instead, we turn from considering the charging power to considering the energy by
which an EV may actually be charged in a time step, taking care of the above aspects. We
propose alternative approaches for deducing an (approximate) maximum energy function
Emax

v (s) : [0, 1] 7→ R+ from Pmax
v that states the maximum energy by which EV v with SOC

s can be charged within duration ∆t.
In Section 3.1, we give an exact way for deducing Emax

v , referred to as Emax-ex
v . However,

using Emax-ex
v , we are, in general, only able to express that the maximum grid power is not

exceeded on average within a time step, since we consider the time horizon in a discretized
fashion. While this might be sufficient for some applications, like limiting peak load
charges, it may be a too weak condition for other applications, like limiting transformer
loads. Therefore, in Section 3.2, we also show how to deduce a lower bound Emax-lb

v to
Emax

v that never overestimates the real maximum energy at which charging can take place.

3.1. Exact Maximum Energy

We determine the maximum charging energy Emax-ex
v that is achieved when applying

the dynamic charging power Pmax
v throughout a whole time step. Considering an EV v ∈ V

with initial SOC sv,t ∈ [0, 1] at some time step t ∈ {0, . . . , tdep
v − 1}, the time needed to

charge the EV to some SOC s′ ∈ [sv,t, 1] using the dynamic maximum charging power is

Tmin-ex
v (sv,t, s′) = Cv ·

∫ s′

sv,t

1
Pmax

v (s)
ds. (1)

The maximum energy by which the EV can be charged during a time step of duration
∆t is then

Emax-ex
v (sv,t) = Cv · (s′ − sv,t) s.t.

{
Tmin-ex

v (sv,t, s′) = ∆t for Tmin-ex
v (sv,t, 1) > ∆t

s′ = 1 else.
(2)

Hereby, we consider in the else case that charging always stops when SOC value one
is reached. While calculating the integral for 1

Pmax
v (s) might be nontrivial from a theoretical

point-of-view for some power functions, it is, in practice, not difficult to efficiently de-
termine approximate values for Emax-ex

v (sv,t) computationally by conventional numerical
integration methods. As previously mentioned, the problem with the usage of Emax-ex

v (sv,t)
is primarily that it is hard to express the maximum grid power constraint since, within a
time step, the actually used power may vary for each EV substantially, i.e., we will only
be able to express that the maximum grid power is not exceeded on average within a
time step.

3.2. Lower Bound for Maximum Energy

To address the aforementioned problem, we consider the largest power that can be
constantly applied throughout a whole time step of duration ∆t without requiring the
charging controller to reduce the power. The time needed to charge the EV to some SOC
s′ ∈ [sv,t, 1] using the maximum power that can be constantly applied is

Tmin-lb
v (sv,t, s′) =

Cv · (s′ − sv,t)

mins∈[sv,t ,s′ ] Pmax
v (s)

. (3)

The maximum energy by which the EV can be charged during a time step of duration
∆t is then again obtained by Equation (2) but in conjunction with the above Tmin-lb

v (3)
instead of Tmin-ex

v (1). We refer to this variant by Emax-lb
v .

By avoiding to set, for a time step, a power that will have to be reduced by the charging
controller at some point of time, the maximum energy Emax-lb

v is a lower bound for the
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actually obtainable energy Emax-ex
v . Using Emax-lb

v in our whole problem setting means
that an obtained solution will guarantee that, indeed, all EVs are charged to the desired
departure SOCs. As we may occasionally use a more restricted charging power than could
actually be applied, the schedule might not be optimal in the original sense, and a solution’s
objective value will be an upper bound for the real optimum.

We want to highlight the following relationships between Pmax
v and its corresponding

maximum energy functions.

• If Pmax
v is a piecewise linear function, then Emax-lb

v is piecewise linear as well. On
the contrary, Emax-ex

v might not be a piecewise linear function, even if Pmax
v is piece-

wise linear.
• If Pmax

v is a concave function, so are Emax-lb
v and Emax-ex

v .

To give the reader an impression of how Emax-lb
v and Emax-ex

v relate to each other,
Figure 2 shows these functions for different ∆t values for a Hyundai Kona Elektro. Note
that the area between Emax-lb

v and Emax-ex
v decreases with smaller ∆t values. Hence, as we

will also see in Section 6, the smaller ∆t is chosen to be, the smaller the size of the error
introduced by Emax-lb

v will be in general.
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Figure 2. Emax
v functions for a Hyundai Kona Elektro for ∆t ∈ {5, 10}min.

In the following sections, we pursue Emax-ex
v and Emax-lb

v and investigate the pros and
cons of each in comparison. We use the notation Emax

v as a placeholder for any specific
energy function from {Emax-ex

v , Emax-lb
v }.

3.3. Converting Energy Back to Power

In practice, the charging aggregator usually regulates the maximum charging power
instead of the maximum charging energy. Consequently, when scheduling with energy
values, we have to convert energy values back to power values. For schedules created with
Emax-lb

v , the computed energy values of a schedule can be simply divided by ∆t to obtain
charging power values that can be constantly applied throughout a single time step.

For schedules created with the exact Emax-ex
v , due to the possible interference of the

EV’s charging controller, it is, in general, not obvious which power value Pv,t should
be provided to the charging aggregator in order to actually charge a certain amount of
energy xv,t in a next time step t. Considering Pmax

v (s), this value Pv,t can be determined
computationally by numerically solving the equation

Cv ·
∫ sv,t+xv,t/Cv

sv,t

1
min(Pmax

v (s), Pv,t)
ds = ∆t, (4)

where the left side corresponds to the time needed for charging xv,t when applying as
power always the minimum of Pmax

v (s) and Pv,t. Still, there remains the issue that, a
solution to our scheduling problem ∑v∈V Pv,t ≤ Pgridmax is not guaranteed anymore, and
either Pgridmax may be exceeded or some Pv,t needs to be reduced to avoid this problem.
Note that Equation (4) is well defined for all xv,t ∈ [0, Cv(s′ − sv,t)] where s′ is determined
according to Equation (2).
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Therefore, schedules created with Emax-ex
v mainly serve here as a comparison for

schedules created with Emax-lb
v to provide an idea of the size of the error introduced by

time discretization.

3.4. Nonlinear Model

We now formally define EVS-SOC by the following nonlinear program, where vari-
ables xv,t represent the energy by which EV v ∈ V is charged in time step t = 0, . . . , tdep

v − 1.
Variables sv,t indicate the SOC of each EV v ∈ V at the beginning of each time step
t = 0, . . . , tdep

v .

min ∑
v∈V

tdep
v −1

∑
t=0

ct · xv,t (5)

xv,t ≤ Emax
v (sv,t) v ∈ V, t = 0, . . . , tdep

v − 1 (6)

∑
v∈V|0≤t<tdep

v

xv,t ≤ ∆t · Pgridmax t ∈ T (7)

sdep
v ≤ s

v,tdep
v

v ∈ V (8)

sv,t = sv,t−1 + xv,t−1/Cv v ∈ V, t = 1, . . . , tdep
v (9)

xv,t ≥ 0 v ∈ V, t = 0, . . . , tdep
v − 1 (10)

0 ≤ sv,t ≤ 1 v ∈ V, t = 0, . . . , tdep
v (11)

The objective function (5) minimizes the sum of the costs for the total consumed
energy over all time steps. Inequalities (6) ensure that the energy by which each EV is
charged during each time step does not exceed the SOC-dependent maximum energy. Note
that this inequality is, in general, nonlinear.

Constraints (7) limit the total energy consumed from the grid during each time step to
∆t · Pgridmax. The departure SOCs are enforced by Inequalities (8). Equalities (9) determine
the SOC at the beginning of each time step t = 1, . . . , tdep

v for each EV v. Thereunto,
the previous state of charge sv,t−1 is considered together with the charging rate of the
previous time slot xv,t−1 and the total battery capacity Cv. Variable domains are defined
in (10) and (11). Due to the domain of variable xv,t, an EV may not discharge.

4. Problem Solving Approaches

In the following, we study different ways to deal with the nonlinear maximum
charging energy constraints (6). We first consider the simpler case that the maximum power
function is concave where we can essentially solve the problem with a linear programming
(LP) formulation or a cutting plane approach. Afterward, we consider a more general
approach that does not make any assumptions regarding the concavity of the maximum
power function. The approach is based on a piecewise linearization of the SOC–energy
curve and is accelerated by branch-and-cut.

4.1. Concave Maximum Energy Functions

As already mentioned before, if Pmax
v is concave, it follows that also

Emax
v ∈ {Emax-ex

v , Emax-lb
v } is concave as well. For nonconcave Pmax

v , we now determine
the convex hull to obtain a concave approximation of the original Pmax

v for deriving the
respective maximum energy function.

In the following, we further assume that Emax
v is differentiable. We are aware that, de-

pending on Pmax
v , this assumption might not be completely valid in practice. Instead, Emax

v
might have breakpoints, in which the left-sided and right-sided limits of the differential
do not coincide. Nevertheless, we treat Emax

v as if it were differentiable at any SOC of its
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domain, since differing left-sided and right-sided limits will not affect the results of the
following modeling approach.

Due to the assumed properties of Emax
v , we can replace the nonlinear Inequality (6)

from EVS-SOC with the combination of the infinite set of linear inequalities

xv,t ≤ Emax
v
′(ŝ) · (sv,t − ŝ) + Emax

v (ŝ) v ∈ V, t = 0, . . . , tdep
v − 1, ŝ ∈ [sv,0, sdep

v ] (12)

where Emax
v
′ is the first derivative of Emax

v . We call the resulting linear programming model
EVS-SOC-LIN.

Note that if Pmax
v is a piecewise linear function, then so is Emax-lb

v . The set of inequalities
reduces then to a finite one where we have one inequality corresponding to each linear
function segment.

In the spirit of [18], who essentially consider a similar kind of inequalities, we can
solve EVS-SOC-LIN by a cutting plane approach. Thereby, the relaxation of EVS-SOC-LIN
without Inequalities (12) is first solved. Then, Inequalities (12) that are violated by the
current LP solution are iteratively determined and added, and the LP problem is re-solved.
The process is repeated until no more Inequalities (12) are violated.

The separation of a violated inequality for a current solution (xLP, sLP) to the re-
laxed EVS-SOC-LIN works as follows. For all v ∈ V, t = 0, . . . , tdep

v − 1, we check if
xLP

v,t > Emax
v (sLP

v,t ). In this case, we add the violated Inequality (12) for vehicle v, time step t,
and ŝ = sLP

v,t . Note that, for one vehicle, multiple inequalities for different time steps can be
added within a single cutting plane iteration. This separation procedure is performed for
all vehicles v ∈ V and as long as any violated inequalities are found, the augmented LP
problem is then re-solved.

An alternative to the above is the following. Whenever xLP
v,t > Emax

v (sLP
v,t ) for some EV

v and time step t, one can add the violated Inequality (12) not only for time step t but for
all time steps t′ = 0, . . . , tdep

v − 1. The intention here is to possibly reduce the number of
needed resolving iterations; however, clearly the size of the LP formulation increases more
quickly. Preliminary experiments indicated that, indeed, this variant performed better in
practice in most cases. Therefore, we apply it in all our experiments documented in the
remainder of this work.

We also compared this variant with the approach presented in [18], where, in one
iteration, cuts are only added for the smallest time steps that violate Inequality (12). We
found that our variant usually performed slightly better at least in our problem instances.

4.2. General Piecewise Linear Maximum Energy Functions

In the following model, we assume for each EV v ∈ V that the maximum charging
energy function Emax

v is a piecewise linear function or is approximated by such. In contrast
to EVS-SOC-LIN, we do not make assumptions on the concavity of Emax

v . We assume that
we are given a finite set of SOC values {Sv,k | k = 1, . . . , kmax

v } in increasingly sorted order,
with Sv,1 = 0 and Sv,kmax

v = 1 and the values in between representing the breakpoints
of the piecewise linear function. These values are pairwise distinct and can be unevenly
distributed among the SOC interval [0, 1]. For each Sv,k we know the value of the maximum
charging energy Emax

v (Sv,k).
We model the piecewise linear function as suggested in Chapter 10.1 of [25]. Thereunto,

we use continuous variables αv,t,k to express the SOC sv,t as a convex combination of Sv,k
and αv,t,k. The variables αv,t,k are also used to represent the maximum charging energy
function as a convex combination of Emax

v (Sv,k) and αv,t,k.
Furthermore, we introduce additional binary variables βv,t,k, which are used to ensure

that at most two consecutive αv,t,k and αv,t,k+1 variables are nonzero. By replacing Con-
straints (6) in Formulation (5)–(11) with the following Constraints (13)–(21), we obtain a
MILP model, which we refer to as EVS-SOC-GLIN.
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sv,t =
kmax

v

∑
k=1

Sv,k · αv,t,k v ∈ V, t = 0, . . . , tdep
v (13)

xv,t ≤
kmax

v

∑
k=1

Emax
v (Sv,k) · αv,t,k v ∈ V, t = 0, . . . , tdep

v − 1 (14)

kmax
v

∑
k=1

αv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v (15)

kmax
v −1

∑
k=1

βv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v (16)

αv,t,0 ≤ βv,t,0 v ∈ V, t = 0, . . . , tdep
v (17)

αv,t,k ≤ βv,t,k−1 + βv,t,k v ∈ V, t = 0, . . . , tdep
v , k = 2, . . . , kmax

v − 1 (18)

αv,t,kmax
v ≤ βv,t,kmax

v −1 v ∈ V, t = 0, . . . , tdep
v (19)

0 ≤ αv,t,k ≤ 1 v ∈ V, t = 0, . . . , tdep
v , k = 1, . . . , kmax

v (20)

βv,t,k ∈ {0, 1} v ∈ V, t = 0, . . . , tdep
v , k = 1, . . . , kmax

v − 1 (21)

Equations (13) link the SOC values sv,t with the continuous weight variables αv,t,k. The
charging energy xv,t of EV v at time slot t is limited by Inequalities (14) to the maximum
charging energy. Constraints (15) set the sum of the continuous weights αv,t,k over all
discrete SOC levels k = 1, . . . , kmax

v to one. Equations (16) ensure that exactly one βv,t,k
variable is active for each EV v and time slot t. The αv,t,k variables are linked with the
βv,t,k variables by Inequalities (17)–(19). Altogether, (16)–(19) are the so-called adjacency
constraints, which ensure that at most two consecutive variables αv,t,k and αv,t,k+1 are
nonzero. Constraints (20)–(21) define the domains of αv,t,k and βv,t,k, respectively.

As we will see in Section 6, the previously introduced EVS-SOC-LIN formulation,
which requires Emax

v to be concave, performs remarkably well. Therefore, we propose a
branch-and-cut approach for solving EVS-SOC-GLIN, in which we initially work on the
convex hull of {(Sv,k, Emax

v (Sv,k)) | k = 1, . . . , kmax
v } ∪ {(Sv,1, 0), (Sv,kmax

v , 0)}. To obtain this
relaxation, we consider the original EVS-SOC-GLIN formulation with all its variables and
constraints except the linking constraints (17)–(19).

Then, whenever a solution candidate is found, we check for all v ∈ V, t = 0, . . . , tdep
v − 1

whether xv,t exceeds the actual Emax
v value at SOC sv,t, i.e., if xv,t > Emax

v (sv,t). If this is
the case, a cut is added that links all nonzero αv,t,k variables with their respective βv,t,k
variables, as we did in Constraints (17)–(19). Such cuts are separated and added until for
all v ∈ V, t = 0, . . . , tdep

v − 1, it holds that xv,t ≤ Emax
v (sv,t).

5. Benchmark Instances

Due to the lack of pure real-world problem instances, we randomly generate bench-
mark instances and use real-world data as far as possible. Specifically, battery capacities
and maximum power functions are adopted from real-world data. We first consider indi-
vidual EVS-SOC instances that represent snapshot scenarios at certain times with a specific
number of vehicles that are assumed to have arrived at the charging station following a
homogenous Poisson process. Afterward, in Section 5.2, we consider whole-model-based
predictive control scenarios with a rolling horizon in which vehicles arrive at different
times of a day.

All of the benchmark instances are available at https://www.ac.tuwien.ac.at/research/
problem-instances/ (accessed on 11 November 2021).

https://www.ac.tuwien.ac.at/research/problem-instances/
https://www.ac.tuwien.ac.at/research/problem-instances/


Energies 2021, 14, 7755 10 of 33

5.1. Individual EVS-SOC Instances

We distinguish between three types of problem parameters depending on whether
the parameter is set by the user, randomly generated, or based on real-world data. To the
input provided by the user, we count the number n of EVs, the length ∆t of a time step,
and the grid’s power capacity Pgridmax. We generate 30 instances for each combination of
n ∈ {10, 20, 50, 100}, ∆t ∈ {1, 5, 10}min, and Pgridmax ∈ {10n, 25n, 40n}.

We consider eight different types of real EVs shown in Table 1. The EV’s battery
capacities were taken from the EV Database https://www.ev-database.de (accessed on
11 November 2021). The respective maximum power functions Pmax

v were manually
extracted from plots found on the website of the Dutch EV charging station operator
FASTNED https://fastnedcharging.com (accessed on 11 November 2021). More specifically,
25 up to 70 points of a plot were manually determined in dependence of notable changes
of the gradient, and linear interpolation was applied in between. All these Pmax

v functions
are shown in Figure 3. Observe that the maximum power function’s available domain of
definition [smin

v , smax
v ] varies among the EVs. If a vehicle type supports speed charging, the

respective most powerful charging curve is used.

Table 1. Used EV types with battery capacity Cv, Pmax
v domain [smin

v , smax
v ] and the number of linear

pieces of Pmax
v .

EV Name Cv (kWh) smin
v smax

v #Pmax
v -lin. Pieces

Energica Ego 21.5 1.1 99.9 53
MINI Cooper Electric 32.6 12.1 93.8 34
BMW i3 42.2 15.1 96.0 26
Hyundai Kona Elektro 67.5 10.1 94.9 28
Tesla Model 3 Long Range 82.0 11.1 99.0 35
Mercedes-Benz EQC 85.0 2.1 97.8 24
Jaguar I-Pace 90.0 8.0 100.0 29
Audi e-tron 95.0 3.1 99.8 44
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Figure 3. Maximum charging power functions Pmax
v for all considered vehicle types.

Since the Pmax
v data extracted from the original plots is quite fine-grained, we addi-

tionally derive simplified piecewise linear approximations with only five and ten linear
pieces, respectively. For this task, we utilized the Python package pwlf https://github.

https://www.ev-database.de
https://fastnedcharging.com
https://github.com/cjekel/piecewise_linear_fit_py
https://github.com/cjekel/piecewise_linear_fit_py
https://github.com/cjekel/piecewise_linear_fit_py
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com/cjekel/piecewise_linear_fit_py (accessed on 11 November 2021) to determine the
approximately optimal breakpoints automatically.

A comparison between the original Pmax
v and these simpler piecewise approximations

is shown in Figure 4 exemplarily for the Hyundai Kona Elektro. Observe that the approxi-
mation of the original Pmax

v function with 10 segments is already quite good for this rather
challenging vehicle type. For Pmax

v of the other vehicle types, see Appendix A.
For each EV v ∈ V in a benchmark instance, one of the above EV types is chosen

uniformly at random. Moreover, we choose an availability duration at the charging station
davail

v randomly according to a normal distribution with a mean value of six hours and a
standard deviation of 1.5 h.
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v : All 28 segments
Pmax

v : 5 segments
Pmax

v : 10 segments

Figure 4. Exemplary Pmax
v curve with different number of segments.

Next, from the interval (−davail
v /∆t, 0) we select an arrival time tarr

v uniformly at
random and obtain a respective departure time tdep

v = dtarr
v + davail

v /∆te. Considering the
available domains of definition of the maximum power functions, we generally assume that
each vehicle shall be charged from a SOC of 20% at arrival to a SOC of 90% at departure. In
our benchmark instances, we therefore choose the initial SOC proportional to the already
bygone availability time, i.e., for all v ∈ V,

sv,0 =
−tarr

v

davail
v /∆t

· 0.7 + 0.2. (22)

The departure SOC sdep
v is set to 90% for all EVs.

The end of the time horizon is obtained from the last EV’s departure time, i.e.,
tmax = maxv∈V tdep

v . Electricity costs per unit of consumed energy ct are independently
chosen for each time step t ∈ T uniformly at random from [1.9, 3.5) cent/kWh.

5.2. Rolling Horizon Benchmark Scenarios

In addition to the individual benchmark instances, we consider rolling horizon sim-
ulations over whole days starting at time 0:00 and ending at 24:00. To deal with such a
scenario in which vehicles arrive at different times at the charging station, the schedule
is (re-)optimized at time 0:00 and then every τ = 10 min, always considering only EVs
that are currently available at the charging station. The found charging schedule is then
assumed to be applied for the next τ minutes until a new schedule is determined.

https://github.com/cjekel/piecewise_linear_fit_py
https://github.com/cjekel/piecewise_linear_fit_py
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The time is again discretized into equally long time steps of ∆t ∈ {5, 10} min. Elec-
tricity costs per unit of consumed energy are chosen as explained in Section 5.1, and it is
assumed that they are known in advance for the whole charging period. For the number
of vehicles, we use n ∈ {10, 20, 50, 100}. Again, we pick each vehicle type uniformly at
random from the set of available vehicle types.

We assumed that most vehicles arrive around two peak times: at 6:00 and 14:00.
For picking the arrival time tarr

v for a vehicle v ∈ V, we therefore first randomly select
with equal probability one of these two peak times and then sample tarr

v from a normal
distribution with the chosen peak time as mean value and a standard deviation of two
hours. Times outside of the considered horizon of 24 h are re-sampled.

The charging duration davail
v is chosen as described in Section 5.1 and tdep

v is derived
correspondingly. sdep

v and Pgridmax are set as before. At time 0:00, we set sv,0 = 0.2
and with each rescheduling, we determine sv,0 based on the charging schedule of the
previous iteration. Thirty independent whole-day scenarios were constructed and are
considered in the experimental evaluation.

Exemplary Solutions

Figure 5 exemplarily visualizes optimal solutions for a single individual instance
with n = 5 EVs and ∆t = 5 min obtained from EVS-SOC-GLIN with decreasing grid
power capacity Pgridmax ∈ {50, 125, 200} kW. As the maximum energy function, we chose
Emax-lb

v based on Pmax
v with five piecewise linear segments. Each sub-figure represents an

optimal charging schedule of a vehicle fleet. Bars specify the energy a vehicle is charged
with at each time step. The corresponding scale is located on the left y-axis. The grid’s
maximum energy supply Pgridmax · ∆t is indicated as horizontal line in the plots. Crosses
reveal the electricity costs for each time step and the corresponding scale is located on the
right-sided y-axis.
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Figure 5. Optimal solution for an instance with n = 5, ∆t = 5 min, Pgridmax ∈ {50, 125, 200} kW using
EVS-SOC-GLIN. (a) Pgridmax = 200 kW; total charging costs: 290.42 cent. (b) Pgridmax = 125 kW; total
charging costs: 296.91 cent. (c) Pgridmax = 50 kW; total charging costs: 330.10 cent.

For Pgridmax = 200 kW it can be observed in Figure 5a that vehicles are charged
usually in parallel within a single time step ,and cheap electricity costs can be exploited
more effectively. Moreover, at some time steps, the charged energy is well below the
grid’s power capacity. Figure 5b shows how the charging schedule changes when lowering
Pgridmax to 125 kW. By reducing the grid’s power capacity, more time steps are required
for charging the vehicles to their target SOC, resulting in higher total charging costs. In
contrast to the solution shown in Figure 5a, the charging costs only slightly increase even
though the grid’s power capacity has been almost halved.

When reducing Pgridmax even further to 50 kW, as shown in Figure 5c, the number of
time steps required for charging the vehicles drastically increases. Moreover, in contrast to
Figure 5a, at most time steps, only a single vehicle is charged with usually the maximal
possible energy. Finally, note that, independent of the choice of Pgridmax, the generated
solutions always utilize the time steps at which charging is the cheapest.

In summary, Figure 5 shows how the choice of Pgridmax affects a respective optimal
charging schedule: The smaller the power capacity of the grid, the more time steps are
required for charging the vehicles and, therefore, the higher the total resulting charging
costs are.

6. Experimental Results

All solution approaches were implemented in Julia 1.6.0 https://julialang.org
(accessed on 11 November 2021) using the the optimization modeling package JuMP
v0.21.5 and Gurobi 9.1.0 https://www.gurobi.com (accessed on 11 November 2021) as
LP/MILP solver. Gurobi was configured to run in single-threaded mode with a time limit
of 30 min per instance. All remaining Gurobi parameters were kept at their default values.
The experiments were conducted on an Intel Xeon E5-2640 v4 with 2.40 GHz and 16 GB
memory limit. If not stated otherwise, we report in the following mean or median results
on the 30 problem instances per instance parameter combination (n, ∆t, Pgridmax, Emax

v ).
We first show individual results for EVS-SOC-LIN and EVS-SOC-GLIN, respectively.

Afterward, solutions generated by both approaches for the same instances w.r.t. the same
configurations are compared to each other in Section 6.3. Finally, we present results for the
rolling horizon scenarios.

6.1. EVS-SOC-LIN

We compare two variants of EVS-SOC-LIN. Recall that, for piecewise linear Emax
v

only a finite set of inequalities as described by (12) exists. Hence, next to the variant in
which these constraints are dynamically separated as cuts via the cutting plane approach
as described in Section 4.1, we also consider the variant in which all maximum charging
energy constraints (12) are statically added to the LP upfront.

https://julialang.org
https://www.gurobi.com
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The results of this comparison are reported in Table 2. As a maximum energy function
Emax-lb

v as well as Emax-ex
v are considered. The energy functions are derived from the convex

hull of Pmax
v as described in Section 4.1. Moreover, Pgridmax is set to 25n for all shown

instances. The table lists for each instance group, identified by n and ∆t, the average
total number of piecewise linear segments nseg of the Emax

v functions over all vehicles, a
comparison of the runtimes between the cutting plane and the static approach, as well as
the average total number of added cuts, denoted by ncuts, for the cutting plane approach.

Table 2. EVS-SOC-LIN runtime comparison for concave maximum power functions and Pgridmax = 25n:
solving the static MILP versus the cutting plane method.

n ∆t (min)
nseg

Runtime (s) ncuts

Static Cutting Plane Cutting Plane

Mean Median StdDev Median StdDev Mean StdDev

Emax-lb
v

5 1 49 0.07 0.04 1.34 0.26 10,423 5209
5 5 46 0.01 0.00 1.04 0.23 574 269
5 10 43 0.01 0.00 1.03 0.24 190 85

10 1 99 0.18 0.15 1.52 0.38 15,949 5580
10 5 93 0.02 0.01 1.05 0.28 1243 520
10 10 86 0.01 0.00 1.03 0.26 416 159
20 1 199 0.60 0.30 2.09 0.49 25,549 6715
20 5 187 0.05 0.02 1.10 0.25 2593 747
20 10 172 0.02 0.01 1.05 0.25 862 245
50 1 495 2.78 1.02 6.72 2.07 87,375 19,749
50 5 464 0.16 0.06 1.28 0.31 6499 1167
50 10 427 0.06 0.02 1.10 0.23 2157 335

100 1 994 9.34 2.60 12.84 3.99 193,069 27,979
100 5 931 0.56 0.22 1.68 0.32 13,502 1664
100 10 858 0.13 0.05 1.25 0.27 4367 475

Emax-ex
v

5 1 901 1.19 1.02 1.31 0.38 12,800 5986
5 5 901 0.23 0.11 0.90 0.25 1102 542
5 10 901 0.08 0.07 0.97 0.26 322 205

10 1 1802 4.98 3.27 1.65 0.52 25,271 9541
10 5 1802 0.59 0.22 1.06 0.24 2341 950
10 10 1802 0.22 0.10 1.01 0.20 757 387
20 1 3605 14.33 8.48 3.29 0.83 60,778 18,725
20 5 3605 1.21 0.45 1.16 0.27 5117 1547
20 10 3605 0.68 0.20 1.07 0.21 1585 516
50 1 9041 70.69 31.89 9.11 2.66 175,979 28,195
50 5 9041 4.17 1.58 1.57 0.33 13,737 2329
50 10 9041 1.57 0.54 1.15 0.21 3989 858

100 1 18,086 280.22 100.87 25.45 9.66 390,873 44,162
100 5 18,086 13.11 4.73 2.11 0.51 27,920 3515
100 10 18,086 3.80 1.35 1.32 0.34 8126 1419

Note that all reported instances were solved to optimality w.r.t. both maximum energy
functions. Using Emax-lb

v as the maximum energy function, the static approach as well
as the cutting plane approach were both able to solve all instances within few seconds.
However, the static approach was significantly faster than the cutting plane method for all
considered instance groups.
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Using Emax-ex
v as a maximum energy function, the cutting plane method demonstrated

its performance advantages with growing n. Due to how Emax-lb
v and Emax-ex

v are derived,
the number of piecewise linear segments for Emax-ex

v is, in general, much higher than for
Emax-lb

v . As the number of segments increases, we can observe that the cutting plane ap-
proach scales significantly better than the static approach. This improvement is particularly
noticeable if we fix n and consider decreasing ∆t values. Observe that, for a fixed ∆t, the
number of cuts increases with larger n values, whereas, for a fixed n, the number of cuts
increases with smaller ∆t values.

Therefore, the results indicate that the cutting plane technique shows performance
benefits when a larger number of cuts has to be separated, i.e., the maximum charging
power condition was not easily fulfilled. Overall, it can be said that the cutting plane variant
outperforms the static model on larger instances and when nseg is large. We additionally
conducted the experiments for Pgridmax = 10n and 40n and observed the same trends.

In Figure 6, we give a more detailed comparison of the runtimes between the static
approach and the cutting plane approach with Emax-ex

v as the maximum energy function.
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Figure 6. EVS-SOC-LIN runtime comparison for directly solving the LP problem versus the cutting
plane approach corresponding to the results of Table 2.

The figure shows that, when fixing ∆t, the static approach does not scale as well as
the cutting plane approach in terms of the computation time with an increasing number of
vehicles. For ∆t ∈ {5, 10}, the runtimes of the cutting plane approach barely increase as n
grows. Only for ∆t = 1 min, the runtimes of the cutting plane approach increase slightly
with a growing number of vehicles. In contrast, for the static approach, the computation
times increase more strongly than their cutting plane counterparts. As ∆t decreases, the
difference in performance becomes increasingly obvious.

6.2. EVS-SOC-GLIN

Similar to before, we compare two variants of EVS-SOC-GLIN for the general noncon-
cave maximum charging power functions. In the first variant, we directly solve the static
MILP in which all linking constraints (17)–(19) are included from the beginning, whereas
the second approach is the branch-and-cut variant (B&C) in which these linking constraints
are dynamically separated as needed, cf. Section 4.2. As maximum energy function we
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use Emax-ex
v and Emax-lb

v , both based on the original full resolution Pmax
v functions. For

Pgridmax ∈ {10n, 25n, 40n}, we report the results in Tables 3–5, respectively.

Table 3. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v and Emax-ex

v
based on the original Pmax

v functions and Pgridmax = 10n.

n ∆t (min)

nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median

Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 30 30 391.75 43.39 1038 0.01 0.01
5 5 139 30 30 6.58 1.43 144 0.00 0.01
5 10 119 30 30 1.67 0.83 56 0.00 0.00
10 1 311 21 29 1800.00 1800.00 4068 0.03 0.03
10 5 279 30 30 79.94 8.84 498 0.01 0.01
10 10 242 30 30 7.04 2.06 194 0.00 0.01
20 1 612 2 11 1800.00 1800.00 8974 0.08 0.19
20 5 553 30 30 500.49 684.63 1846 0.01 0.01
20 10 475 30 30 40.18 13.35 505 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 15,910 - -
50 5 1393 26 30 1800.00 1800.00 6106 0.05 0.05
50 10 1192 30 30 307.62 827.59 1930 0.01 0.01

100 1 3095 0 0 1800.00 1800.00 11,886 - -
100 5 2796 9 9 1800.00 1800.00 9961 0.08 0.12
100 10 2399 30 30 1800.00 1800.00 4434 0.01 0.03

Emax-ex
v

5 1 901 8 27 1800.00 1800.00 5304 0.03 0.01
5 5 901 30 30 143.42 9.59 820 0.00 0.00
5 10 901 30 30 34.53 2.60 319 0.00 0.00
10 1 1802 1 21 1800.00 1800.00 13,982 0.04 0.08
10 5 1802 29 30 1800.00 725.37 2858 0.01 0.01
10 10 1802 30 30 201.32 10.29 680 0.00 0.01
20 1 3605 0 10 1800.00 1800.00 23,449 - 0.14
20 5 3605 14 30 1800.00 1800.00 6479 0.07 0.05
20 10 3605 30 30 1038.91 116.59 1507 0.01 0.01
50 1 9041 0 0 1800.00 1800.00 6856 - -
50 5 9041 0 23 1800.00 1800.00 15,048 - 0.11
50 10 9041 4 30 1800.00 1800.00 6160 0.18 0.03

100 1 18,078 0 0 - 1800.00 0 - -
100 5 18,086 0 10 1800.00 1800.00 18,944 - 0.08
100 10 18,086 0 25 1800.00 1800.00 10,750 - 0.06
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Table 4. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v and Emax-ex

v
based on the original Pmax

v functions and Pgridmax = 25n.

n ∆t (min)

nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median

Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 29 30 1800.00 1800.00 3184 0.02 0.06
5 5 139 30 30 25.52 6.68 422 0.01 0.01
5 10 119 30 30 1.27 1.62 153 0.01 0.01

10 1 312 20 23 1800.00 1800.00 7298 0.10 0.12
10 5 279 30 30 183.39 770.59 1132 0.01 0.01
10 10 242 30 30 17.87 11.88 452 0.01 0.01
20 1 612 4 3 1800.00 1800.00 11,938 0.26 0.28
20 5 553 30 30 1800.00 1800.00 2702 0.01 0.05
20 10 475 30 30 60.59 201.06 967 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 22,034 - -
50 5 1393 29 30 1800.00 1800.00 6997 0.08 0.11
50 10 1192 30 30 902.21 1800.00 2575 0.01 0.03

100 1 3095 0 0 1800.00 1800.00 29,193 - -
100 5 2796 14 7 1800.00 1800.00 11,737 0.12 0.18
100 10 2399 30 30 1800.00 1800.00 5340 0.03 0.06

Emax-ex
v

5 1 901 9 25 1800.00 1800.00 15,258 0.21 0.20
5 5 901 30 30 448.47 761.59 2153 0.01 0.01
5 10 901 30 30 56.12 16.43 866 0.00 0.01

10 1 1802 1 18 1800.00 1800.00 23,328 0.23 0.33
10 5 1802 26 30 1800.00 1800.00 5220 0.04 0.06
10 10 1802 30 30 204.26 233.60 2063 0.01 0.01
20 1 3605 0 2 1800.00 1800.00 17,970 - 0.32
20 5 3605 15 29 1800.00 1800.00 10,784 0.08 0.12
20 10 3605 29 30 1097.26 1800.00 4647 0.01 0.03
50 1 9041 0 0 1800.00 1800.00 23,986 - -
50 5 9041 0 17 1800.00 1800.00 23,708 - 0.18
50 10 9041 16 28 1800.00 1800.00 12,160 0.04 0.08

100 1 18,086 0 0 1800.00 1800.00 0 - -
100 5 18,086 0 0 1800.00 1800.00 25,754 - -
100 10 18,086 0 19 1800.00 1800.00 19,752 - 0.09
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Table 5. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v and Emax-ex

v
based on the original Pmax

v functions and Pgridmax = 40n.

n ∆t (min)

nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median

Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 29 29 1800.00 1800.00 4476 0.04 0.15
5 5 139 30 30 31.04 55.93 619 0.01 0.01
5 10 119 30 30 2.49 4.05 247 0.01 0.01

10 1 311 20 20 1800.00 1800.00 8161 0.21 0.17
10 5 279 30 30 301.14 1800.00 1410 0.01 0.03
10 10 242 30 30 27.80 36.06 456 0.01 0.01
20 1 612 2 1 1800.00 1800.00 13,361 0.27 0.48
20 5 553 30 30 1800.00 1800.00 2863 0.04 0.10
20 10 475 30 30 69.51 571.16 1078 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 25,908 - -
50 5 1393 28 28 1800.00 1800.00 7110 0.12 0.21
50 10 1192 30 30 1097.80 1800.00 2748 0.01 0.05

100 1 3095 0 0 1800.00 1800.00 29,066 - -
100 5 2796 7 2 1800.00 1800.00 11,782 0.22 0.21
100 10 2399 29 30 1800.00 1800.00 5650 0.06 0.10

Emax-ex
v

5 1 901 9 24 1800.00 1800.00 20,190 0.23 0.44
5 5 901 30 30 582.18 1800.00 3180 0.01 0.07
5 10 901 30 30 80.12 34.07 1228 0.00 0.01

10 1 1802 1 13 1800.00 1800.00 24,450 0.49 0.77
10 5 1802 26 30 1800.00 1800.00 6026 0.02 0.17
10 10 1802 30 30 245.17 1147.26 2161 0.01 0.01
20 1 3605 0 0 1800.00 1800.00 17,460 - -
20 5 3605 15 29 1800.00 1800.00 13,276 0.14 0.22
20 10 3605 29 30 1437.18 1800.00 5692 0.01 0.08
50 1 9041 0 0 1800.00 1800.00 12,253 - -
50 5 9041 0 11 1800.00 1800.00 27,617 - 0.21
50 10 9041 14 27 1800.00 1800.00 13,538 0.10 0.12

100 1 18,083 0 0 - 1800.00 0 - -
100 5 18,086 0 0 1800.00 1800.00 31,692 - -
100 10 18,086 0 11 1800.00 1800.00 23,081 - 0.14

Columns, nseg denote the total number of piecewise linear segments functions Emax
v

consist of, summed over all n vehicles of an instance. Columns nfeas indicate the numbers
of instances per group to which feasible solutions have been found, and columns “Runtime”
list the median computation times per group. Again, ncuts refers to the total number of
cuts added within B&C. The last columns indicate the finally remaining optimality gaps
between lower and upper bounds as reported by Gurobi.

These gaps are calculated as the absolute difference between the respective upper and
lower bounds divided by the upper bound. Moreover, for visual representation of the
number of feasibly solved instances, the median runtimes, and the number of added cuts
within B&C see Figures 7–9.
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Figure 7. Visualization of EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb

v
and Emax-ex

v based on five-segment piecewise linear approximations of the original Pmax
v functions,

Pgridmax = 10n. (a) Number of feasible solutions found for Emax-lb
v . (b) Number of feasible solutions

found for Emax-ex
v . (c) Median runtimes for Emax-lb

v . (d) Median runtimes for Emax-ex
v . (e) Median

number of cuts added within B&C for Emax-lb
v as well as Emax-ex

v .
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Figure 8. Visualization of EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb

v
and Emax-ex

v based on five-segment piecewise linear approximations of the original Pmax
v functions,

Pgridmax = 25n. (a) Number of feasible solutions found for Emax-lb
v . (b) Number of feasible solutions

found for Emax-ex
v . (c) Median runtimes for Emax-lb

v . (d) Median runtimes for Emax-ex
v . (e) Median

number of cuts added within B&C for Emax-lb
v as well as Emax-ex

v .
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Figure 9. Visualization of EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb

v
and Emax-ex

v based on five-segment piecewise linear approximations of the original Pmax
v functions,

Pgridmax = 40n. (a) Number of feasible solutions found for Emax-lb
v . (b) Number of feasible solutions

found for Emax-ex
v . (c) Median runtimes for Emax-lb

v . (d) Median runtimes for Emax-ex
v . (e) Median

number of cuts added within B&C for Emax-lb
v as well as Emax-ex

v .

Only gaps of instances with a feasible solution are considered. For parameter com-
binations without gaps (marked with “-”), no feasible solution has been found for any
instance within the time limit. For parameter combinations where no runtime is reported,
all corresponding runs terminated due to an out-of-memory error. More detailed results
can be found in Appendix B where also the number of instances solved to optimality as
well as standard deviations for runtimes, and the numbers of cuts are reported.
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Opposed to EVS-SOC-LIN, not all instances could be solved by the EVS-SOC-GLIN
variants within the time limit. Considering the results with Pgridmax = 10n, one can notice
that the B&C approach shows performance benefits, as the approach was able to always
find feasible solutions to as many or more instances than the static approach. It is difficult
to compare the quality of the solutions obtained by each approach as the static approach
sometimes found fewer feasible solutions. For groups for which both approaches could
obtain feasible solutions to all instances, the quality of the generated solutions was almost
identical. Moreover, except for two instance groups, the B&C approach was either as fast
or faster than the static approach.

For the results with Pgridmax = 25n, the runtime performance benefit of B&C is still
noticeable for small n; however, it is not as strong as for Pgridmax = 10n. Moreover, for
Emax-lb

v the number of feasible solutions found by the static approach is, except for one
group, never worse than for B&C. Though, for Emax-ex

v B&C still yielded significantly more
feasible solutions.

A similar observation can be made for Pgridmax = 40n. For Pgridmax = 40n, the static
approach has a better runtime with almost all parameter configurations.

A possible explanation for this observation seems to be that, for Pgridmax = 10n, the
charging energy of a vehicle v is more limited by Pgridmax than by Emax

v . Initial solutions
of B&C will then violate Constraints (14) less often, which implies spending less time
for the separation of cuts. This presumption is supported by considering the number of
added cuts. Fixing n and ∆t, one can observe that, with growing Pgridmax, clearly more
cuts are added.

When comparing Emax-lb
v and Emax-ex

v for any fixed Pgridmax, n, and ∆t, Emax-ex
v has

more segments than Emax-lb
v due to the nature of its computation. For Emax-lb

v , smaller ∆t
values imply a higher number of Emax-lb

v segments. For a fixed n and ∆t, the larger number
of Emax-ex

v segments comes with fewer feasible solutions and higher runtimes for the static
approach and the B&C.

In general, regardless of Pgridmax, all reported median gaps for both approaches are
below 0.2%. Moreover, while the B&C approach usually finds a higher number of feasible
solutions, the static approach finds generally more optimal solutions, as can be seen in
Appendix B.

In order to see how both solution approaches to EVS-SOC-GLIN perform on instances
with fewer piecewise linear segments in Emax

v , we conduct similar experiments using the
approximations of Pmax

v with five segments. For this, we only consider Emax-lb
v , since the

number of Emax-ex
v segments does not depend on the number of Pmax

v segments. Experi-
mental results for Pgridmax = 25n are given in Table 6. The table shows, again, the total
number of piecewise linear segments of Emax-lb

v (nseg), the number of instances for which a
feasible solutions was found within the time limit (nfeas ), the median computation time
(“Runtime”), the total number of cuts added within B&C (ncuts), and optimality gaps
(%-gap) of the generated solutions.

For each parameter group, B&C always finds at least as many feasible solutions as
the static approach. When the static and the B&C approaches find the same number of
feasible solutions, the resulting gaps are almost identical; however, the solutions of the
static variant are typically slightly better than the ones of B&C. In terms of computation
times, no approach was significantly faster than the other.

Due to the smaller number of segments in the Pmax
v functions and consequently also

simpler Emax-lb
v functions, a higher number of feasible as well as optimal solutions could

generally be found, when comparing Tables 4 and 6. Moreover, the impact of fewer Pmax
v

segments is also observable when we consider the median runtimes and the number of
added cuts. For almost all parameter combinations of n and ∆t, fewer Pmax

v segments lead
to lower median runtimes and fewer cuts.
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Table 6. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v based on

five-segment piecewise linear approximations of the original Pmax
v functions, Pgridmax = 25n.

n ∆t (min)

nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median

Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 40 30 30 60.14 19.63 387 0.01 0.01
5 5 46 30 30 2.40 1.98 88 0.01 0.01
5 10 43 30 30 0.64 1.13 42 0.00 0.01

10 1 80 30 30 509.28 1800.00 1162 0.01 0.02
10 5 92 30 30 11.01 8.34 232 0.01 0.01
10 10 87 30 30 1.49 2.68 118 0.01 0.01
20 1 160 12 30 1800.00 1800.00 2488 0.03 0.06
20 5 185 30 30 54.58 61.09 516 0.01 0.01
20 10 174 30 30 5.03 7.45 217 0.01 0.01
50 1 398 0 12 1800.00 1800.00 5598 - 0.24
50 5 459 30 30 640.74 1800.00 1556 0.01 0.02
50 10 433 30 30 37.23 36.95 624 0.01 0.01

100 1 798 0 0 1800.00 1800.00 9312 - -
100 5 921 30 30 1800.00 1800.00 3237 0.01 0.06
100 10 871 30 30 112.16 84.83 1360 0.01 0.01

Charging Cost Differences & Charging Errors

While the simpler approximations of the original Pmax
v functions lead to shorter

runtimes, there is clearly a tradeoff concerning the precision of the model, introduced
errors, and final solution qualities. We take a closer look on these aspects in the following.
Specifically, we are interested in the error made when using Emax-lb

v instead of Emax-ex
v and

the error between the five-segment Pmax
v approximation compared to the original Pmax

v .
For this purpose, we evaluate EVS-SOC-GLIN on four different Emax

v functions: Emax-lb
v

and Emax-ex
v , each based on the five-segment Pmax

v approximation and the original Pmax
v .

As we want to measure the impact of the different charging curves on the charging
costs, we select a high Pgridmax value of 40n as, in this case, the variable maximum charging
power constraints have higher impacts. Only results on instances solved to optimality
are reported. We only consider instances where an optimal solution for all four Emax

v
functions was found. Parameter combinations where no such instances exist are omitted.
The mean charging costs can be found in Table 7. The charging cost %-gaps are calculated
by 100% · (|Emax-ex

v − Emax-lb
v |)/Emax-ex

v .
Observe that, for fixed ∆t and varying n, the charging cost gap between Emax-lb

v and
Emax-ex

v does not change significantly. It seems that the difference in charging costs mainly
depends on ∆t. Specifically, one might notice that the charging cost gaps become smaller
as ∆t decreases. Overall, the largest mean charging cost gap is 0.64%; the differences,
therefore, seem to be negligible for practical purposes for the considered parameter groups.
Not all instances could be solved to optimality (even when increasing the time limit), and
hence the number of reported instances in some instance groups varies for each instance
group. Therefore, to give a better idea about the distribution of the charging cost gaps, we
additionally provide standard deviations to the charging cost gaps in Table 7. For groups
with the same ∆t, we can observe that the standard deviations are quite similar.

When comparing the five-segment Pmax
v approximation to the original Pmax

v , the
difference in charging costs is marginal, even for large instances. For example, consider
n = 20, ∆t = 10 min and Emax-ex

v and observe that the objective value differs on average
by about 0.07 cents only between the original Pmax

v and the five-segment approximation.
This insight appears to be particularly relevant, since it shows that approximating Pmax

v
with a lower number of linear pieces is reasonable for practice.
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Table 7. Objective value comparison using EVS-SOC-GLIN and different Emax
v functions based on

the five-segment Pmax
v approximation and the original Pmax

v ; Pgridmax = 40n.

n ∆t (min) nopt

Charging Costs

Emax-lb
v Emax-ex

v %-gap

Mean Mean Mean StdDev

Original Pmax
v

5 1 2 109.08 108.97 0.10 0.01
5 5 25 209.40 208.83 0.29 0.18
5 10 30 227.10 225.78 0.64 0.40

10 5 11 374.24 372.98 0.34 0.13
10 10 28 447.51 445.05 0.59 0.35
20 10 19 882.53 877.33 0.60 0.30

5-segment approx. Pmax
v

5 1 2 109.10 108.98 0.10 0.01
5 5 25 209.38 208.82 0.29 0.17
5 10 30 227.11 225.77 0.64 0.41

10 5 11 374.14 372.92 0.33 0.13
10 10 28 447.44 445.04 0.57 0.32
20 10 19 882.39 877.26 0.60 0.30

When realizing a charging plan in practice with a different Emax
v function than used

for scheduling, the specified target SOCs sdep
v might not be reached for some vehicles. We

measure this error by generating an optimal charging schedule with Emax-ex
v and simulating

the actual maximum energy function with Emax-lb
v . In the simulation, the actually charged

energy is set to the minimum from the corresponding planned charged energy and the
actual maximum energy function.

The resulting mean deviation from the target SOC in percent, the mean charging error,
can be seen in Table 8. For a single instance, we determined the mean charging error over
all vehicles, whereas, for an instance group, we again report the mean and the standard
deviation of these mean charging errors from the individual instances.

Table 8. Charging error comparison when scheduling with Emax-ex
v using EVS-SOC-GLIN and

realizing the schedule with Emax-lb
v ; Pgridmax = 40n.

n ∆t (min) nopt

Mean Charging Error (% SOC)

Original Pmax
v 5-seg. Approx. Pmax

v

Mean StdDev Mean StdDev

5 1 3 0.23 0.08 0.21 0.08
5 5 25 1.14 0.26 1.06 0.28
5 10 30 2.01 0.58 1.94 0.60

10 5 12 1.14 0.16 1.18 0.18
10 10 29 2.03 0.45 2.03 0.46
20 10 20 2.01 0.29 1.97 0.34

Similarly to before, it seems that the size of the charging error mainly depends on ∆t:
Fixing the number of vehicles n, the mean charging error decreases with smaller ∆t, the
number of vehicles does not seem to influence the mean charging error for fixed ∆t.
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6.3. Comparison of EVS-SOC-LIN and EVS-SOC-GLIN

Charging cost gaps between solutions of formulation EVS-SOC-LIN and EVS-SOC-
GLIN can be found in Figure 10. As before, we only consider instances that were solved to
optimality. For EVS-SOC-LIN, we use Emax-lb

v based on the concave Pmax
v , whereas, for EVS-

SOC-GLIN, we use Emax-lb
v based on Pmax

v with five segments. The grid capacity Pgridmax

is again set to 40n. Charging cost gaps are calculated by dividing the difference of the
EVS-SOC-GLIN objective values from the EVS-SOC-LIN objectives by the EVS-SOC-GLIN
objective values. For n ∈ {50, 100} and ∆t = 1 min, all mean charging cost gaps are zero;
therefore, the respective bars are not shown in the figure.
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Figure 10. Mean charging cost gaps of EVS-SOC-LIN and EVS-SOC-GLIN with Pgridmax = 40n.
Whiskers indicate the standard deviations. Note that for n = 20 and ∆t = 1 only a single instance
was solved to optimality, and therefore the corresponding standard deviation is zero.

Comparing the gaps of both formulations, one can notice that the charging costs of
solutions generated by EVS-SOC-LIN are slightly too optimistic, underestimating the actual
costs. In comparison to the more exact EVS-SOC-GLIN, the costs of the solutions generated
by EVS-SOC-LIN are lower by at most by 0.35%. Moreover, there are no significant
differences between the charging cost gaps when varying n or ∆t values. When it comes
to computation times, both variants of EVS-SOC-LIN are significantly faster than any
EVS-SOC-GLIN variant, as we have seen before in Tables 2 and 4.

For the exact same setting as above, we also measure the charging error when schedul-
ing with the convex Emax-lb

v used in EVS-SOC-LIN and realizing the plan with the, in
general, nonconvex Emax-lb

v used in EVS-SOC-GLIN. The mean charging error is shown
in Figure 11. For a fixed ∆t, the mean charging error does not significantly change for a
varying number of vehicles n. However, for a fixed number n, the mean charging error
grows with decreasing ∆t.

An explanation for this behavior seems to be that on instances with smaller ∆t, so-
lutions tend to be more precise in terms of the error induced by the time discretization.
Therefore, the difference between a convex and nonconvex Emax

v function could have more
impact on solutions of instances with small ∆t values. Overall, the mean charging cost
difference does not exceed 1.5% SOC for any n and any ∆t and, thus, may be negligible
in practice.
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Figure 11. Mean charging error when scheduling with convex Emax-lb
v and realizing the plan with

nonconvex Emax-lb
v using Pgridmax = 40n. Whiskers indicate the standard deviations.

6.4. Model Based Predictive Control Simulations

For the rolling horizon scenarios, we conduct experiments using formulations EVS-
SOC-LIN and EVS-SOC-GLIN. We use Emax-lb

v for both formulations, but, for EVS-SOC-LIN,
the corresponding concave approximation of Pmax

v , whereas, for EVS-SOC-GLIN, the five-
segment approximation of Pmax

v . Pgridmax is set to 40n. The results of the experiments are
shown in Table 9. Absolute charging cost differences are determined by subtracting the
EVS-SOC-GLIN objective values from the EVS-SOC-LIN objective values. The relative
charging costs are based on the absolute charging costs divided by the objective values of
EVS-SOC-GLIN.

Similarly to before, for fixed n and ∆t, the charging costs of EVS-SOC-LIN and EVS-
SOC-GLIN only differ marginally. The maximum gap is 0.27% for n = 100 and ∆t = 5 min.
As expected, the absolute charging cost difference increases with a higher number of
vehicles. The gaps, however, seem to stay in the same order of magnitude for growing n.

Table 9. Rolling horizon charging cost difference for EVS-SOC-LIN vs. EVS-SOC-GLIN using Emax-lb
v ;

Pgridmax = 40n.

n ∆t (min)

Charging Cost Difference

Absolute (Cent) Relative (%)

Mean StdDev Mean StdDev

5 5 0.97 0.73 0.22 0.16
5 10 0.91 0.60 0.20 0.12

10 5 1.75 0.99 0.20 0.11
10 10 1.78 0.77 0.20 0.08
20 5 3.78 1.34 0.21 0.08
20 10 3.80 1.03 0.21 0.06
50 5 9.14 2.42 0.20 0.05
50 10 9.39 2.64 0.21 0.06

100 5 24.42 2.40 0.27 0.03
100 10 19.96 4.82 0.22 0.05
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7. Conclusions

We formally introduced the EVS-SOC problem in which we put particular focus on
dealing with vehicle-specific SOC-dependent maximum charging power limitations. We
addressed the issue that the maximum charging power Pmax

v may be regulated within a
single time step in a time discretized solution approach by turning toward considering the
maximum amount of energy that can be charged in a time step. To this end, we proposed
an exact derivation Emax-ex

v as well as a simpler lower bound Emax-lb
v . One should keep in

mind that the gap between Emax-lb
v and Emax-ex

v decreases with smaller time step duration
∆t. We recall that charging schedules generated with Emax-lb

v are guaranteed to be realizable
in practice, whereas schedules generated with Emax-ex

v help us with the estimation of the
charging cost differences and charging errors induced by the time discretization.

Let us recapitulate the most important experimental results. Two different MILP for-
mulations, EVS-SOC-LIN and EVS-SOC-GLIN, were proposed, where EVS-SOC-LIN relies
on the assumption that Emax

v is concave. When taking a closer look at EVS-SOC-LIN, both
the static as well as the cutting plane variant are quite fast. Compared to EVS-SOC-GLIN,
EVS-SOC-LIN performs an order of magnitude faster in our experiments. Considering
the runtime difference between the static and the cutting plane approach, a substantial
performance benefit of the latter can be observed. Moreover, we have seen that the runtime
of the cutting plane approach scales better with larger numbers of vehicles or decreasing
∆t values. Its advantages become even more visible when the maximum charging energy
of a vehicle has to be exploited, i.e., a large number of cuts has to be separated.

Concerning the static solution approach and the B&C for solving EVS-SOC-GLIN,
we found that B&C performs better for instances with a small number of vehicles. For
larger instances, however, the static variant is usually superior in terms of runtime. It also
shows performance advantages for larger grid capacities. The results of the experiments
indicate that the B&C is slower than the static variant when a large number of cuts has to
be separated. Nevertheless, there are cases where B&C is faster—for example, when Emax

v
consists of many linear segments. Additionally, we realized that B&C finds more feasible
solutions in the majority of the experiments when solving to optimality is not possible
anymore within the runtime limit. Overall, for both EVS-SOC-GLIN solution approaches,
fewer Pmax

v segments usually clearly reduce the runtime.
Different approximations of the maximum charging power (e.g., piecewise linear

approximation or convex hull approximation), as well as the maximum charging energy
(Emax-lb

v , Emax-ex
v ) have been proposed. We studied the charging cost differences and the

charging errors induced by these approximations. Regarding the charging cost differences,
it turned out that there were only marginal charging cost differences between schedules
generated with Emax-lb

v and schedules generated with Emax-ex
v .

The number of vehicles did not show any noticeable impact on the cost differences
for this comparison. Naturally, a smaller step duration ∆t reduces the charging cost
differences. Moreover, in the case of our benchmark instances, the approximation of Pmax

v
with five piecewise linear segments does not have any noticeable impact on the charging
costs, despite the rather complex original functions. We also inspected the charging cost
differences when generating schedules based on the original Pmax

v function and its concave
approximation. We found that the charging cost differences were quite small; the mean
differences did not exceed 0.35% for any shown parameter group.

As already mentioned, approximating the maximum charging energy might lead to
the issue that vehicles do not reach their desired target SOCs. To measure this effect, we
generated charging schedules with Emax-ex

v and simulated the actual charging with Emax-lb
v .

Experimental results demonstrated that the mean charging error did not exceed 2.1% SOC
even for ∆t = 10 min.

For these experiments, we also detected a correlation between the size of ∆t and the
charging error, more specifically, the mean charging error decreases with smaller ∆t. In
another simulation, we considered the mean charging error when generating a charging
schedule based on a concave Pmax

v approximation and realizing it with the original Pmax
v .
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The mean charging error was rather small again, the mean deviation from the vehicles’
target SOCs were, at most, 1.5%.

To see whether the concave approximation of Pmax
v accumulates large charging cost

differences in a whole day scenario, we conducted model-based predictive control simu-
lations with the original Pmax

v and its concave approximation. The relative charging cost
gaps were even smaller with a maximum value 0.27% for 100 vehicles and ∆t = 5 min.

Overall, where we utilize one of the formulations within a model based predictive
control strategy, we recommend the usage of EVS-SOC-LIN or EVS-SOC-GLIN together
with a reasonably small ∆t value of few minutes, in order to reduce errors introduced
by time discretization. Depending on whether EVS-SOC-GLIN is performant enough for
a given application setting (i.e., it finds a charging schedule within the re-optimization
interval), its usage is advised to reduce the danger of significant charging cost differences
and charging errors. It seems promising to approximate Pmax

v with five to ten piecewise
linear segments to improve the runtime in this scenario.

In case EVS-SOC-GLIN does not find charging schedules in a reasonable time, one
might fall back to EVS-SOC-LIN and its cutting plane approach to rapidly generate charging
schedules for a concave approximation of Pmax

v . The introduced errors are usually negligible
as we have seen.

In future work, it would be interesting to investigate whether the runtime of solving
EVS-SOC-GLIN can be further improved. As we have seen, B&C is frequently slower than
the static variant. A more detailed polyhedral study of the model may reveal additional
strengthening inequalities. Concerning the computational complexity of EVS-SOC, it is an
open question of whether or not the problem is NP-hard if Pmax

v is a general nonconcave
function. Another aspect worth pursuing is the question of whether known vehicle arrival
times have a significant impact on the charging costs of a rolling horizon schedule. In the
presented scenario, successively arriving vehicles are simulated; however, they are not
incorporated into the schedule before arrival at the charging station. One may expect that
arrival times known in advance lead to better exploitation of cheap charging time slots and,
therefore, come along with cheaper total charging costs.

A further direction of future work should be the consideration of uncertainties, e.g.,
in the future power limits or in the future occupation of charging stations. Furthermore it
would be interesting to study the effect of the rescheduling interval on charging costs and
charging errors in the rolling horizon context. Last, but not least, it would be interesting
to consider a problem variant in which the discharging of vehicles is allowed in order to
enable the mutual charging of EVs. This idea has already been mentioned in [26]; however,
its impact on the total charging costs has not yet been studied. One could further extend the
model by allowing the charging station to supply energy to the electricity grid in exchange
for a monetary reward.
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Appendix A

In Figure A1, a comparison between the original Pmax
v and the simpler piecewise

approximations is shown for all vehicle types used in the benchmark instances.
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Figure A1. Comparison of Pmax

v curves with different numbers of segments. (a) Pmax
v curves for

BMW i3. (b) Pmax
v curves for Energica Ego. (c) Pmax

v curves for Mercedes-Benz EQC. (d) Pmax
v curves

for Audi e-tron. (e) Pmax
v curves for Hyundai Kona Elektro. (f) Pmax

v curves for Jaguar I-Pace. (g) Pmax
v

curves for MINI Cooper Electric. (h) Pmax
v curves for Tesla Model 3 Long Range.
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Appendix B

Tables A1–A4 give more detailed information to the results provided in Tables 3–6,
respectively. Shown here are also the numbers of optimally solved instances in each
instance groups as well as standard deviations to the runtimes and the numbers of cuts.

Table A1. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v and Emax-ex

v based on the original
Pmax

v functions and Pgridmax = 10n.

n ∆t (min)
nseg nopt nfeas

Runtime (s) ncuts %-gap

Median StdDev Median StdDev Median

Mean Static B&C Static B&C Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 24 24 30 30 391.75 43.39 662.53 720.28 1038 1944 0.01 0.01
5 5 139 30 30 30 30 6.58 1.43 17.30 64.96 144 307 0.00 0.01
5 10 119 30 30 30 30 1.67 0.83 6.66 1.77 56 120 0.00 0.00

10 1 311 5 12 21 29 1800.00 1800.00 389.82 764.87 4068 2726 0.03 0.03
10 5 279 29 27 30 30 79.94 8.84 353.48 544.47 498 581 0.01 0.01
10 10 242 30 30 30 30 7.04 2.06 35.58 4.31 194 167 0.00 0.01
20 1 612 0 1 2 11 1800.00 1800.00 0.00 181.68 8974 1820 0.08 0.19
20 5 553 23 19 30 30 500.49 684.63 640.95 781.48 1846 1081 0.01 0.01
20 10 475 30 29 30 30 40.18 13.35 71.71 425.71 505 274 0.01 0.01
50 1 1544 0 0 0 0 1800.00 1800.00 0.00 0.00 15,910 2518 - -
50 5 1393 2 2 26 30 1800.00 1800.00 174.76 351.60 6106 1249 0.05 0.05
50 10 1192 29 18 30 30 307.62 827.59 458.49 779.32 1930 594 0.01 0.01

100 1 3095 0 0 0 0 1800.00 1800.00 0.00 0.00 11,886 3940 - -
100 5 2796 0 0 9 9 1800.00 1800.00 0.00 0.00 9961 1319 0.08 0.12
100 10 2399 11 4 30 30 1800.00 1800.00 418.13 452.22 4434 861 0.01 0.03

5 1 901 3 12 8 27 1800.00 1800.00 414.46 834.31 5304 6069 0.03 0.01
5 5 901 30 26 30 30 143.42 9.59 312.39 628.62 820 1553 0.00 0.00
5 10 901 30 30 30 30 34.53 2.60 106.85 48.02 319 623 0.00 0.00

10 1 1802 0 3 1 21 1800.00 1800.00 0.00 401.91 13,982 7431 0.04 0.08
10 5 1802 13 16 29 30 1800.00 725.37 568.29 872.54 2858 2600 0.01 0.01
10 10 1802 30 28 30 30 201.32 10.29 327.78 451.48 680 845 0.00 0.01
20 1 3605 0 0 0 10 1800.00 1800.00 0.00 0.00 23,449 6856 - 0.14
20 5 3605 2 6 14 30 1800.00 1800.00 85.05 629.36 6479 4009 0.07 0.05
20 10 3605 22 18 30 30 1038.91 116.59 569.76 862.58 1507 1708 0.01 0.01
50 1 9041 0 0 0 0 1800.00 1800.00 0.00 0.00 6856 4528 - -
50 5 9041 0 1 0 23 1800.00 1800.00 0.00 308.85 15,048 3971 - 0.11
50 10 9041 1 7 4 30 1800.00 1800.00 123.65 585.67 6160 3202 0.18 0.03

100 1 18,078 0 0 0 0 - 1800.00 - 0.00 0 5698 - -
100 5 18,086 0 0 0 10 1800.00 1800.00 0.00 0.00 18,944 5630 - 0.08
100 10 18,086 0 2 0 25 1800.00 1800.00 0.00 393.05 10,750 3536 - 0.06
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Table A2. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v and Emax-ex

v based on the original
Pmax

v functions and Pgridmax = 25n.

n ∆t (min)
nseg nopt nfeas

Runtime (s) ncuts %-gap

Median StdDev Median StdDev Median

Mean Static B&C Static B&C Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 12 5 29 30 1800.00 1800.00 690.82 636.49 3184 3153 0.02 0.06
5 5 139 28 26 30 30 25.52 6.68 450.62 616.54 422 461 0.01 0.01
5 10 119 30 29 30 30 1.27 1.62 10.37 329.09 153 154 0.01 0.01

10 1 312 1 0 20 23 1800.00 1800.00 29.78 0.00 7298 2829 0.10 0.12
10 5 279 29 19 30 30 183.39 770.59 445.94 815.87 1132 771 0.01 0.01
10 10 242 30 29 30 30 17.87 11.88 163.75 437.28 452 223 0.01 0.01
20 1 612 0 0 4 3 1800.00 1800.00 0.00 0.00 11,938 2372 0.26 0.28
20 5 553 14 6 30 30 1800.00 1800.00 608.45 637.22 2702 936 0.01 0.05
20 10 475 29 22 30 30 60.59 201.06 422.28 755.21 967 359 0.01 0.01
50 1 1544 0 0 0 0 1800.00 1800.00 0.00 0.00 22,034 4220 - -
50 5 1393 2 1 29 30 1800.00 1800.00 160.23 280.55 6997 1257 0.08 0.11
50 10 1192 20 5 30 30 902.21 1800.00 698.40 604.91 2575 653 0.01 0.03
100 1 3095 0 0 0 0 1800.00 1800.00 0.00 0.00 29,193 6236 - -
100 5 2796 0 0 14 7 1800.00 1800.00 0.00 0.00 11,737 1494 0.12 0.18
100 10 2399 6 0 30 30 1800.00 1800.00 482.70 0.00 5340 1077 0.03 0.06

Emax-ex
v

5 1 901 1 1 9 25 1800.00 1800.00 274.48 138.10 15,258 9382 0.21 0.20
5 5 901 26 17 30 30 448.47 761.59 644.73 831.42 2153 2330 0.01 0.01
5 10 901 29 26 30 30 56.12 16.43 321.42 610.48 866 990 0.00 0.01

10 1 1802 0 0 1 18 1800.00 1800.00 0.00 0.00 23,328 9977 0.23 0.33
10 5 1802 12 7 26 30 1800.00 1800.00 580.44 699.52 5220 3467 0.04 0.06
10 10 1802 29 22 30 30 204.26 233.60 417.05 757.12 2063 1389 0.01 0.01
20 1 3605 0 0 0 2 1800.00 1800.00 0.00 0.00 17,970 9466 - 0.32
20 5 3605 1 1 15 29 1800.00 1800.00 113.34 318.65 10,784 4058 0.08 0.12
20 10 3605 20 10 29 30 1097.26 1800.00 573.95 709.09 4647 2500 0.01 0.03
50 1 9041 0 0 0 0 1800.00 1800.00 0.00 0.00 23,986 9245 - -
50 5 9041 0 0 0 17 1800.00 1800.00 0.00 0.00 23,708 5721 - 0.18
50 10 9041 0 3 16 28 1800.00 1800.00 0.00 439.63 12,160 4186 0.04 0.08
100 1 18,086 0 0 0 0 1800.00 1800.00 0.00 0.00 0 4697 - -
100 5 18,086 0 0 0 0 1800.00 1800.00 0.00 0.00 25,754 8585 - -
100 10 18,086 0 0 0 19 1800.00 1800.00 0.00 0.00 19,752 5121 - 0.09

Table A3. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v and Emax-ex

v based on the original
Pmax

v functions and Pgridmax = 40n.

n ∆t (min)
nseg nopt nfeas

Runtime (s) ncuts %-gap

Median StdDev Median StdDev Median

Mean Static B&C Static B&C Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 11 2 29 29 1800.00 1800.00 542.57 57.30 4476 2923 0.04 0.15
5 5 139 28 24 30 30 31.04 55.93 513.40 715.78 619 492 0.01 0.01
5 10 119 30 29 30 30 2.49 4.05 53.44 371.17 247 153 0.01 0.01

10 1 311 0 0 20 20 1800.00 1800.00 0.00 0.00 8161 3130 0.21 0.17
10 5 279 21 8 30 30 301.14 1800.00 745.75 677.68 1410 676 0.01 0.03
10 10 242 28 26 30 30 27.80 36.06 450.92 660.00 456 201 0.01 0.01
20 1 612 0 0 2 1 1800.00 1800.00 0.00 0.00 13,361 2440 0.27 0.48
20 5 553 5 0 30 30 1800.00 1800.00 365.20 0.00 2863 884 0.04 0.10
20 10 475 28 19 30 30 69.51 571.16 479.77 745.04 1078 327 0.01 0.01
50 1 1544 0 0 0 0 1800.00 1800.00 0.00 0.00 25,908 3569 - -
50 5 1393 0 0 28 28 1800.00 1800.00 0.00 0.00 7110 1096 0.12 0.21
50 10 1192 18 1 30 30 1097.80 1800.00 640.13 183.90 2748 520 0.01 0.05
100 1 3095 0 0 0 0 1800.00 1800.00 0.00 0.00 29,066 6072 - -
100 5 2796 0 0 7 2 1800.00 1800.00 0.00 0.00 11,782 1239 0.22 0.21
100 10 2399 1 0 29 30 1800.00 1800.00 121.93 0.00 5650 808 0.06 0.10
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Table A3. Cont.

n ∆t (min)
nseg nopt nfeas

Runtime (s) ncuts %-gap

Median StdDev Median StdDev Median

Mean Static B&C Static B&C Static B&C Static B&C B&C Static B&C

Emax-ex
v

5 1 901 2 0 9 24 1800.00 1800.00 261.72 0.00 20,190 9588 0.23 0.44
5 5 901 25 9 30 30 582.18 1800.00 651.87 643.80 3180 2231 0.01 0.07
5 10 901 30 23 30 30 80.12 34.07 160.32 753.56 1228 955 0.00 0.01

10 1 1802 0 0 1 13 1800.00 1800.00 0.00 0.00 24,450 8643 0.49 0.77
10 5 1802 12 0 26 30 1800.00 1800.00 598.34 0.00 6026 3161 0.02 0.17
10 10 1802 29 17 30 30 245.17 1147.26 375.49 837.79 2161 1553 0.01 0.01
20 1 3605 0 0 0 0 1800.00 1800.00 0.00 0.00 17,460 9716 - -
20 5 3605 0 0 15 29 1800.00 1800.00 0.00 0.00 13,276 3457 0.14 0.22
20 10 3605 19 3 29 30 1437.18 1800.00 550.74 447.72 5692 2190 0.01 0.08
50 1 9041 0 0 0 0 1800.00 1800.00 0.00 0.00 12,253 7961 - -
50 5 9041 0 0 0 11 1800.00 1800.00 0.00 0.00 27,617 4805 - 0.21
50 10 9041 0 0 14 27 1800.00 1800.00 0.00 0.00 13,538 2670 0.10 0.12
100 1 18,083 0 0 0 0 - 1800.00 - 0.00 0 9122 - -
100 5 18,086 0 0 0 0 1800.00 1800.00 0.00 0.00 31,692 13,113 - -
100 10 18,086 0 0 0 11 1800.00 1800.00 0.00 0.00 23,081 4035 - 0.14

Table A4. EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v based on five-segment piecewise

linear approximations of the original Pmax
v functions, Pgridmax = 25n.

n ∆t (min)
nseg nopt nfeas

Runtime (s) ncuts %-gap

Median StdDev Median StdDev Median

Mean Static B&C Static B&C Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 40 29 22 30 30 60.14 19.63 394.28 791.01 387 485 0.01 0.01
5 5 46 30 30 30 30 2.40 1.98 5.97 263.17 88 102 0.01 0.01
5 10 43 30 30 30 30 0.64 1.13 1.37 1.21 42 50 0.00 0.01
10 1 80 27 13 30 30 509.28 1800.00 582.27 830.23 1162 639 0.01 0.02
10 5 92 30 30 30 30 11.01 8.34 28.13 224.13 232 136 0.01 0.01
10 10 87 30 30 30 30 1.49 2.68 1.78 8.36 118 62 0.01 0.01
20 1 160 5 2 12 30 1800.00 1800.00 193.77 407.09 2488 722 0.03 0.06
20 5 185 30 25 30 30 54.58 61.09 199.06 659.96 516 192 0.01 0.01
20 10 174 30 30 30 30 5.03 7.45 13.02 37.35 217 79 0.01 0.01
50 1 398 0 0 0 12 1800.00 1800.00 0.00 0.00 5598 796 - 0.24
50 5 459 28 10 30 30 640.74 1800.00 516.17 754.54 1556 363 0.01 0.02
50 10 433 30 29 30 30 37.23 36.95 54.09 379.05 624 160 0.01 0.01

100 1 798 0 0 0 0 1800.00 1800.00 0.00 0.00 9312 1458 - -
100 5 921 12 3 30 30 1800.00 1800.00 466.38 464.39 3237 568 0.01 0.06
100 10 871 30 25 30 30 112.16 84.83 156.15 652.92 1360 259 0.01 0.01

References
1. International Energy Agency. Global EV Outlook 2021; International Energy Agency: Paris, France, 2021.
2. Deilami, S.; Muyeen, S.M. An Insight into Practical Solutions for Electric Vehicle Charging in Smart Grid. Energies 2020, 13, 1545.

[CrossRef]
3. Nicolson, M.L.; Fell, M.J.; Huebner, G.M. Consumer Demand for Time of Use Electricity Tariffs: A Systematized Review of the

Empirical Evidence. Renew. Sustain. Energy Rev. 2018, 97, 276–289. [CrossRef]
4. Limmer, S. Dynamic Pricing for Electric Vehicle Charging—A Literature Review. Energies 2019, 12, 3574. [CrossRef]
5. Wang, Q.; Liu, X.; Du, J.; Kong, F. Smart Charging for Electric Vehicles: A Survey From the Algorithmic Perspective. IEEE

Commun. Surv. Tutorials 2016, 18, 1500–1517. [CrossRef]
6. Fachrizal, R.; Shepero, M.; van der Meer, D.; Munkhammar, J.; Widén, J. Smart charging of electric vehicles considering

photovoltaic power production and electricity consumption: A review. eTransportation 2020, 4, 100056. [CrossRef]

http://doi.org/10.3390/en13071545
http://dx.doi.org/10.1016/j.rser.2018.08.040
http://dx.doi.org/10.3390/en12183574
http://dx.doi.org/10.1109/COMST.2016.2518628
http://dx.doi.org/10.1016/j.etran.2020.100056


Energies 2021, 14, 7755 33 of 33

7. Lopes, J.A.; Soares, F.; Almeida, P.; Moreira da Silva, M. Smart Charging Strategies for Electric Vehicles: Enhancing Grid
Performance and Maximizing the Use of Variable Renewable Energy Resources. In Proceedings of the 24th International Battery,
Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition 2009 (EVS24), Stavanger, Norway, 13–16 May 2009; Volume 1,
pp. 2680–2690.

8. Rotering, N.; Ilic, M. Optimal Charge Control of Plug-In Hybrid Electric Vehicles in Deregulated Electricity Markets. IEEE Trans.
Power Syst. 2011, 26, 1021–1029. [CrossRef]

9. Sortomme, E.; Hindi, M.M.; MacPherson, S.D.J.; Venkata, S.S. Coordinated Charging of Plug-In Hybrid Electric Vehicles to
Minimize Distribution System Losses. IEEE Trans. Smart Grid 2011, 2, 198–205. [CrossRef]

10. Mehta, R.; Srinivasan, D.; Trivedi, A. Optimal charging scheduling of plug-in electric vehicles for maximizing penetration within
a workplace car park. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada,
24–29 July 2016, pp. 3646–3653.

11. Goebel, C.; Jacobsen, H.A. Aggregator-Controlled EV Charging in Pay-as-Bid Reserve Markets With Strict Delivery Constraints.
IEEE Trans. Power Syst. 2016, 31, 4447–4461. [CrossRef]

12. Kontou, E.; Yin, Y.; Ge, Y.E. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management. Transp. Res.
Rec. 2017, 2628, 87–98. [CrossRef]

13. Naharudinsyah, I.; Limmer, S. Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market. Energies
2018, 11, 1416. [CrossRef]

14. Huber, J.; Lohmann, K.; Schmidt, M.; Weinhardt, C. Carbon efficient smart charging using forecasts of marginal emission factors.
J. Clean. Prod. 2021, 284, 124766. [CrossRef]

15. Fastned. Fastned—Supersnel Laden Langs de Snelweg en in de Stad. 2020. Available online: www.fastnedcharging.com
(accessed on 11 November 2021).

16. Mies, J.J.; Helmus, J.R.; Van den Hoed, R. Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in
The Netherlands. World Electr. Veh. J. 2018, 9, 17. [CrossRef]

17. Frendo, O.; Graf, J.; Gaertner, N.; Stuckenschmidt, H. Data-driven smart charging for heterogeneous electric vehicle fleets. Energy
AI 2020, 1, 100007. [CrossRef]

18. Korolko, N.; Sahinoglu, Z. Robust Optimization of EV Charging Schedules in Unregulated Electricity Markets. IEEE Trans. Smart
Grid 2017, 8, 149–157. [CrossRef]

19. Schaden, B. Scheduling the Charging of Electric Vehicles with SOC-Dependent Maximum Charging Power. Master’s Thesis,
TU Wien, Vienna, Austria, 2021.

20. Sundström, O.; Binding, C. Optimization methods to plan the charging of electric vehicle fleets. In Proceedings of the International
Conference on Control, Communication and Power Engineering, Chennai, India, 28–29 July 2010; pp. 323–328.

21. Morstyn, T.; Crozier, C.; Deakin, M.; McCulloch, M.D. Conic Optimization for Electric Vehicle Station Smart Charging With
Battery Voltage Constraints. IEEE Trans. Transp. Electrif. 2020, 6, 478–487. [CrossRef]

22. Cao, Y.; Tang, S.; Li, C.; Zhang, P.; Tan, Y.; Zhang, Z.; Li, J. An Optimized EV Charging Model Considering TOU Price and SOC
Curve. IEEE Trans. Smart Grid 2012, 3, 388–393. [CrossRef]

23. El-Bayeh, C.Z.; Mougharbel, I.; Saad, M.; Chandra, A.; Asber, D.; Lefebvre, S. Impact of Considering Variable Battery Power
Profile of Electric Vehicles on the Distribution Network. In Proceedings of the 2018 4th International Conference on Renewable
Energies for Developing Countries (REDEC), Beirut, Lebanon, 1–2 November 2018; pp. 1–8.

24. Han, J.; Park, J.; Lee, K. Optimal Scheduling for Electric Vehicle Charging under Variable Maximum Charging Power. Energies
2017, 10, 933. [CrossRef]

25. Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Organisation; Athena Scientific Optimization and Computation Series; Athena
Scientific: Belmont, MA, USA, 1997; Volume 6.

26. Ishihara, T.; Limmer, S. Optimizing the Hyperparameters of a Mixed Integer Linear Programming Solver to Speed up Electric Vehicle
Charging Control. Applications of Evolutionary Computation; Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F., Eds.;
Springer: Berlin/Heidelberg, Germany, 2020; Volume 12104, pp. 37–53.

http://dx.doi.org/10.1109/TPWRS.2010.2086083
http://dx.doi.org/10.1109/TSG.2010.2090913
http://dx.doi.org/10.1109/TPWRS.2016.2518648
http://dx.doi.org/10.3141/2628-10
http://dx.doi.org/10.3390/en11061416
http://dx.doi.org/10.1016/j.jclepro.2020.124766
www.fastnedcharging.com
http://dx.doi.org/10.3390/wevj9020017
http://dx.doi.org/10.1016/j.egyai.2020.100007
http://dx.doi.org/10.1109/TSG.2015.2472597
http://dx.doi.org/10.1109/TTE.2020.2986675
http://dx.doi.org/10.1109/TSG.2011.2159630
http://dx.doi.org/10.3390/en10070933

	Introduction
	Related Work
	Problem Description
	Exact Maximum Energy
	Lower Bound for Maximum Energy
	Converting Energy Back to Power
	Nonlinear Model

	Problem Solving Approaches
	Concave Maximum Energy Functions
	General Piecewise Linear Maximum Energy Functions

	Benchmark Instances
	Individual EVS-SOC Instances
	Rolling Horizon Benchmark Scenarios

	Experimental Results
	EVS-SOC-LIN
	EVS-SOC-GLIN
	Comparison of EVS-SOC-LIN and EVS-SOC-GLIN
	Model Based Predictive Control Simulations

	Conclusions
	
	
	References

