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Abstract: Given the massive increase in demand for electrical energy, particularly owing to global
climate change and population expansion, as well as the development of complicated electrical
systems due to the urgent need for a sophisticated component to enhance power delivery, it becomes
important to adopt a smart and contemporary approach that is also appropriate for the aim of pro-
tecting transmission lines (TLs) and ensuring the continuous delivery of electric power to customers.
Consequently, a unique and highly reliable approach for identifying faults in TLs is presented in this
work, which employs Wavelet Transform and is evaluated using Matlab simulation. Wavelets of
various kinds were utilized to demonstrate their dependability. Furthermore, utilizing this approach
has shown itself to be highly successful and has yielded spectacular results even when it is used
on a complicated electrical network. Moreover, many types of faults were presented and afterward
evaluated and verified for the network in various settings, which also demonstrated their potential to
recognize faults within a relatively short space of time. This innovation will alter the idea of fault
detection by providing a complete and integrated model for detecting faults in a TL, and it may be
regarded as a revolution in the renewal of core principles in TL protection.

Keywords: transmission line; fault detection; wavelet transform; image processing; power system
protection

1. Introduction

Electric power reliability and resilience is a paramount component to any successful
economy and a vital requirement for the smooth running of people’s lives and businesses.
The most important aspect of detecting and isolating faults in electric power systems is to
reduce the effect of, or at least mitigate, the losses that can occur with power disruption.
Faults can lead to the disastrous collapse of the entire electric power system if they are
not discovered and isolated precisely in a very-short time [1]. In recent years, several TL
protective techniques and algorithms have been adopted, which are based on trustworthy
scientific fault identification theories such as [2–5]. However, such approaches are seen to
be insufficient, particularly the extended time required to detect and isolate faults. As a
consequence, a variety of recent theories and algorithms have been used to improve the
protection of electric power systems and particularly transmission lines (TLs) [6–8], which
are more prone to failures due to their length and their outside exposure. A TL protection
scheme must be comprehensive and general, and it should apply to the majority, if not all,
types of transmission systems, such as those with power factor correction, compensators,
load, transformers, and other components. Seeing their importance, the development of TL
protection systems is an active research subject, especially with the increasing complexity
of such systems.
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Many attempts to obtain the best protection systems are based on altering the system
stability and incorporating many realistic variables [9–17]. In addition, the hurdles and
difficulties associated with such systems to achieve efficient faults detection increases with
the complexity of transmission networks. Therefore, it is crucial to develop systems capable
of detecting and isolating faults in different power transmission networks, irrespective
of the internal network variables. This includes networks containing loads, transformers,
series compensators, and other components. It is also very common to ignore certain
types of faults, which are less important, and concentrate on a single category of TL issues.
However, this can be seen as a weakness of the overall protection system. In general, most
research has been focused on shunt faults while ignoring series faults (except very few
cases such as [18]), which are seen as non-totalitarian. Therefore, the quest for more general,
comprehensive, and integrated systems is a worthwhile objective.

Studies regarding transmission line protection are based on either a single
theory [7,11,12,19–23] such as ANN, WT, SVM, and others, or a combination of theo-
ries [24–29] such as (WT and ANN), (WT combined with fuzzy logic), (DWT, FT and ANN),
and others. Artificial Intelligence (AI)-based transmission line protection is the most widely
used approach nowadays due to its comprehensive outlook and efficiency. Artificial Neural
Network (ANN)-based algorithms have the capability of training and learning the system’s
behavior in a variety of settings with great outcomes [7,24,30–32]. Support Vector Machine
(SVM) is also used for fault diagnosis, in which it can detect faults, but the results can be
severely affected with noisy signals [33]. Fuzzy logic-based algorithms for nonlinear sys-
tems can also be used; however, they can give wrong results since they involve inadequate
assumptions [21,26,27]. Moreover, the Synchronized Phasor Measurement Unit (SPMU) is
used in improving TL protection, but the main drawback is the reduced quality of the data
used and communications [15,34,35].

Numerous fault identification methodologies have been explored for transmission
lines (TLs), each offering distinctive contributions to the field. Kezunovic et al. [36] focused
on synchronized sampling, examining symmetrical components for fault identification,
which can be limited to the sampling rate and loss of some of the important details, affecting
its accuracy. Rahmati et al. introduced a sequential components approach, emphasizing
the change in load angle [20], but it is be affected by the fault resistance which cannot
be predictable.

Kumar et al. proposed a Cumulative Differential Sum procedure using K-mean
clustering and weighted K-Nearest Neighbor regression [11]; as stated, this algorithm
is affected by the noise and fault resistance. Singh and Sharma employed Empirical
Mode Decomposition, and their algorithm overcomes the fault location impact [12], but as
mentioned, it is still limited to the threshold setting which varies from network to another
as in [13]. Meanwhile, Saber introduced backup protection using a phasor measuring
unit (PMU) [9], despite having applied their algorithm on different scenarios but still not
covering all possible cases. In addition, their algorithm required the use of a filter for the
noise removal and this may cause the removal of sensitive data or features.

UI Haq et al. utilized Discrete Wavelet Transform (DWT) and a two-channel extreme
learning machine [17]. Also, Chen employed unsupervised feature learning with a convo-
lutional Sparse Autoencoder [37]. Bhowmik et al. incorporated a wavelet into a Neural
Network, coupling it with Fast Fourier Transform (FFT) to extract features [38]. Also, Patel
proposed TL protection using Wavelet and Artificial Neural Network (ANN) [39], while
Gayathri favored Wavelet Transform over Fast Fourier Transform (DWT and FFT) for fault
diagnosis [24]. Subsequently, in their work the use of the FFT faces the consequences
of window limitation and absence of time. Jamil utilized Neural Networks for TL fault
identification [30]. Also, Tong introduced a graph convolutional Neural Network (NN)
as a novel approach [14]. Despite the fact that the aforementioned models based on deep
networks have been proved to be effective in fault detection and classification, they still
impose challenges such as recognition accuracy and computational complexity.
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Agarwal et al. proposed fuzzy inference algorithms for fault detection [16], while
A. S. et al. employed fuzzy logic plus wavelet for low computational burden fault identifi-
cation [27]. Nevertheless, it encountered the challenge of recognizing information extracted
from the signal and must go through the preprocessing filtration, which has to remove
some significant feature and has a similar case as its predecessors [9]. However, Air et al.
developed a superimposed fault detection method focusing on three-phase current and
voltage signals [28,29] and resolved the problem of considering the system parameters
variations. Consequently, their proposed method has a high computational cost in addition
to the use of DWT, which reduces the resolution of the original signal representation.

Fan et al. adopted a unique Wavelet Transient approach based on the WT energy,
distinguishing between internal and external faults [40]. They overcame the computational
cost and complexity but have a long fault detection time of 27 ms. Aguilera combined
distance relay with traveling current waves for competitive TL fault identification [41].
They faced the same problem of the time in addition to the threshold setting, which differ
from one network to other.

Biswas proposed a differential approach based on positive sequence current for min-
imal computational burden [10], and although it addresses the computational burden
and considered changes of variables in most networks during faults, the processing time
remains relatively high and the approach did not consider noise disturbance. De Souza
employed function analysis and computational intelligence [42], yet their studies lack
consideration of noise; furthermore, important system variables with a direct impact on
fault analysis were not accounted for.

While all the aforementioned methodologies have made valuable contributions to
TL fault identification, they come with certain drawbacks. Many methods face challenges
in handling noisy signals, leading to potential inaccuracies in fault detection. Moreover,
some approaches may lack robustness when applied to diverse fault scenarios or may not
adequately address series faults, which have been comparatively understudied.

In contrast, the proposed methodology in this work seeks to address these limitations
by leveraging both wavelet and scalogram images. The combination of wavelet and
scalogram images enhances the ability to capture intricate fault patterns across different
frequencies and time scales, providing a more comprehensive and robust analysis. The
introduction of scalogram images contributes to improved fault visualization, aiding in
the identification of the small fault features that may be challenging to be recognized in
traditional signal processing methods.

Furthermore, the proposed methodology has the capability to detect faults within a
1/4 cycle, offering swift and precise identification. This rapid detection time is a significant
advancement, crucial for minimizing potential damage and ensuring the quick isolation
of faults in the transmission line system. By combining the strengths of wavelet and
scalogram images, the proposed algorithm aims to overcome the limitations of existing
methods, presenting an effective solution for TL fault identification.

2. System Requirements and Challenges

Many aspects must be considered while developing a model for the protection of
electricity transmission lines. The protection system can interpret changes in a faulty signal
as normal behavior, while other times it may interpret a normal signal as a faulty one. The
following are some of the difficulties associated with the protection system reliability:

1. Fault impedance.
2. Fault inception angle (FIA).
3. Compensation (series and/or shunt).
4. Other transmission factors such as loads, branches, transformers, etc.

The main aim of developing a TL protection system is that it can handle all potential
changes in TL parameters without being affected by deviations and changes from all
the system components. Furthermore, all systems developed so far have shortcomings
which prevent them from being used as holistic protection systems for all transmission line
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networks. The following are some of the common drawbacks in power transmission line
protection systems:

• Only shunt faults are considered, while series faults are ignored. While the shunt
faults have a high impact on the system, the series faults have less impact. However,
both have an affect on the power system equipment life.

• Using a very simple network consisting of TL and fixed generators. Using only
a simple network does not represent the real-world TL system, and the fault on
such systems is not as complex as the real system. Thus, the TL that has additional
components suffers their contribution to the fault as well.

• Theories are based on the TL protection to the threshold point, which differs from
one network to another. This happens when the threshold is a fixed value which is
different from one network to another, and may not be valuable if the system has
changed by adding or removing components, load, . . .etc.

• Some theories utilize a supervised approach that requires a significant quantity of
data and training. In general, increasing the number of datasets has the advantage
of increasing the efficiency of these models, which means that it has been trained on
most of the probabilistic scenario and vice versa. However, this is costly and requires
time for training.

• Noise is a significant obstacle to the protection system as it can lead to misdiagnosis.
This can be a major point in the diagnosis of signals. Therefore, not considering the
noise in the fault analysis method causes a malfunction in the protection system as
this noise is considered as a disturbance in the system, viz, it is a faulty signal.

• Fault inception angle (FIA) has an impact on the TL protection system. Without
considering this factor FIA in any model lead to be a weak point for the model because
the fault may occur in any FIA. That means, the future prediction results will be
improper and unreliable.

• Computational cost which can be time consuming. Taking data from TL both ends
costs resources and time for the fault diagnosis due to the fact that collecting data from
two sides of a long transmission line needs a communication system, data preprocess,
and devices besides the time to analyze.

Therefore, regardless of the system’s structure or composition, a worthwhile objective
is to develop an optimum approach that can overcome all these difficulties and imperfec-
tions, while still being very reliable in fault detection under all circumstances.

3. The Proposed Methodology

In this study, the methodology for detecting faults in transmission lines depends on
a comprehensive analysis employing wavelet and scalogram techniques. The rationale
behind this approach lies in the inherent capacity of Wavelet Transforms to decompose
signals into various frequency components, allowing for an enhanced understanding of
the signal characteristics associated with different fault conditions. The homogeneous
integration of scalogram analysis further enriches the proposed fault detection capabilities
by providing a time-frequency representation of the signals. Adopting a multi-resolution
analysis strategy, which aimed to leverage the strengths of both wavelet and scalogram
analyses, can achieve a robust and accurate detection system for identifying faults in
transmission lines. The following sections elaborate on the specific steps involved in data
collection, pre-processing, wavelet analysis, scalogram analysis, and the development of a
fault detection algorithm to realize this methodology. Figure 1 below shows the flowchart
of the whole process of the system as it was implemented.
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Figure 1. Flowchart for fault detection process.

3.1. Data Collection

The data utilized in this study for the purpose of fault detection in transmission
lines were generated by running a complex network simulation on MATLAB/Simulink
(2023b). The dataset comprises time-domain phase current signals collected from one side
of the network. This approach was adopted to mitigate the cost associated with using
dual-side data recorders, as suggested in [43,44]. The data include recordings of both
normal operating conditions and instances of known faults. The transmission line data are
characterized by their high time resolution, enabling the capture of the smallest changes or
deviations in the electrical signals. The dataset provides a comprehensive representation,
including frequency, time, and amplitude information. The data were sampled at a rate
of 10 kHz, with a duration of 0.2 s. The data collected were 4752 images for each type
of noise (Ideal, 10 dB, 20 dB and 30 dB). The dataset encompasses all fault scenarios as
shown in Table 1 below. This diversity in fault scenarios ensures a thorough evaluation
of the proposed fault detection methodology under various conditions. The inclusion of
both normal and faulty operating conditions in the dataset contributes to the robustness of
the analysis.

Table 1. System parameters under different scenarios.

System Condition Parameters

Shunt fault AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, ABCG and NORMAL
Series fault One line open, two lines open
Noise level Ideal, 10, 20 and 30 dB

Fault inception angle 30, 60, 90, 180, 270, 360
Fault location 20, 30, 40, 50, 75, 100, 150, 200, 280

Fault resistance 0.001, 0.005, 1, 10, 50, 75, 100, 200

3.2. Contious Wavelet-Based Algorithm

In this paper, we propose a novel approach in the field of transmission lines protection
by leveraging the scale of the Wavelet Transform to be as the same as the sampling rate,
which results in the capture of most of the changes in the signal at the time of signal
sampling. The wavelets used create a two-dimensional scalogram image [45–48], which
in turn is used to identify the abnormal behavior of the current passing through the
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transmission lines in a very short time. The application of the DSP theory arose because of
all the aberrant changes that can occur in the transmission network system, which translate
into a change in the current or voltage signals. It was also found that analyzing the signal
spectrum provides a lot of information about the system’s health and changes. As a result,
the Fourier Transform (FT or even FFT) has been employed, which has shown to be effective
in a variety of applications [49], but has the following associated shortcomings:

1. Time factor: Time does not exist for the Fourier transform, which makes it difficult to
apply this theory to power systems that rely on signals traveling through time [49].

2. Window limitation cannot be employed when the signal changes in a very short time
or even slightly, such as when the signal passes through a transitory period [50].

Fourier Transform

F(ω) =

∞∫
−∞

f (t)e−jωtdt (1)

Fast Fourier Transform

Fk =
N−1

∑
n=0

xn · e−
j2πkn

N (2)

where k and n are integers related to the number of samples.
Dennis Gabor developed a novel approach in 1946 to remedy the FFT shortcomings

mentioned above. Using the method of signal analysis through the tripartite representation
of the signals addressed the time problem [49]; meanwhile, for the window limitation issue,
he proposed the use of several windows rather than a single window and STFT, i.e.,

1. Time: it depicts the waveform with three signal spectrum fields (time, magnitude,
and frequency).

2. Window: the segmentation of the signal is treated as if it were a stationary signal.
Consequently, STFT has a pre-defined restricted multi-window configuration.

STFT{ f (t)}(τ, ω) = F(τ, ω) =

∞∫
−∞

f (t) w(t− τ)e−jωtdt (3)

Even though STFT is capable, to some extent, of overcoming prior hurdles with a
decent outcome, it still has shortcomings for specific applications, such as power system
signal analysis, which can be summarized as follows:

1. The window: once specified, it cannot be altered.
2. Resolution pinpoint: this indicates that the window is directly proportional to fre-

quency resolution and inversely proportional to time, and vice versa. This means that
any component can result in either excellent frequency resolution or time resolution,
but not both. Wd ∝ F/T.

3. Time interval and frequency: this is regarded as the most difficult and demanding aspect
of using STFT in power system analysis, particularly for transmission line protection.

In order to address the aforementioned drawbacks, wavelets were introduced as
alternatives to the previous algorithms in the signal analysis [36,40,49,50] (see equation
below). The Wavelet Transform has generated a significant deal of interest and is now
widely used in the fields of image and speech processing.

CWT(a, b) =
〈

f , ψa,b
〉
=

1√
a

∞∫
−∞

f (t).ψa,b
∗
(

t− b
a

)
dt (4)

a, b ∈ R & ψa,b is the wavelet, ψa,b
∗ represents the complex conjugate of the mother wavelet.

• a (binary dilation or scale parameter): can compress or stretch the wavelet signal [51].
• b (binary position or translation parameter): used for shifting the wavelet signal over

the original signal.
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It is worth mentioning that with Fourier transforms, signals are represented by waves
of different frequencies, while with Wavelet Transforms, signals are expressed by wavelets
of different scales and positions.

In this approach, the Wavelet Transform is used to detect faults in power transmission
lines. To test the integrity and reliability of this method, several tests with varying fault
location, fault inception angle, and fault resistance were used. Also, tests of validity on
complicated systems with additional variable or fixed loads, compensators, transformers,
and other components were conducted.

The performance of the present method with general and complex systems compared
to existing methods suggests that the proposed methodology constitutes a step-change in
power transmission lines’ fault detection algorithms. The detailed algorithm is as follows:

1. Collect data from sending end.
2. Sampling data collected.
3. Applying wavelet for the signals’ feature extraction.
4. Converting results in a 2D visualizing scalogram image.

Note that in [36], it is mentioned that Daubechies’ wavelet group is one of the most
often used Wavelet Transforms in the field for power system transient signal analysis
for identifying short lifespans and rapidly decaying faults. However, with the proposed
method, it was found that all wavelets’ families produces similar results (i.e., the wavelet
choice is secondary). Figure 2 below shows the convolution of the faulted phase current
with the wavelet (morlet) and the output of this process in terms of coefficients.
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3.3. Scalogram Analysis

Scalogram analysis serves as a vital component complementing wavelet analysis in
the proposed fault detection methodology for power transmission lines. While wavelet
analysis efficiently extracts features from signals, scalogram analysis addresses certain
limitations inherent in Wavelet Transforms.

3.3.1. Wavelet Transform Limitations

The Wavelet Transform, while powerful, encounters challenges in capturing transient
events with high precision due to its fixed time-frequency resolution. Additionally, the
choice of the mother wavelet may impact its effectiveness across diverse signal patterns.
These limitations can prevent the accurate identification of fault signatures, especially in
scenarios where fault events exhibit rapid changes in frequency and amplitude.

3.3.2. Role of Scalogram Analysis

Scalogram analysis overcomes these limitations by providing a time-frequency repre-
sentation of the signal in a visually intuitive manner. Instead of relying solely on the wavelet
coefficients, scalograms offer a spectrogram-like visualization that highlights frequency
variations across time. This graphical representation enhances the ability to recognize slight
changes associated with faults, even during brief intervals.

3.3.3. Scalogram Generation and Interpretation

The scalograms were generated by applying the Continuous Wavelet Transform (CWT)
to the collected data. The CWT, with its variable time-frequency resolution, captures the
complicated details of the signal across different scales. The resulting scalogram images
show the development of signal frequencies over time, presenting a comprehensive view
of the signal characteristics. Interpretation of scalograms involves a qualitative analysis of
the visual patterns. Abnormal behavior, such as shifts in frequency or the emergence of
distinct features, are indicative of potential faults. The utilization of scalograms alongside
wavelet analysis enhances the fault detection process by providing a supplementary visual
tool that facilitates the identification of fault-related patterns in a manner more robust to
transient events.

The scalogram is not defined by a single equation but is derived from the Continuous
Wavelet Transform (CWT). The CWT is expressed mathematically by Equation (4) above,
while the scalogram is essentially a plot of the magnitude of the CWT coefficients as a
function of scale and time. Mathematically, it can be represented as

Scalogram(a, b) = |CWT(a, b)| (5)

This magnitude represents the strength or energy of the signal at each scale and time
instant. In practice, the scalogram is often visualized using a spectrogram-like plot, where
the x-axis represents time, the y-axis represents scale, and the color intensity or contour lines
represent the magnitude of the CWT coefficients. Figure 3 below illustrates the way that the
signal is presented using the scalogram transforming based on the Wavelet Transformation.

Moreover, scale plays a vital role in forming of the image. It is clear from Figure 3
that scale can diminish the details of the scalogram image when it is higher than required.
Therefore, it has been selected to be the same as the sampling rate. This means each value
has a representation on the opposing side.
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3.3.4. Machine Learning Integration

To rigorously validate and demonstrate the robustness of the combination of wavelet
and scalogram fault detection algorithm, our method employs a comprehensive machine
learning framework using the Orange data mining software (V3.34.0). This framework
utilizes various well-established machine learning classifiers, including Support Vector
Machines (SVM), AdaBoost, Neural Networks (NN), k-Nearest Neighbors (KNN), Logistic
Regression, Random Forest, and Decision Tree.

In this study, each classifier was individually trained on the features extracted through
the proposed wavelet and scalogram analyses. This training process involved extensive
datasets encompassing diverse fault scenarios, fault locations, inception angles, and fault
resistances, as well as non-fault conditions. Furthermore, the classifiers were trained and
tested separately on the features obtained from images created by the combination of
wavelet and scalogram. This completed evaluation enabled the assessment of the collective
contributions of wavelet and scalogram analyses to fault detection accuracy.

The classification results from SVM, AdaBoost, NN, KNN, Logistic Regression, Ran-
dom Forest, and Decision Trees served as quantitative benchmarks for the effectiveness of
the research methodology. The incorporation of diverse classifiers facilitated a thorough
analysis of the algorithm’s performance across different fault scenarios, contributing to
its adaptability and generalizability. The utilization of well-established classifiers within
Orange, coupled with the training and testing, substantiates the reliability and applicability
of the combined wavelet and scalogram fault detection methodology.

3.3.5. Validation and Performance Metrics

The proposed methodology’s effectiveness was rigorously validated through a multi-
faceted approach. Simulated data from MATLAB Simulink simulations, encompassing a
wide range of fault scenarios and system complexities, formed a foundational element of
the validation strategy. Additionally, real-world datasets with known faults were employed
to ensure the applicability of the proposed fault detection system in practical scenarios.
To assess the accuracy of the proposed fault detection system, and based on Figure 4, it
utilized a complete set of performance metrics. These metrics included the following.
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1. Sensitivity:

The ability of the system to correctly identify true positive instances of faults.

Sensitivity =
True Positives

True Positives + False Positives
(6)

2. Specificity:

The capacity of the system to accurately identify true negative instances of normal operation.

Speci f ity =
True Negatives

True Negatives + False Positives
(7)

3. Precision:

The proportion of correctly identified faults among all instances classified as faults,
measuring the system’s positive predictive value.

Precision =
True Positives

True Positives + False Positives
(8)

4. Recall:

The ratio of correctly identified faults to the total number of actual faults, gauging the
system’s ability to capture all instances of true positive faults.

Recall =
True Positives

True Positives + False Negative
(9)

5. F1 Score

F1 = 2× Precision× Recall
Precision + Recall

(10)
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Figure 4. Confusion matrix of the testing data.

These metrics collectively provide a comprehensive evaluation of the fault detection
system’s performance, offering insights into its accuracy, robustness, and reliability under
diverse conditions. The combination of simulated and real-world datasets, along with the
application of rigorous performance metrics, ensures the validity and generalizability of
the proposed methodology for power transmission line fault detection.

3.3.6. Experimental Setup

The experimental setup embraced a multifaceted approach to data analysis within
the Orange software, complementing the versatile data collection capabilities of MAT-
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LAB/Simulink. Three distinct strategies were employed for data analysis, each contributing
unique perspectives to the fault detection methodology.

1. Classification based on the image features:

An alternate strategy involved the direct analysis of extracted data features without
image embedding. Orange provided a comprehensive environment for feature analysis
and classifier evaluation, allowing for the training and testing of a diverse set of classifiers
on the raw feature data. This approach highlighted the significance of individual features
in fault detection.

2. Classification based on high ranked image features:

To enhance efficiency, a third approach involved data reduction and feature selection.
Orange facilitated the extraction of the highest-ranked features from images, optimizing
computational resources. Subsequently, various classifiers were applied to this reduced
feature set, providing insight into the most influential factors for fault detection.

In conjugation with the algorithms mentioned earlier, this expanded experimental
setup allowed for us to explore the fault detection methodology from multiple angles. The
seamless integration of MATLAB/Simulink and Orange empowered a comprehensive
evaluation across simulated and real-world datasets, emphasizing the adaptability and
robustness of this approach in diverse scenarios. The inclusion of different data analysis
strategies provided a nuanced understanding of the methodology’s performance, fostering
a more informed and versatile fault detection framework.

4. Simulation Results and Discussion
4.1. Introduction to Results and Discussion

The transmission network is designed in MATLAB/Simulink to simulate various
faults. On one end, there are six 350 MVA 13.8 KV generating units, while on the other end,
there is one 30,000 MVA 735 KV generating unit. Two nonlinear and two linear loads are
coupled with these two generators in a transmission network. There are two reactive loads,
each with a capacity of 330 MVAR lagging load and active loads of 100 MW and 250 MW.
On one end, there are six 350 MVA, 13.8/735 KV (two windings) transforming units, while
on the other end, there is one 300 MVA, 735/230 KV (three windings) transforming units as
shown in Figure 5, [32].
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The Wavelet Transforms need inputs in the form of samples to permit the Wavelet
Transforms to be transformed into a scalogram image. Three-phase current signals were
the input to the system for different scenarios, which are shown in Table 1. Figures 6–8
show the outcome from using different types of wavelets transforms. The red boxes show
the start change in the signal behavior.
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Table 2. Wavelet families are used for fault detection with their specific level.

‘bior’
Biorthogonal
wavelets-3.1

‘coif’
Coiflets-2

‘db’
Daubechies wavelets-7

‘dmey’
Discrete approximation of Meyer wavelet-14

‘fk’
Fejér-Korovkin

filters-14

‘gaus’
Gaussian wavelets-7

‘haar’
Haar wavelet-

‘mexh’
Mexican hat wavelet (also known as Ricker wavelet)-

‘meyr’
Meyer wavelet-

‘morl’
Morlet wavelet-

‘rbio’
Reverse biorthogonal

wavelets-4.4

‘sym’
Symlets-5Energies 2023, 16, x FOR PEER REVIEW  13  of  20 
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Faults are detected within a very short of time 1/4 cycle. Table 2 represents all wavelet
families used for fault detection with their specific levels.

It is worth mentioning that a decision process based on a very short time-window is
not always wise. However, most TL protection systems aim to find faults as fast as possible,
because a significant delay can cause a substantial negative impact. The decision-making
process must also consider the fact that the time factor is also critical for distinguishing
between real faults and short-term minor disturbances that do not affect the system.

Most previous researchers overlooked the fault which happens when one or two lines
are open as in Figure 9a,b, and as shown in Figure 10, (1–6) and (7–12), respectively, which
is the result of a system flaw. Thus, the signal cut-off, as shown in Figure 9, obviously, is a
change at a specific time, which the Fast Fourier Transform is unable to distinguish, because
the FFT represents the signal value and frequency without mentioning time. This feature
distinguishes Wavelet Transform from others and its ability to determine time related to
the frequency and magnitude changes. From the results, it can be clearly seen that this
approach leads to good results. The methodology permits detecting faults by displaying
the signal changes as a two-dimensional image, from which one can clearly distinguish
between normal and abnormal states of the system. It is a well acknowledged fact that
with other methods, extra variables such as noise, fault resistance, fault inception angle,
and fault location have an impact on the fault detection algorithm. However, the results
show that the changes that can occur in the system due to faults do not affect the ability of
the proposed method to still accurately identify the true faults. This approach has been
tested and validated on a circuit that replicates reality and contains most of the elements
found in realistic power systems.
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4.2. Effect of Noise

The proposed method showcases a high tolerance to noise, with negligible impact
on its performance. The accuracy and effectiveness of fault detection persist even in the
presence of varying noise levels. Unlike traditional methods that may struggle with signal
distortion caused by noise, the proposed algorithm leverages advanced signal-processing
techniques, ensuring reliable fault detection. This robustness is particularly advantageous
in practical applications where noise is an inherent aspect of power system signals. Figure 11
illustrates the effect of the noise on the signal in both faulted and non-fault scenarios.

The proposed algorithm went through different training, validation, and testing
under varying noise levels, demonstrating exceptional accuracy rates of 100% across
three distinct AI settings. These high results are clearly illustrated in the figures below,
highlighting the robustness and efficacy of the algorithm in fault detection under diverse
conditions. Figure 12 shows the classification accuracy and evaluation metrics for the
proposed methodology.
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4.3. Discussion of Results

In interpreting the results obtained from the comprehensive evaluation, it is crucial to
contextualize them within the broader framework of the research objectives. The primary
goal of this study was to introduce a fault detection method that not only overcomes
traditional challenges but excels under extreme conditions, particularly in the presence of
varying noise levels. The proposed algorithm’s success in achieving 100% accuracy across
diverse scenarios underscores its alignment with these objectives. Table 3 illustrates the
performance of the proposed methodology.

The proposed method’s achievement of optimal accuracy for fault detection offers
a level of precision that is vital for maintaining the integrity and stability of power net-
works. Comparing the performance of the proposed method with other algorithms further
emphasizes its superiority. The testing, involving several machine learning algorithms,
highlights the proposed algorithm’s exceptional capability to discern faults. This is particu-
larly noteworthy when examining its performance under different noise levels in contrast to
conventional practices where researchers often avoid testing under 10 dB noise level due to
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the significant challenges it poses. This deliberate choice to subject the proposed algorithm
to this noise level was intentionally tested for further investigation. The proposed method
not only meets the challenges posed by lower dB values but excels, proving its resilience
and adaptability. The metrics used provide a quantitative basis for evaluating the proposed
algorithm’s superiority in fault identification. All algorithms achieved high accuracy in
fault detection 100%.

Table 3. Performance metrics for the proposed fault detection methodology.

Classifier Type

According to Image
Embedding Inputs

According to Image
Features

According to 250 High
Ranked Image Features

Accuracy % Accuracy % Accuracy %

Ideal With Noise 10,
20, and 30 dB Ideal With Noise 10,

20, and 30 dB Ideal With Noise 10,
20, and 30 dB

Logistic regression 100 100 100 100 100 100
SVM 100 100 100 100 100 100

Random forest 100 100 100 100 100 100
Neural Network 100 100 100 100 100 100

kNN 100 100 100 100 100 100
AdaBoost 100 100

Decision Tree 100 100

5. Conclusions

In conclusion, this research has introduced a significant contribution to fault detection
methods for power transmission line protection systems, leveraging an innovative appli-
cation of Wavelet Transforms and scalogram theory. Comprehensive validation through
various network simulations has revealed the method’s very-high performance across a
spectrum of challenges. A notable aspect of our study involves the introduction of noise at
different levels (10, 20, and 30 dB) during testing. Despite these noise levels, the proposed
method consistently demonstrated robust fault detection capabilities. The incorporation of
three fundamental signal aspects—value, frequency, and time—via Wavelet Transforms
combined with the scalogram theory represents a superior approach. By examining the
small details of the signal, this technique makes it possible to determine fault-detection
characteristics among a variety of the signals’ features that indicate no faults. The unique
presentation of outcomes in an image format further distinguishes the proposed method,
providing a clear and concise means of fault identification within a short time frame.

The demonstrated effectiveness of the approach in achieving 100% accuracy is a
testament to its significance in the field of fault detection systems. Unlike conventional
methods, this approach overcomes traditional challenges, offering a robust and reliable
solution that remains unaffected by the complexity of the power system that is being
studied. The adaptability and persistence of the proposed method, validated through
extensive testing, mark it as a valuable tool for the field of transmission line systems. This
method proves its potential positive impact across the entire industry.
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