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Abstract: Non-premixed swirl combustion has been widely used in pieces of industrial combustion
equipment such as industrial boilers, furnaces, and certain specific gas turbine combustors. In
recent years, the combustion instability of non-premixed swirl flames has begun receiving attention,
yet there is still a lack of related research in academia. Therefore, in this study, we conducted
experimental research on a swirl stabilized gas flame model combustor and studied the heat release
response characteristics of the swirl combustor through the flame transfer function. Firstly, the flame
transfer function (FTF) was measured under different inlet velocities and equivalence ratios, and the
experimental results showed that the FTF gain curve of the non-premixed swirl flame exhibited a
significant “bimodal” shape, with the gain peaks located around 230 Hz and 330 Hz, respectively.
Secondly, two oscillation modes of the flame near the two gain peaks were identified (the acoustic
induced vortex mode Mv and the thermoacoustic oscillation mode Ma), which have not been reported
in previous studies on swirl non-premixed flames. In addition, we comprehensively analyzed the
flame pulsation characteristics under the two oscillation modes. Finally, the coupling degrees between
velocity fluctuations, fuel pressure fluctuations, and heat release fluctuations were analyzed using the
Rayleigh Index (RI), and it was found that in the acoustic-induced vortex mode, a complete feedback
loop was not formed between the combustor and the fuel pipeline, which was the main reason for
the significant difference in the pressure fluctuation amplitude near 230 Hz and 330 Hz.

Keywords: combustion instability; non-premixed combustion; flame transfer function; swirling flame

1. Introduction

Combustion instability poses a significant and challenging issue in the design of
low-emission engine combustors and advanced military engine afterburner and ramjet
combustors [1]. During their operation, these combustors often experience oscillating
combustion under specific operating conditions. Pronounced pressure fluctuations can
result in an exceedingly unstable combustion state, giving rise to severe mechanical vi-
brations and noise. Combustion instability can lead to a flameout within the combustor,
potentially causing damage to engine components, reducing their operational lifespan, and
exacerbating pollutant emissions, among other unfavorable consequences.

At present, the specific mechanisms underlying combustion instability are not fully
understood, but there is a widely accepted consensus in the academic community that
the coupling between the acoustic modes of the combustor and oscillations in the heat
release rate is the primary cause of combustion instability [2]. This coupling is particularly
prominent under lean fuel conditions, where the flame is close to its extinction limit, making
it more susceptible to inlet disturbances. From the perspective of interaction processes, the
interaction between the flame and the vortex behind the flame stabilizer [3,4], inter-flame
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collisions [5], and the interaction between the flame and sound waves [6,7] all have a
significant impact on the stability of a combustion system. Extensive experimental and
numerical simulation studies [8–11] have been conducted by researchers both domestically
and internationally, aiming to deepen the understanding of sound wave and heat release
behavior from the perspective of physical coupling mechanisms.

In addition, unique research methods have been developed in the field of combustion
instability, such as the classical flame transfer function (FTF) analysis method. FTFs are
widely used for characterizing the dynamic characteristics of flames. An FTF allows for the
analysis of combustion stability in the design process and facilitates the optimization of a
combustion system’s structure to enhance stability margins. Extensive experimental studies
have been carried out by Palies [12] et al. to investigate the influence of swirler structure
and swirl number on flame response. Furthermore, FTFs can be further incorporated into
acoustic calculations, such as low-order network models (LONM) [13–15] or Helmholtz
solvers [16,17], to obtain detailed thermoacoustic stability data by including them as a
source term representing non-steady heat release.

Extensive experimental and numerical research has been conducted by scholars both
domestically and internationally on the use of FTFs to analyze combustion Instability. In
terms of experimental studies, Eirik et al. [18]. investigated the flame response characteris-
tics under different upstream bluff body configurations. They discovered that by arranging
a series of small-diameter cylinders upstream of the bluff body, the gain and phase of the
FTF at the target frequency can be adjusted, providing a method for suppressing ther-
moacoustic instability. In a study conducted by Liu et al. [19], the nonlinear response
characteristics of low-swirl CH4/air premixed flames toward acoustic excitation were
investigated. The research findings indicate that the extreme values of the flame transfer
function (FTF) gain for low-swirl flames are influenced by the coexistence or difference of
axial and tangential velocities. Guoqong et al. [20] measured the FTF of swirling flames
under various conditions, including different flow rates, fuel types, equivalence ratios,
and combustor structures. It was observed that the gain and phase of the FTF are not
independent of each other. The phase derivatives and gain for different flame types remain
consistent over a wide range of acoustic frequencies, and there exists a linear relationship
between the peak frequency of the gain and the phase derivative. Yoon et al. [21] examined
the impact of fuel composition on the FTF of partially premixed combustors. The results
suggest that an increase in H2 content leads to changes in a fuel’s chemical properties, re-
sulting in accelerated chemical reaction rates and flame propagation speeds. Consequently,
a flame exhibits greater stability, leading to a decrease in FTF gain. Compared to experimen-
tal measurements, numerical simulations can provide more comprehensive flow field data,
enabling the study of flame response characteristics at smaller scales. Hermeth et al. [22]
conducted research on lean swirling combustors using a large eddy simulation (LES)
methodology. The study revealed that, under attachment conditions, a flame stabilizes on
the bluff body upstream of the recirculation zone, while under detachment conditions, the
flame pulsation behavior is mainly controlled by the precessing vortex core (PVC), leading
to significant changes in the flame transfer function (FTF) gain and phase. Mejia et al. [23]
investigated the influence of flame-holder temperature on the FTF of laminar flames. It
was found that the flame-holder temperature can alter flame’s base position and flow
characteristics, thereby causing significant changes in the FTF by Kaiser et al. [24] created
direct numerical simulations (DNS) to study the FTF of laminar flames at different cylinder
bluff body rotation speeds. The study revealed that the rotation of the bluff body results
in differences in the phase lag between the upper and lower branches of the flame, which
disturbs the flame heat release and leads to significant differences in the FTF. Therefore,
adjusting the bluff body rotation speed can regulate the phase lag difference between the
flame branches. Furthermore, some researchers [25–27] have employed a combination of
large eddy simulation (LES) and system identification (SI) methods to predict the system
FTF. This approach allows for obtaining flame response characteristics through a single
computational fluid dynamics (CFD) calculation, thus saving computational resources. In
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recent years, some scholars have also attempted to derive analytical solutions for FTFs
based on physical equations, such as the Distributed Time Lag (DTL) model [28,29] and the
G-equation model [30–32].

In recent years, most studies on thermoacoustic instability have focused on premixed
flames of gaseous fuels such as methane and ammonia, while there has been less research
on non-premixed flames [14,33–37], such as those found in gas turbine combustors. How-
ever, in recent years, there has been a growing interest in investigating the oscillation
characteristics of non-premixed flames.

Some scholars have conducted relevant research, but only a few studies have investi-
gated the dynamic behavior of non-premixed swirl flames, and there are few reports on
experimental measurements of their flame response characteristics. Therefore, the aim of
this study was to experimentally investigate the unsteady heat release response character-
istics of non-premixed swirl flames. The flame transfer function (FTF) of non-premixed
swirling flames was measured under different operating conditions, resulting in a bimodal
shape of the gain curve. By combining dynamic pressure data and analysis of instanta-
neous flame images, we have identified two physical mechanisms that contribute to the
formation of extremum points in the gain curve. This novel finding has not been reported
in previous studies. This research will contribute to a deeper understanding of the dy-
namic characteristics of swirling flames and provide guidance for the stable operation of
combustion systems.

2. Experimental Setup and Measurement Layout
2.1. Experimental Setup

The overall layout of the experimental section is depicted in Figure 1. The experimental
setup comprised an intake pipeline, a fuel supply system, a combustor, and a synchronous
measurement system. Propane gas was employed as the fuel, and the experiment was
conducted under ambient temperature and pressure conditions. The air, after passing
through an upstream honeycomb flow straightener, entered the combustor through an
axially swirled flow injector. The fuel, on the other hand, was supplied through the central
tube of the swirler and injected into the combustor through jet orifices to allow it to co-
mingle and react with the air. The diameter of the fuel center tube was 12 mm, while the
inner diameter of the air pipe outer wall was 50 mm. The cross-section of the combustor
was square-shaped, with a side length of l = 100 mm and a length of a = 300 mm. Following
treatment, the high-temperature combustion gas was discharged, with the outlet pressure
equal to the ambient pressure. A pair of loudspeakers was arranged upstream of the
intake pipeline to apply acoustic excitation of a specific amplitude and frequency to the
incoming flow.
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Figure 2 presents a structural sketch of the swirler utilized in this experiment, in which
a Venturi tube is positioned at the head of the combustor to prevent carbon accumulation.
The swirler, referred to as a single-stage axial swirler, possesses an inner diameter of 20 mm
and an outer diameter of 22.5 mm. The blades were installed at an angle of 43◦. The swirl
number, calculated using the following formula [38], yields a value of 0.693:

S =
2
3

[
1− (Rh/Rn)

3

1− (Rh/Rn)
2

]
tan ϕ (1)
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In this equation, Rh represents the outer diameter of the swirler blade, Rn represents
the inner diameter of the swirler blade, and θ represents the blade angle.

2.2. Measurement System

To measure the flame transfer function of the model combustor, it was necessary to
synchronously collect velocity fluctuation and heat release rate fluctuation information
through experiments. Velocity fluctuation is measured using the two-microphone [39]
method, with two sound pressure sensors (Beijing Shengwang Company, Beijing, China,
MBA416, sensitivity: 45 mV/Pa) arranged 50 mm upstream from the swirler installation
plane, with a separation distance of 30 mm between the two sensors. To ensure measure-
ment accuracy, the semi-infinite length method was employed to measure sound pressure
fluctuations and eliminate the influence of sound wave reflection within the pipeline. The
average intake velocity was measured using a thermal anemometer. The propane flow rate
was controlled using a mass flow controller (Asert Instrumrnts, Beijing, China, AST10-HB,
range: 50 SLM/min, uncertainty: ≤0.35% F.S.). Pressure fluctuation inside the combustor
and flue pressure fluctuation upstream of the fuel pipeline were determined using dy-
namic pressure sensors (PCB Piezotronics, New York, NY, USA, PCB 113B28, sensitivity:
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15 mV/kPa, uncertainty: ≤0.3% F.S.). Heat release rate fluctuation, which can be used to
determine the combustion state, was indirectly measured by capturing the fluorescence
intensity of CH* chemical species of the flame [40]. In this study, a bandpass filter with
a wavelength of 435 nm ± 5 nm, combined with a photodetector (Hamamatsu photon,
Shizuoka, Japan, CH348), was used to capture the CH* chemical light intensity signal, with
a detector uncertainty of ≤0.5% F.S. Flame images were captured using the high-speed
camera (Phantom, CA, USA, VEO 1010) with an exposure time of 19 ms and an exposure
rate of 5000 frames/s. All the dynamic signals mentioned above were transmitted to the NI
PXle-1092 data acquisition PXI chassis developed by National Instruments Corporation
(Austin, TX, USA) to achieve synchronous acquisition, with a sampling rate of 10 kHz.
In addition, to minimize random errors, when measuring the flame transfer function in
the combustor, at least three experiments were repeated for each operating condition, and
some outliers were manually removed. The results presented in the paper are the average
values of repeated experimental results.

To ensure the accuracy of the two microphone measurements, a comparative validation
of the velocity fluctuation measurements was conducted under cold conditions using a hot
wire anemometer. The hot wire anemometer used in this study was the CTA-04 (Hanghua
Technology, Dalian, China) which has a frequency response range of 50 kHz–450 kHz.
During the measurements, different frequency acoustic excitations were applied through a
speaker. On the one hand, the hot wire anemometer probe was fixed at the outlet of the
blade channel using a fixture to measure the velocity fluctuation at the swirler outlet (the
hot wire measurement results and their spectra are shown in Figure 3a,b). On the other
hand, the sound pressure fluctuation signals were obtained using the two pressure sensors
located upstream of the combustor, and the velocity fluctuation amplitude was calculated
using the two-microphone method (as shown in Figure 3c). The measured results from
both methods were compared to validate the accuracy of the two-microphone velocity
fluctuation measurements. In Figure 3, it can be observed that the hot wire spectrum and
the spectrum calculated using the two-microphone method are almost identical, although
the hot wire spectrum has a certain degree of background noise due to the influence of
turbulent fluctuations.

Figure 4 presents a comparison between the hot wire and two-microphone measure-
ments (normalized) under different excitation frequencies (corresponding to an excitation
frequency range of 15–450 Hz, with a 15 Hz interval) at an intake velocity of 4 m/s and a
speaker excitation power of 25 W. It can be observed that at different excitation frequencies,
the two microphone measurements closely resemble the hot wire measurements in both
trend and amplitude. This validates the accuracy of the dual-microphone method in mea-
suring velocity fluctuation and demonstrates its ability to accurately capture the velocity
fluctuation response at the swirler outlet under acoustic excitation.

The flame transfer function of non-premixed swirling flames was measured in this
study under different inlet velocities (3.8 m/s, 4 m/s, and 4.2 m/s) and different equivalence
ratios (0.248, 0.273, 0.298, and 0.323). Under the aforementioned operating conditions, the
combustor maintained a stable burning state. To measure the flame transfer function,
the velocity fluctuation characteristics of the combustor were first measured under cold
conditions at different excitation powers and frequencies (as shown in Figure 5). In Figure 5,
different colors represent different excitation power levels. Specific power values can be
obtained from the Figure. Subsequently, this study focused on investigating the inlet
disturbance level of u’/u = 0.1 (±0.01) and the disturbance generated at different excitation
frequencies upstream of the combustor, while also measuring the heat release response
inside the combustor.
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3. Results
3.1. FTF Results

Acoustic excitation in the frequency range of 50–370 Hz was applied to the combustor
through speakers arranged upstream in the intake duct, with a specific velocity fluctuation
amplitude of u′/u = 0.1 (±0.01), for further analysis. Figure 6 presents the flame transfer
function (FTF) measurements for different equivalence ratios (Φ = 0.248, 0.273, 0.298,
and 0.323) at an inlet velocity of 3.8 m/s. From the gain curve, it is evident that all the
equivalence ratios exhibit distinct bimodal characteristics, with two peak gain values
around 230 Hz and 330 Hz, respectively. The gain peak near 230 Hz gradually shifts
upward with increasing equivalence ratios, while the gain peak around 330 Hz remains
relatively stable, indicating the possibility of two distinct oscillation modes associated
with these gain peaks. An examination of the phase curve reveals minimal variation in
the FTF phase for different equivalence ratios. This phenomenon can be attributed to the
dominant convective time delay in non-premixed combustion systems, where changes in
equivalence ratios have negligible effects on the convective time delay when the intake
velocity remains constant. Furthermore, sharp spikes in the phase curve can be observed
near 230 Hz, 290 Hz, and 330 Hz, indicating abrupt phase shifts at these frequencies. These
transitions lead to variations in the coupling between velocity fluctuation and heat release
rate fluctuation and consequently contribute to local extremum values in the gain curve.
By performing first-order fitting using the equation ∆Φ = 2πfτ, the estimated time delay of
the system for different equivalence ratios was determined to be approximately 30.62 ms.

Figure 7 presents the flame transfer function (FTF) measurements of the combustor for
an equivalence ratio of 0.248 at different inlet velocities. From the gain perspective, the gain
curves still exhibit prominent bimodal characteristics, and there is little difference in the
measurement results among different inlet velocities. This is because the thermal release
level of the combustor primarily depends on the fuel equivalence ratio, with the inlet veloc-
ity having a minor influence. Furthermore, increasing the inlet velocity causes the peak gain
values to shift towards higher frequencies. When the inlet velocity is increased to 4.2 m/s,
the peak gain values move from around 230 Hz/330 Hz to approximately 240 Hz/340 Hz.
From the phase curves, it can be observed that the inlet velocity significantly affects the
convective time delay, resulting in noticeable differences between the phase curves for
different inlet velocities. With an increasing inlet velocity, the time delay (τ) decreases
successively: 30.62 ms, 27.48 ms, and 22.56 ms.
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3.2. Flame Response Analysis

Compared to typical FTFs of other non-premixed flames [14,41], the FTF gain curves
under different operating conditions in this study also exhibit a distinct bimodal shape.
Moreover, the behavior of the two peak values varies with changes in the equivalence ratio.
Specifically, under excitation at 230 Hz, the gain significantly increases with an increasing
equivalence ratio. Conversely, under excitation at 330 Hz, the gain shows less variation with
changes in the equivalence ratio, indicating the possibility of two distinct flame oscillation
modes corresponding to these two peak values. In the following sections, the flame
oscillation characteristics corresponding to these two peak values will be further analyzed.

Firstly, an analysis of the instantaneous flame images was conducted using the Proper
Orthogonal Decomposition (POD) method [42]. The POD method can be used to extract
coherent structures in a flow field and capture the dominant fluctuation characteristics.
In this study, the 1000 acquired instantaneous flame images for each excitation frequency
were subjected to POD decomposition. The decomposition results were then sorted based
on the magnitude of the singular values, yielding the Proper Orthogonal Modes (POMs)
at different orders. Figure 8 presents the statistical results of the first-order POMs for the
flame heat release fluctuations at various excitation frequencies. The first-order POM,
which represents the dominant fluctuation mode of the flame, exhibits the highest energy
contribution. In the figure, it can be observed that both high frequencies (>350 Hz) and low
frequencies (<150 Hz) of acoustic excitation do not induce strong oscillations in the spatial
distribution of the flame. However, in the intermediate frequency range of 220 Hz–330 Hz,
corresponding to the FTF’s high gain, the flame exhibits significant and organized oscillation
patterns in the axial direction. This pronounced axial oscillation contributes to the high
gain level of the FTF within the intermediate frequency range.
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The POD results can explain the main reason for the higher amplitude of the FTF
gain under intermediate frequency excitation. However, based on the results, the spatial
fluctuation structures corresponding to the two gain peaks are very similar, making it
difficult to extract deeper flame oscillation characteristics from them. Therefore, in this
study, the phase-averaged flame structures over 20 oscillation cycles were statistically
analyzed for the two oscillation modes. In order to obtain clear flame structures, an inverse
Abel transform [43] was performed on the phase-averaged flame structures.

Figures 9 and 10 show the phase-averaged flame structures and their inverse Abel
transform results for the flame under excitation at 230 Hz and 330 Hz, respectively. Under
excitation at 230 Hz, the flame’s oscillation behavior over one cycle can be summarized
as follows: within one oscillation period, the flame adheres to the exit of the Venturi tube
and is distributed within the shear layer between the central recirculation zone (ORZ) and
the main stream. Due to the velocity fluctuations induced by the acoustic excitation, the
flame is stretched, resulting in an increase in the flame’s length. After reaching a certain
length, the flame undergoes fragmentation, causing it to lose its continuous topological
structure. As the flow progresses downstream, the separated high-temperature reaction
region gradually dissipates, and the flame at the exit of the Venturi tube is stretched again,
repeating the above process.
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Furthermore, within the phase angle range of 135◦–180◦, a significant curling effect
can be observed at the flame tip, leading to a substantial increase in the area of the flame
tip and an enhancement of the heat release rate. The flame’s oscillation characteristics
under excitation at 230 Hz correspond to the “ Acoustic Induced Vortex” mode (referred to
as the Mv mode) proposed by Liu et al. [44]. This mode is primarily associated with the
fluctuation of the flow field. Under the influence of velocity disturbances in the incoming
airflow, periodic acoustically induced vortex structures appear in the inner and outer shear
layers. The periodic generation, development, and dissipation of these acoustically induced
vortices are the main factors causing significant variations in flame length. Moreover, when



Energies 2023, 16, 6834 11 of 19

the acoustically induced vortices reach the trailing edge of the flame, they exhibit higher
intensity and are closer to the flame, resulting in a curling effect at the flame tip.

Under excitation at 330 Hz, there is no significant change in flame length over one
cycle. However, the flame front continuously trembles, and within the phase angle range of
90◦–225◦, the flame front can be observed curling from the root and gradually progressing
downstream. The intense fluctuation of the flame front leads to a significant variation in
the heat release rate. The axial fluctuation frequency f of the combustor can be estimated
using f = c/(2*L), where L is the total length of the combustion system. For an equivalence
ratio of 0.248, with an exit temperature of approximately 750 K and an average speed of
sound of about 550 m/s, the first-order axial oscillation frequency of the combustor is
estimated to be around 324 Hz, which is close to 330 Hz. Therefore, it can be inferred that
the 330 Hz mode is related to the acoustic mode of the combustor. In fact, according to the
experimental measurements, the self-excitation frequency of the combustor is also around
320 Hz. Analysis based on the following text, it can be concluded that in this oscillation
mode, a complete feedback loop is formed between the combustor and the fuel supply
system. Therefore, this mode is referred to as the Ma mode.

The experimental results demonstrate that not only does the flame transfer function
(FTF) exhibit a significant bimodal distribution, but the pressure fluctuation amplitude
also displays bimodal characteristics in the frequency domain. Figure 11 presents the
statistical results regarding the pressure fluctuation amplitude within the combustor at
different equivalence ratios. It can be observed that the pressure fluctuation amplitude
exhibits peaks at frequencies corresponding to both the Mv mode and the Ma mode. As the
equivalence ratio decreases gradually, the pressure fluctuation amplitude of the Ma mode
gradually increases. At lower equivalence ratios, the pressure fluctuation amplitude in the
Ma mode is significantly higher than that in the Mv mode, while this trend reverses for the
Mv mode with changing equivalence ratios.
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To further investigate the dynamic characteristics of the two flame oscillation modes,
a phase space reconstruction analysis [45] was conducted on the pressure fluctuation signal
(p′). The time delay τ was obtained using the mutual information method [46], and the
value at which the mutual information first reaches its minimum was chosen as the time
delay for phase space reconstruction. The embedding dimension d was calculated using the
pseudo-near-point method [47]. Figure 12 illustrates the time series signals, phase space
reconstruction results, and probability density function (PDF) distributions of the pressure
fluctuation within the combustor for an inlet velocity of 3.8 m/s, an equivalence ratio of
0.248, and both the Mv and Ma modes.
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It can be observed that although the heat release rate fluctuation levels are similar in
the two flame oscillation modes, the characteristics of pressure fluctuation are markedly
different. In the Mv mode, the pressure fluctuation amplitude within the combustor is
relatively small, and the pressure fluctuation signal exhibits chaotic behavior. As evident
from the PDF distribution characteristics, the pressure fluctuation in this mode possesses
characteristics of random noise, with the primary sources being turbulent and combustion
noise. In contrast, in the Ma mode, the amplitude of the pressure fluctuation time series
signal increases compared to the Mv mode, and the phase space reconstruction of p′ forms a
closed circular ring, indicative of a typical “limit cycle” feature. This suggests the presence
of thermoacoustic coupling phenomena caused by acoustic excitation within the combustor.

The analysis above indicates that the pressure fluctuation within the combustor re-
mains chaotic in the Mv mode. However, in the Ma mode, the combustion system exhibits
greater sensitivity to acoustic excitation, as even acoustic disturbances with an amplitude
level of u′/u = 0.1 can drive the stable combustion system into a limit cycle oscillation state.

The flame phase-space diagram [48] can better reflect the dynamic characteristics
of flame in the two modes. In the phase space diagram, the x-axis represents the axial
coordinate of the flame, the y-axis represents the phase of flame pulsation, and the contour
lines reflect the variations of flame heat release relative to the mean results. Firstly, an
averaged flame in one oscillation cycle was obtained, and the grayscale values in each
column were summed to obtain the axial intensity distribution I(j, ϕ) of the averaged flame
at different phases, where j ranges from 0 to 110 mm (with the flame’s root at j = 0) and
ϕ ranges from 0 to 360◦. Then, the axial intensity distribution of the averaged flame is
subtracted from the result, resulting in I(j,ϕ) − I(j). This result quantitatively describes
the spatiotemporal distribution of axial heat release fluctuations. In the figure, it can be
observed that the maximum distance of axial flame pulsation is around 50 mm for both
flame pulsation modes. The slope of the peak–valley structure in the phase space satisfies
the following equation:

dϕ
dx

=
2× π × f × dt

dx
=

2× π × f
u

(2)
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The slope of the peak–valley structure in the phase space is greater in the Ma mode
(330 Hz) than in the Mv mode (230 Hz) when the operating conditions remain unchanged,
where u represents the convective velocity. Figure 13a also reflects the periodic shedding
phenomenon of the vortex ring structure in the Mv mode, where the downstream CH*
intensity decreases as the downstream vortex ring structure starts to shed at a phase angle
of around 225◦.
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To further analyze the spatial development patterns of heat release rate fluctuations,
the spatial distribution information on the heat release rate fluctuations at different phases
was extracted from the flame phase space diagram, as shown in Figure 14. It can be
observed that in the Mv mode, during the development of the acoustically induced vortex,
the amplitude of heat release rate fluctuations gradually increases with the phase angle.
This is mainly due to the fact that as the acoustically induced vortex moves downstream, its
intensity and size gradually increase [44], leading to a significant enhancement of chemical
reaction rates downstream under the influence of the acoustically induced vortex. On the
other hand, in the Ma mode, the heat release rate fluctuations stably propagate downstream
with an increasing phase angle, and their amplitudes do not vary with the phase angle.
From an energy perspective, the increase in, maintenance of, or decrease in heat release
rate fluctuation amplitudes primarily depend on the balance between a system’s acoustic
energy gain and dissipation. In the Ma mode, the system satisfies the energy balance
relationship between driving energy and dissipative energy, thereby allowing for the stable
downstream propagation of heat release rate fluctuations.
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In summary, although local maxima of flame transfer function (FTF) gain exist under
230 Hz and 330 Hz acoustic excitations, the underlying physical driving mechanisms are
different. The 230 Hz excitation is primarily associated with the formation and development
of acoustically induced vortices, resulting in significant variations in flame length. Within
one period, the flame continuously stretches and breaks, leading to intense oscillations
in the heat release rate. On the other hand, the 330 Hz excitation mainly induces the
vigorous fluctuation of the flame surface, strengthening the intensity of the heat release
rate fluctuations. From the flame phase space diagram, it can be observed that the heat
release rate fluctuations can propagate stably along the axial direction, indicating a balance
between driving and dissipative energies in the combustion system.

3.3. Coupling Mechanism

The results of the analysis from the previous section indicate that both flame pulsation
modes result in local maxima of flame transfer function gain, with similar levels of gain.
However, the pressure pulsation level in the Ma mode is significantly higher than that in
the Mv mode. This suggests that although there is a significant interaction between the
heat release rate and pressure in the oscillation mode dominated by acoustically induced
vortices, a positive feedback relationship that further enhances the intensity of pressure
pulsations in the combustor does not seem to have formed. To further analyze the main
reasons for this phenomenon, we conducted an analysis from the perspective of coupling
in the combustion system.

The Rayleigh Index (RI) [49] can be used to reflect the correlation between heat release
rate fluctuations and pressure fluctuations. The calculation expression for the Rayleigh
Index is as follows:

RI(x) ≡ 1
T
·
∫

T
q′(x, t)p′(x, t)dt (3)

In the above expression, T represents the oscillation period, q′ represents heat release
rate fluctuations, and p′ represents pressure fluctuations. An RI > 0 indicates that q′ and p′

are in phase within one oscillation period, suggesting the transfer of energy from the flame
to the acoustic field. This is a necessary condition (rather than a sufficient condition) [50] for
unstable combustion. A larger RI value indicates stronger coupling between heat release
rate fluctuations and pressure fluctuations. Conversely, an RI < 0 indicates that they are out
of phase. To reduce the impact of random errors on the calculation results, the RI was not
directly calculated for a single oscillation period. Instead, the RI was calculated over the
duration of the oscillation period (T) and within a data acquisition time window (2 s). The
temporal variation in the RI within the 2 s acquisition time was computed, and the average
value of the temporal RI results was obtained, which will be referred to as RI1.
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Figure 15 illustrates the calculated results regarding RI1 in the combustor under
different equivalence ratios and excitation frequencies when u′/u = 0.1. In the figure, it can
be observed that, firstly, for most frequencies except for certain low-frequency positions,
the RI1 in the combustor is greater than 0 under the excitation amplitude of u′/u = 0.1.
Secondly, the frequency–domain distribution of RI1 also exhibits a clear bimodal pattern,
with peak values located near 230 Hz and 330 Hz. Lastly, for both flame pulsation modes,
the variations in RI1 with the equivalence ratio are starkly different. For the Ma mode, an
increase in the equivalence ratio improves combustion stability, resulting in a significant
increase in RI1. Conversely, for the Mv mode, where the generation and development of
acoustically induced vortices are primarily related to flow field fluctuations, the influence
of the equivalence ratio is relatively small, making RI1 less sensitive to changes in the
equivalence ratio.
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In practical combustion systems, the coupling process between “heat” and “sound”
is often closely related to processes such as flow, mixing, and combustion, as shown in
Figure 16 [51]. The entire combustion process involves numerous physical sub-processes
and interactions between the flame, the combustor, and fuel pipelines. From the perspective
of system feedback, fluctuations in the heat release rate, pressure, and fuel flow constitute
important components of the thermoacoustic oscillation feedback loop under the influence
of acoustic waves, entropy waves, and other factors.
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In order to quantitatively determine the coupling relationship between heat release
rate fluctuations (q′), pressure fluctuations (p′), and fuel flow fluctuations (p′f ) and analyze
the potential feedback loops in the system, the Rayleigh integrals were calculated in this
study. At Re = 12,058 and Φ = 0.248, the Rayleigh indices (RI2 and RI3) between q′ and p′f ,
as well as those between p′ and p′f , were computed for both oscillation modes, as shown in
Figure 17. Based on Figure 17, it can be observed that in the Ma mode, RI2 > 0 and RI3 > 0,
indicating the formation of a complete feedback loop between the flame, the combustor, and
fuel pipelines under the modulation of 330 Hz acoustic disturbances, leading to limit cycle
oscillations in the combustor. On the other hand, in the Mv mode, although there is an in-
phase relationship between heat release rate fluctuations and pressure fluctuations (RI1 > 0),
RI2 < 0 and RI3 < 0, indicating the incomplete feedback loop between the combustor and
fuel pipelines. Consequently, the amplitude of pressure fluctuations is relatively lower
compared to that in the Ma mode.

Energies 2023, 16, x FOR PEER REVIEW 17 of 20 
 

 

In order to quantitatively determine the coupling relationship between heat release 
rate fluctuations (푞 ), pressure fluctuations (푝 ), and fuel flow fluctuations (푝 ) and analyze 
the potential feedback loops in the system, the Rayleigh integrals were calculated in this 
study. At Re = 12,058 and Φ = 0.248, the Rayleigh indices (RI2 and RI3) between 푞  and 푝 , 
as well as those between 푝  and 푝 , were computed for both oscillation modes, as shown 
in Figure 17. Based on Figure 17, it can be observed that in the Ma mode, RI2 > 0 and RI3 > 
0, indicating the formation of a complete feedback loop between the flame, the combustor, 
and fuel pipelines under the modulation of 330 Hz acoustic disturbances, leading to limit 
cycle oscillations in the combustor. On the other hand, in the Mv mode, although there is 
an in-phase relationship between heat release rate fluctuations and pressure fluctuations 
(RI1 > 0), RI2 < 0 and RI3 < 0, indicating the incomplete feedback loop between the combus-
tor and fuel pipelines. Consequently, the amplitude of pressure fluctuations is relatively 
lower compared to that in the Ma mode.  

 
Figure 17. The Rayleigh index between 푞  and 푝  as well as 푝  and 푝 . 

4. Conclusions 
The flame response characteristics of lean, non-premixed swirl flames were investi-

gated in this study, focusing on a model combustor. Experimental research was conducted 
by analyzing pressure fluctuations, heat release fluctuations, and instantaneous flame im-
ages. Two distinct physical mechanisms that cause significant fluctuations in the heat re-
lease of the combustor were identified. This discovery offers a novel perspective for a 
comprehensive understanding of flame response characteristics. The main research con-
clusions of this paper are summarized as follows: The flame transfer function (FTF) of a 
swirl non-premixed flame exhibits a significant bimodal shape in the gain curve when the 
velocity disturbance level u’/u = 0.1. Gain peaks are observed at around 230 Hz and 330 
Hz. The sensitivities of these peaks to changes in the equivalence ratio are different. When 
the inlet velocity is kept constant, increasing the equivalence ratio causes the peak gain 
near 230 Hz to shift upward, while the peak near 330 Hz shows no significant change. 
Moreover, variations in the equivalence ratio do not significantly affect the shape of the 
FTF phase curve. For an inlet velocity of 3.8 m/s, the system has a time delay of approxi-
mately 30.62 ms. When the equivalence ratio is held constant and the inlet velocity is in-
creased, the bimodal gain peaks shift to the right, and the slope of the phase curve de-
creases. 

Figure 17. The Rayleigh index between q′ and p′f as well as p′ and p′f .

4. Conclusions

The flame response characteristics of lean, non-premixed swirl flames were investi-
gated in this study, focusing on a model combustor. Experimental research was conducted
by analyzing pressure fluctuations, heat release fluctuations, and instantaneous flame
images. Two distinct physical mechanisms that cause significant fluctuations in the heat
release of the combustor were identified. This discovery offers a novel perspective for a
comprehensive understanding of flame response characteristics. The main research con-
clusions of this paper are summarized as follows: The flame transfer function (FTF) of
a swirl non-premixed flame exhibits a significant bimodal shape in the gain curve when
the velocity disturbance level u′/u = 0.1. Gain peaks are observed at around 230 Hz and
330 Hz. The sensitivities of these peaks to changes in the equivalence ratio are different.
When the inlet velocity is kept constant, increasing the equivalence ratio causes the peak
gain near 230 Hz to shift upward, while the peak near 330 Hz shows no significant change.
Moreover, variations in the equivalence ratio do not significantly affect the shape of the FTF
phase curve. For an inlet velocity of 3.8 m/s, the system has a time delay of approximately
30.62 ms. When the equivalence ratio is held constant and the inlet velocity is increased,
the bimodal gain peaks shift to the right, and the slope of the phase curve decreases.

The bimodal peaks in the gain curve correspond to two distinct flame oscillation
modes, indicating that there are at least two physical mechanisms causing significant
fluctuations in heat release in the combustor. The peak gain near 230 Hz is associated with
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the acoustically induced vortices formed at the exit of the swirlers, where the flame length
undergoes significant variations within one period. A pronounced curling effect at the
flame tip can be observed in the phase angle range of 135◦–180◦, leading to a significant
increase in the surface area of the flame tip and thus enhancing the heat release rate. The
flame surface exhibits intermittency, resulting in local maxima of the heat release rate
fluctuation amplitude.

The peak gain near 330 Hz is associated with the acoustic modes of the system, and
it is close to the first-order axial oscillation frequency (324 Hz) in the combustor. In this
Ma mode, the flame front undergoes continuous oscillations. Through flame phase space
analysis, it was observed that the system satisfies the energy balance relationship between
driving and dissipation, allowing for the stable downstream propagation of heat release
rate perturbations.

The experimental measurements also indicate that although both oscillation modes
result in local maxima of FTF gain and have similar levels of gain, the pressure pulsation
level in the Ma mode is significantly higher than that in the Mv mode. By calculating the
Rayleigh indices between pressure fluctuation, fuel pressure fluctuation, and heat release
rate fluctuation, it was found that for the Ma mode, RI1, RI2, and RI3 are all positive,
indicating the formation of a complete feedback loop between the flame, the combustor,
and the fuel pipeline under the modulation of the 330 Hz acoustic disturbance, leading to
limit cycle oscillations in the combustor. On the other hand, for the Mv mode excited at
230 Hz, both RI2 and RI3 were negative, indicating that a complete feedback loop had not
been formed between the combustor and the fuel pipeline. Therefore, although the strong
fluctuation of flame length in this oscillation mode results in a local maximum of FTF gain,
it does not further drive pressure fluctuation to form limit cycle oscillations.
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