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Abstract: As the time spent by people indoors continues to significantly increase, much attention has
been paid to indoor air quality. While many IAQ studies have been conducted through field measure-
ments, the use of data-driven techniques such as machine learning has been increasingly used for the
prediction of indoor air pollutants. For the present study, the concentrations of indoor air pollutants
such as CO2, PM2.5, and VOCs in child daycare centers were predicted by using an artificial neural
network model with three different training algorithms including Levenberg–Marquardt, Bayesian
regularization, and Broyden–Fletcher–Goldfarb–Shanno quasi-Newton methods. For training and
validation, data of indoor pollutants measured in child daycare facilities over a 1-month period were
used. The results showed all the models produced a good performance for the prediction of indoor
pollutants compared with the measured data. Among the models, the prediction by the LM model
met the acceptable criteria of ASHRAE guideline 14 under all conditions. It was observed that the
prediction performance decreased as the number of hidden layers increased. Moreover, the prediction
performance was differed by the type of indoor pollutant. This was caused by patterns observed in
the measured data. Considering the outcomes of the study, better prediction results can be obtained
through the selection of suitable prediction models for time series data as well as the adjustment of
training algorithms.

Keywords: indoor air pollutants; ANN model; training algorithm; child daycare center

1. Introduction

People generally spend most of their time in buildings, with this time rapidly increas-
ing due to the situation caused by the SARS-CoV-2 virus [1,2]. Thus, much attention has
been paid to the improvement of indoor environmental quality including indoor air quality,
thermal parameters, etc. [3–5]. Normally, the quality of indoor air is highly influenced by
outdoor air pollution and other indoor sources [1,6]. Specifically, indoor sources originating
from building materials, appliances, human activities, etc. have produced indoor air con-
taminants [7–9]. Regarding indoor pollutants, many studies have performed investigations
aiming to reduce the concentration or prevent their occurrence [10–15]. While most studies
have focused on indoor pollutants in residential and non-residential buildings, people
have started to notice the importance of indoor pollutants in certain facilities such as child
daycare centers.

Several studies have observed severe indoor pollutants in child daycare centers
through field measurements. According to the study of Oh et al., high levels of PM2.5
and PM10 were found in ten child daycare centers in South Korea, which were highly
influenced by traffic conditions and vehicles through various openings [16]. In the case
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of child daycare centers in Paris, Roda et al. measured biological and chemical pollu-
tants [17]. In their findings, some chemical pollutants were above the acceptable indoor
levels in 28 child daycare centers. A similar result was observed in the findings of a study
by Hwang et al. [18]. Both biological and chemical pollutants were measured in 25 child
daycare centers. Specifically, the concentration of VOCs was the highest among the mea-
surements in their data. In the field measurements performed by Madureira et al., severe
concentrations of biological pollutants were found in nine child daycare centers [19]. Other
studies observed high concentrations of indoor pollutants through their measurements in
various child daycare centers [20–23].

To improve indoor air quality and prevent indoor pollution, the prediction of concen-
trations of various indoor pollutants affecting occupants’ health is essential. Even though
severe indoor air quality conditions in child daycare centers were reported, most IAQ stud-
ies have focused on indoor pollutants in residential or commercial buildings. In addition,
most of these studies collected data on indoor pollutants through measurements, which
is time-consuming and costly. Another technique for predicting indoor air pollutants is
the use of simulations. In a study by Heibat et al., the researchers used a coupling method
including CONTAM and WUFI for the prediction of CO2, PM2.5, and VOCs [24]. However,
the accuracy of the simulation results can be highly dependent on the user’s experience.

Recently, a prediction made by utilizing advanced computer applications was signifi-
cantly recognized with the development of data-driven methods such as machine learning
techniques [19,20]. Machine learning techniques have been used for extracting data patterns
and quantifying the impacts of various design parameters [25]. The data-driven methods
have been widely used in applications of engineering, medicine, and economics. Among
various data-driven methods, artificial neural network (ANN) models, support vector
machine regression (SVR), random forest, XGBoost, etc. have been applied for various
purposes such as energy consumption predictions, thermal performance quantification,
mechanical system diagnostics, and so on [26–30]. For the present study, the ANN model
was chosen to predict indoor air quality in a child daycare center due to its high prediction
accuracy [27]. According to several studies, the ANN model showed the best performance
among the machine learning methods [31–33]. In general, different learning algorithms
were used with a regular ANN model. However, the prediction results can become unstable
caused by fluctuations in these training algorithms [34]. To provide more reliable prediction
results, the performance of several training algorithms was tested. While the predictions
made by using machine learning techniques have been widely employed in various fields,
there were few studies available for indoor air pollutant prediction. In addition, the pre-
dictive performance by different training algorithms was rarely investigated. This study
presents the difference in the predictive performance of indoor air pollutants by applying
different training algorithms in the ANN model.

2. Machine Learning Applications for the Prediction of Indoor Air Quality

For the prediction of indoor air quality, Jeong et al. predicted indoor environmental
parameters such as temperature, humidity, and CO2 by using a machine learning tech-
nique [35]. By comparing the collected data, a highly correlated relationship between the
data and prediction results was achieved. In addition, the IAQ management was con-
ducted remotely by using IoT systems [36]. Through cloud data analysis, the comparison of
measurement data with simulations was implemented to improve the mechanical exhaust
systems. Li et al. used a machine learning method such as the random forest algorithm
to predict PM2.5 concentrations in residential buildings [37]. In their study, the random
forest model showed excellent performance for the prediction of PM2.5 concentration lev-
els. Kallio et al. investigated the performance of four machine learning methods: Ridge
regression, decision tree, random forest, and multilayer perceptron to predict indoor CO2
concentrations [38]. The abovementioned machine learning models showed a better perfor-
mance than statistical methods regarding indoor CO2 concentration predictions. Another
study by Taheri et al. performed comparisons of several machine learning algorithms
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including support vector machines, AdaBoost, random forest, gradient boosting, logistic
regression, and multilayer perceptron [39]. In addition, Sassi et al. utilized a deep learning
technique for data analysis and augmented reality (AR) to predict indoor air quality based
on the monitoring by an IoT system [40].

Regarding the ANN model application, Saad et al. proposed an IAQ monitoring
system to identify sources affecting IAQ levels. By utilizing ANN techniques, their study
recognized the patterns of measured data and proved that the proposed system was
able to measure indoor air quality levels. In addition, the sources affecting indoor air
quality such as ambient air, presence of chemicals and fragrances, food and beverages,
and human activity were classified successfully [41]. In the case of the study performed
by Putra et al., ANN models were used to predict indoor air quality with the data, which
were measured 8 h a day for several months. For this study, the authors utilized the
Levenberg–Marquardt training method and proved that this training method produced
good prediction results [42]. Moreover, Dai et al. constructed an ANN model by using
indoor CO2 concentration data sets in a residential building to predict indoor air quality
with ventilation rates [43]. About 80% of the overall accuracy levels by the constructed ANN
model were achieved and the authors proved that the indoor CO2 concentration predicted
by the ANN model was highly influenced by locations and outdoor air temperatures.
According to the study of Egala et al., a practical approach was presented to train ANN
models regarding the prediction of indoor CO2 concentration [44]. By training the model
with collected data for a month, computational errors were reduced and high predictive
accuracy was achieved. To control HVAC (Heating, ventilation, and air conditioning)
systems for improving indoor air quality, Tagliabue et al. used the ANN model [33].
Moreover, Amuthadevial implemented machine learning methods including nonlinear
ANN models, statistical multi-level regression, neural purge, and deep learning short
and long-term memory (DL-LSTM) to predict concentration levels of SO2, CO, NOx, and
O3 [32]. Regarding indoor PM2.5, PM10, and NO2 concentrations, Zhang et al. also used
several machine learning techniques such as multiple linear regression (MLR), time series
regression (TSR), and ANN models [31]. In their study, the ANN model showed the best
performance among the machine learning methods.

3. Methodology

Figure 1 presents the research process for the present study. Due to high concentrations
of CO2, PM2.5, and VOCs in child daycare centers, the measurement data of CO2, PM2.5,
and volatile organic compounds (VOCs) provided by the Big Data Environment Platform
were chosen and these were converted to input data for the ANN model. By using the input
data, the concentrations of CO2, PM2.5, and VOCs were predicted with different training
algorithms of the ANN model. The prediction results of different training algorithms were
evaluated by CV (RMSE) (coefficient of variation of the root mean square error) and MBE
(mean bias error). In addition, the suitability of each model was assessed by R2 (coefficient
of determination).

3.1. Collection of Training Data Set

The dataset used for the present study was composed of the measurement data pro-
vided by the Big Data Environment Platform [45]. For input data, major indoor pollutants
such as CO2, PM2.5, and VOCs were measured at 5-min intervals in the child daycare
facilities during the month of May 2021. The data consisted of 8929 sets for each pollutant
of which 80% of these data were used for training and 20% for testing.
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Figure 1. Schematic diagram of the process of predicting indoor air pollution concentrations.

3.2. Indoor Pollutant Concentration Prediction Model

The concentration of indoor pollutants was predicted by using the learning neural
network models in the Neural Networks Toolbox of MATLAB [46]. A data multilayer neural
network training shows excellent performance when this is optimized by using the slope
of neural network performance against neural network weights and the Jacoby matrix of a
neural network error. The slope and Jacoby matrix were calculated using the feed-forward
back-propagation algorithms. As commonly used in ANN models, feed-forward networks
can produce output data quickly avoiding delays [47]. In addition, the feed-forward back-
propagation algorithms perform the iteration of updating weights and biases values of
network parameters and back-propagate the error for training ANN models [34,48]. For the
present study, three different feed-forward back-propagation algorithms were used, which
were Levenberg–Marquardt (LM), Bayesian regularization (BR), and Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton (BFG). The performance for the prediction of
indoor air pollution was evaluated.

The feed-forward neural network model is generally composed of an input layer, a
hidden layer, and an output layer [49]. The hidden layer forms the structure of the ANN
and the neuron exists in each layer. Since the number of neurons in the hidden layers
mainly influences the calculation prediction and time, the number of neurons was fixed
as 20. When the number of the hidden layers was changed to 1, 3, and 5, the predicted
performance was compared (Figure 2). As one of the learning parameters, the number of
epochs was 100. The total number of data were 8927, in which 80% and 20% of datasets
were used for training and testing, respectively. Detailed conditions are summarized in
Table 1.
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Table 1. Training parameters.

Parameter Value

Number of hidden layers 1, 3, 5
Number of neurons 20

Epochs 100

Data
Training 7142 (80%)
Testing 1785 (20%)

For input data, the measurement date and time, indoor thermal parameters such as
temperature and humidity, and the prediction results of each pollutant fed back from the
output layers were used. In the hidden layer, measurement data at the 5-min interval
were received as an input signal from the input layer. The feed-forward neural network
operations were performed through the internal neurons. The output layer predicted the
indoor air pollutant concentrations after 5-min of the input signal point based on the hidden
layer calculation result.

By using CV(RMSE) and MBE, the performance evaluation indicators of the predictive
model were validated. CV(RMSE) refers to the degree of scattering of estimated values
in consideration of variance, and MBE is an error analysis index that identifies errors
by tracking how close estimates form clusters through data bias. The models will be
declared to be calibrated if they are within the acceptable values of ASHRAE Guideline 14
(Table 2) [50]. The equation for obtaining CV(RMSE) and MBE are as follows.

MBE = n
∑(yi − ŷl)/[(n − p)× y]·100 (1)

Cv(RMSE) = 100·[∑ (yi − yl)
2/(n − p)]

1/2
/y, (2)

where n is the number of data points, p is the number of parameters, yi is the utility data
used for calibration, ŷi is the simulation predicted data, and y is the arithmetic mean of
the sample of n observations. In addition, the suitability of the model was evaluated by
using R2.

Table 2. Acceptable Calibration Tolerances in building energy performance prediction.

Calibration Type Index ASHRAE
Guideline 14 [50]

Monthly MBE_monthly ±5%
CvRMSE_monthly 15%

Hourly MBE_hourly ±10%
CvRMSE_hourly 30%

4. Results

For the present study, the concentrations of CO2, PM2.5, and VOCs in child daycare
centers were predicted by using three different feed-forward back-propagation algorithms
including LM, BR, and BGF. The performance for the prediction of indoor air pollution was
evaluated by CV(RMSE) and MBE. Moreover, the suitability of each model was assessed
by R2.

4.1. CO2

The prediction results of CO2 are summarized in Figure 3. The indoor CO2 concentra-
tion is greatly affected by human breathing. In addition, it can be seen that the concentration
is altered by the number and activities of occupants. As shown in all graphs in Figure 3, the
CO2 concentration gradually increased to 1500–2000 ppm and then, decreased to 500 ppm.
This trend regarding the CO2 concentration repeated during the measurement period.
In addition, a similar trend was observed in all prediction methods with three different
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training algorithms. Moreover, the values of training and testing predicted by the ANN
model were close to the measurement data.
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Table 3 presents CV(RMSE) and MBE of CO2 prediction results. The CV(RMSE) of
the LM model ranges from 4.04% to 4.47% and shows a low degree of dispersion under
all conditions. The MBE ranges from 7.53% to 8.56%, which shows an excellent predictive
performance due to bias reduction. For the BR model, CV(RMSE) and MBE show ranges
of 4.06–4.21% and 7.53–8.06%, respectively. This also shows good predictive performance
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satisfying the acceptable range of the ASHRAE guideline 14. For both the LM model and
BR model, the values of CV(RMSE) and MBE increased as the number of hidden layers
increased. However, a slight increase in those values was observed. In the case of the BFG
model, a somewhat larger increase in the CV(RMSE) and MBE was observed than that
predicted by using the LM model and BR model. Moreover, the MBE for the BFG model
with more than three hidden layers could not satisfy the acceptance criteria of the ASHRAE
guidelines 14.

Table 3. CV(RMSE) and MBE of CO2 Concentration Prediction Result.

Training
Algorithm

Hidden Layers-1 Hidden Layers-3 Hidden Layers-5

CV(RMSE)
(%) MBE (%) CV(RMSE)

(%) MBE (%) CV(RMSE)
(%) MBE (%)

LM 4.04 7.53 4.06 8.03 4.47 8.56

BR 4.06 7.53 4.15 7.98 4.21 8.06

BFG 5.26 9.86 7.65 10.16 12.54 10.86

Figure 4 presents the R2 of the prediction results. As shown, the high suitability values
of 0.9999 and 0.9998 were observed for both the LM model and BR model due to a low
degree of dispersion. In addition, a better prediction result was shown when the number
of the hidden layer was one. Because of a large degree of dispersion generated by the
BFG model, R2 of the BFG model was large and the suitability was low. Specifically, R2

measured 0.9393 when the number of the hidden layer was five.

4.2. PM2.5

Figure 5 shows the prediction results of the indoor PM2.5 concentration. For all models,
PM2.5 concentration is largely increased to about 160 µg/m3 and a slight difference was
observed in the training. In the prediction phase, the PM2.5 concentration is maintained
under 30–40 µg/m3, which is close to the measurement data.

The CV(RMSE) and MBE of PM2.5 concentration are shown in Table 4. For both LM
and BR models, the range of CV(RMSE) and MBE are within the acceptable criteria of
the ASHRAE guidelines 14 in all three hidden layers. Between the two models, the best
performance of the prediction is observed when the BR model was used. However, in
the case of the BFG model, the prediction performance decreased as the number of the
hidden layers increased, even though the range of CV(RMSE) and MBE is within the
acceptable criteria of the ASHRAE guidelines 14 when the hidden layer is one. Moreover,
the CV(RMSE) is 27.90% when the number of the hidden layer is five for the BFG model.
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Table 4. CV(RMSE) and MBE of PM2.5 concentration prediction result.

Training
Algorithm

Hidden Layers-1 Hidden Layers-3 Hidden Layers-5

CV(RMSE)
(%) MBE (%) CV(RMSE)

(%) MBE (%) CV(RMSE)
(%) MBE (%)

LM 13.24 4.44 13.76 5.17 13.73 5.49
BR 13.17 3.62 13.27 3.91 13.31 4.25

BFG 13.79 5.66 18.60 6.52 27.90 6.69

For the R2 of the PM2.5 concentration prediction, high suitability for both LM and BR
models is achieved (Figure 6). When the number of the hidden layers is one, the R2 for the
LM model and BR model are 0.9994 and 0.9998, respectively. In the case of the BFG model,
the R2 is 0.9984 when the number of the hidden layer is one, which shows high suitability.
However, the R2 is decreased to 0.9734 when the number of the hidden layers is increased.

4.3. VOCs

As shown in Figure 7, the indoor VOCs concentration prediction results are compared
with the measurement data. In the training phase, the VOCs concentration is significantly
increased to about 16,000 µg/m3 and all the models show the difference in the VOCs
concentration. The VOCs concentration for all the models is close to the measurement data
in the prediction phase.

Table 5 summarizes the CV(RMSE) and MBE of the prediction results. The LM model
shows the lowest CV(RMSE) among the models and the MBE of the LM model is only
within the acceptable range of the ASHRAE guidelines 14. While the CV(RMSE) and MBE
for the BR model can meet the acceptable criteria of the ASHRAE guidelines 14 when the
number of the hidden layer was one, the CV(RMSE) and MBE cannot satisfy them when
the number of the hidden layers is increased. A similar trend was observed for the BFG
model. Specifically, the CV(RMSE) is increased to 26.52% when the number of the hidden
layers is increased to 5.
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Table 5. CV(RMSE) and MBE of VOCs concentration prediction result.

Training
Algorithm

Hidden Layers-1 Hidden Layers-3 Hidden Layers-5

CV(RMSE)
(%) MBE (%) CV(RMSE)

(%) MBE (%) CV(RMSE)
(%) MBE (%)

LM 10.81 8.89 10.98 9.35 11.12 8.96

BR 11.06 9.10 14.11 10.19 15.65 10.37

BFG 14.57 10.68 14.58 10.79 26.52 11.25

Figure 8 presents the R2 of the VOCs prediction results. When the number of the
hidden layer is one, the LM model shows the highest suitability among the models. When
the number of the hidden layer is increased to 5, the R2 for the LM model is 0.9984. While
the BR model shows a relatively lower R2 (0.9998) than that of the LM model, it is highly
suitable. When the number of the hidden layers is increased, the R2 for the BR model is
ranging from 0.9946 to 0.9966. In the case of the BFG model, the R2 is 0.9974 when the
number of the hidden layer is one. However, it is decreased to 0.9445 with the increase in
the number of the hidden layers.
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5. Discussion

For the present study, the concentration of CO2, PM2.5, and VOCs was predicted using
the feed-forward neural network model with three different back-propagation training
algorithms, which were LM, BR, and BFG. Among the models, the LM model showed the
best performance for the prediction of those indoor pollutants and the obtained results can
meet the acceptable criteria of the ASHRAE guidelines 14. While the prediction for CO2 and
PM2.5 by the BR model showed a good performance, the performance was decreased as the
number of the hidden layers was increased in the case of VOCs concentration prediction.
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The BFG model showed the lowest performance for the prediction of indoor pollutants and
it was decreased largely as with the increase in the number of the hidden layers.

It was commonly observed that the prediction performance decreased as the number
of the hidden layers increased. As shown, the number of the hidden layers in the ANN
model can highly affect the prediction results. In addition, over-fitting data can be produced
as the number of the hidden layers is increased [51]. Thus, the choice of the number of the
hidden layers is one of the most important variables in the ANN model [52]. According
to the study of Yeon et al., the number of hidden layers can be determined, when the
CV(RMSE) is lowest [53]. In their study, the number of hidden layers was tested from
one to three layers and one layer was selected based on the lowest CV(RMSE) value. This
was similarly observed in the present study. Bui et al. also chose one hidden layer for
identifying the impact of each building parameter on the energy performance [51]. In the
case of the ANN model performed by Cho and Moon, they proved that the structured
model with two hidden layers was suitable to predict the concentrations of CO2, PM10,
and PM2.5 in a school building [54]. As can be shown, the optimized number of hidden
layers can be different based on the structured ANN model and it is carefully chosen by
assessment of the prediction performance.

Moreover, the prediction performance differed based on the type of indoor pollutant.
Based on the CV(RMSE), all models showed the best performance for the prediction
of CO2 concentration, while the poorest performance was shown for the prediction of
PM2.5 concentration. This can be caused by the difference in data patterns. In the case of
the CO2, the measured CO2 concentration showed a regular pattern. For the measured
concentration of PM2.5 and VOCs, the data showed irregular patterns due to the outdoor
pollutants through building openings. This can affect the prediction results in the training
phase causing a low degree of dispersion. While these irregular data patterns caused low
suitability, the high fitness of the R2 (0.99) was achieved for all the models when the number
of the hidden layer was one.

6. Conclusions

As the amount of time spent by people indoors is significantly increasing, much
attention has been paid to the indoor air quality in buildings. Many studies have investi-
gated indoor air pollutants to improve the IAQ. While most investigations were performed
in residential or commercial buildings, a few studies have focused on the IAQ in child
daycare centers in which, a high concentration of indoor air pollutants was reported. More-
over, investigations of indoor air pollutants, in general, were conducted through field
measurements which are cost-intensive and time-consuming.

For the present study, the concentrations of indoor air pollutants such as CO2, PM2.5,
and VOCs in child daycare centers were predicted by using a feed-forward neural network
model with three different back-propagation training algorithms such as LM, BR, and BFG.
For the training and validation, the data of the indoor pollutants measured in child daycare
facilities for a month were used. The number of hidden layers in each model was set at one,
three, and five, and other training parameters were the same for all models.

The results showed that all the models produced a good performance for the pre-
diction of indoor pollutants compared with the measured data. Among the models, the
prediction by the LM model met the acceptable criteria of the ASHRAE guideline 14 under
all conditions. While the CO2 and PM2.5 concentrations predicted by the BR model satisfied
the acceptance criteria of the ASHRAE guideline 14, the predictive performance decreased,
when the number of the hidden layers increased. The BFG model showed the poorest
performance for the prediction of indoor pollutants among the models under all conditions.
Moreover, a large difference between the prediction and the measured data was observed
by the BFG model when the number of the hidden layers increased.

While the predictions by using machine learning techniques have been widely used in
various fields, there were few studies available for indoor air pollutant prediction. In addi-
tion, the predictive performance by different training algorithms was rarely investigated.
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This study presented the difference in the predictive performance of indoor air pollutants
by applying different training algorithms in the ANN model. Considering the outcomes of
the study, better prediction results can be obtained through the proper selection of training
algorithms for time series data. Furthermore, the outcome of the present study can be used
as information for more sophisticated machine learning applications for improving indoor
air quality and related predictions in child daycare centers. For further studies, other indoor
pollutants such as CO and PM10, etc. will be investigated for improving indoor air quality
in child daycare centers.
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