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Abstract: Pyrolysis is an energy recovery technique with significant potential for managing wastewa-
ter treatment plant byproducts. This research aims to investigate the physicochemical and thermal
properties of Moroccan sludge, as well as the behavior of its decomposition during pyrolysis at
three different heating speeds (5, 10, and 20 K/min). Characterization of the sludge before pyrolysis
through ultimate analysis, proximate analysis, FTIR spectroscopy, and XRD revealed that the sludge
consists predominantly of organic matter, with a volatile matter rate of 48%, an ash rate of 37%, and a
higher heating value (HHV) of 15 MJ/kg. The TGA-DTG curves identified four distinct stages in the
sludge decomposition process: drying, decomposition of organic matter, degradation of calcium car-
bonate, and decomposition of inorganic matter. Using TG-MS analysis, the principal gases identified
during pyrolysis were H2O, H2, CH4, CO2, CO, NO, and SO. The average activation energies (Ea)
determined through kinetics models were found to be 413.4 kJ/mol for the Kissinger–Akahira–Sunose
(KAS) model, 419.6 kJ/mol for the Flynn–Wall–Ozawa (FWO) model, and 416.3 kJ/mol for the Starink
model. The values of Ea and the pre-exponential coefficient (A) obtained through the KAS, FWO, and
Starink techniques are consistent with ∆G values ranging between 152 and 155 KJ/mol. The positive
∆S values range from 0.003 to 1.415 kJ/mol.K, indicating the complexity of the sludge response
during pyrolysis and the spontaneity of the chemical reaction at high temperatures. The kinetic data
obtained serves as a pillar for the development and improvement of sewage sludge pyrolysis systems,
reinforcing their role in sustainable energy production.

Keywords: sewage sludge; physicochemical analyses; thermal analysis; pyrolysis kinetic

1. Introduction

Morocco, in recent years, has experienced a significant increase in the number of
wastewater treatment plants (21 WWTP in 2005 to 153 WWTP in 2020) according to Ministry
of Energy Transition and Sustainable Development, 2021. These plants produce a huge
quantity of sewage sludge, about 110,000 million tons of dry matter in 2020 [1], that must
be managed. Wastewater treatment causes a concentration of several hazardous chemical
and biological elements in the sludge, like microorganisms, and harmful components such
as heavy metals, organic compounds, dioxins, chemicals, and pharmaceuticals. Those
elements pose challenges and difficulties in terms of the disposal and management of such
waste [2,3].

Currently, sludge disposal is most often done by landfilling, which causes a risk to the
environment because of the pollution of the water table by the leachate of sludge and the
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production of uncontrolled methane by the greenhouse effect [4]. The reuse of sludge in
agriculture is one of the disposal routes adopted at an international level, but in Europe,
for example, this route is becoming increasingly limited and prohibited according to the
European Directive 86/278/EEC because of the contamination of soil and groundwater by
heavy metals, the thing that will subsequently affect human and animal health.

The latest researches are focused on the energy recovery of sewage sludge, as a type
of biomass to convert it into products with high energetic value such as biochar, bio-
oil, and synthesis gas, especially as the energy demand is still growing, mainly at the
industrial level [5,6]. The energetic valorization of a biomasses can be generally performed
with biochemical methods or with thermochemical processes. Biochemical conversions
of sewage sludge, such as anaerobic digestion, take time and require high cost enzymes
for the decomposition of organic matter [7,8]. In contrast, thermochemical methods such
as pyrolysis, gasification, and combustion, can strongly reduce the volume of sludge, can
thermally destroy the toxic organic matter present in sludge, as well as lead to energy
recovery with different forms [9–11].

Among the thermochemical processes that have caught the attention of researchers
and scientists is pyrolysis [12]. It is a thermal degradation of a material in the absence of
oxygen that offers an alternative way for stable treatment of solid waste. This method
is still in the research and development phase because of its complexity [12], especially
with such a complex compound as sewage sludge. Some studies have been carried out on
the physicochemical and thermodynamic characterization of sludge, its behavior during
pyrolysis, and its thermal kinetics.

Shahbeig and Nosrati (2020) [13], carried out an extensive study on the pyrolysis
of Iranian sewage sludge using TG-DTG analysis to determine its bioenergy potential.
They describe the pyrolytic behavior of the sludge as following three stages: at first
moisture release occurs, followed by the degradation of organic substances, then by the
decomposition of the char in a third stage. They also performed a thermokinetic study with
three bioconversion models: FWO, KAS and Starink. The calculated values of activation
energy (126.62–136.92 kJ/mol), Gibbs energy (159.19–159.61 kJ/mol), and higher heating
values (16.47 ± 0.03 MJ/kg) showed that the sludge has a bioenergetic potential. Also, the
positive values of ∆G and the negative values of ∆S showed that the chemical reaction of
the sludge during the pyrolysis is not spontaneous.

More recently, Mphahlele et al. (2021) [14] conducted a study on the slow pyrolysis
with a heating rate of 10, 20, and 30 K/min of sewage sludge from South Africa (Gauteng).
They focused on the characteristics of this waste during its decomposition using infrared
spectroscopy (FTIR) analysis. The results showed the disappearance of volatile organic
compounds and the formation of aromatic structures. The TG-DTG analysis indicated three
stages during pyrolysis: dehydration, devolatilization, and slow pyrolysis stage. They
studied the thermal kinetics with FWO, KAS, and Starink models. The determination of
thermodynamic parameters showed that the reaction chemistry during pyrolysis is complex
and that the organic compounds contained in the sludge volatilized rapidly with high and
low temperatures. The Z-master plots method of Criado (1978) [15] was performed in this
study to locate the dominance of reaction patterns with the conversion rate.

Fonts et al. (2009) [16] studied the pyrolysis of Spanish sludge in a fluidized bed
reactor and showed that non-standardized wastewater treatment methods in wastewater
treatment plants (WWTP) can change the chemical composition of the sludge, which affects
the products formed after pyrolysis and their characteristics. They also found that the ash
content of the sludge has a great influence on the pyrolysis: the higher the ash content, the
higher the gas yield, and the lower the yield of liquids and solids.

Naqvi et al. (2018) [17] examined the thermokinetic and thermodynamic properties
of high ash sewage sludge during pyrolysis by thermogravimetric analysis, and used the
Coats–Redfern method for the determination of activation energy and pre-exponential
factor. They outlined that the pyrolysis of sewage sludge can be divided into three decom-
position stages and that the low-temperature stable components degrade in the temperature
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range of 250–450 ◦C while the high-temperature stable components decompose in the range
of 450–700 ◦C.

Zhai et al. (2012) [18] and Shao et al. (2008) [19] conducted a study to characterize and
determine the kinetic properties of sewage sludge during pyrolysis at different heating
rates. The results showed that the mass loss of sludge is distinct in three stages and the
pyrolysis characteristics of sludge differ because of their nature and their origin in the
wastewater treatment processes [19]. FTIR analysis revealed the presence of functional
groups such as NH, C-H, and C=C in the sludge, which indicates compositional similarity
with natural materials such as lignocellulose, cellulose, and lignin [18], and indicated that
the pyrolysis gas of the sludge was mainly composed of CO, CO2, CH4, light hydrocarbons,
and also hydrogen, which was detected using Outokump HSC Chemistry version 4.1
software [19].

The goal of the present work on the pyrolysis of Moroccan sewage sludge was to
investigate more accurately the thermal decomposition of these wastes, their physico-
chemical characteristics before, during, and after the pyrolysis, as well as thorough an
understanding of their thermal kinetics and their thermodynamic parameters. It is neces-
sary to develop a rich literature on pyrolysis which is a complicated process, especially
with such a complicated biomass as sewage sludge that has a chemical composition that
differs by several factors such as wastewater sources [20,21] and the treatment methods of
these waters [16]. The importance of this study is reinforced by the unique composition
of Moroccan sewage sludge, which has not been studied in depth before. By providing
detailed information on this specific type of sludge, our research contributes significantly to
the optimization of pyrolysis processes adapted to variations in biomass composition, thus
improving the feasibility and efficiency of waste-to-energy conversions. This literature will
greatly encourage the industrial application of sludge pyrolysis through the optimization
and design of adaptable and reliable pyrolysis plants for the valorization of this type
of waste.

This study employs three isoconversion methods, namely KAS, FWO, and Starink.
Advanced characterization techniques, including ultimate analysis, proximate analysis,
infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry
(DSC), thermogravimetric analysis (TG-DTG), and thermal analysis-mass spectrometry
(TA-MS), are utilized to provide a comprehensive understanding of the sludge’s properties
and behavior during pyrolysis. It provides crucial insights into the pyrolysis process and
unveils the potential for waste valorization. This aligns with the broader goal of advancing
sustainable practices in energy production and waste management, particularly in regions
with similar sewage sludge characteristics.

2. Materials and Methods
2.1. Sample Preparation

Sludge samples were collected from the wastewater treatment plant in Benguerir
(75 km from Marrakech city), a Moroccan town known for its phosphate mines. At the
plant, the sewage sludge underwent biological treatment as part of the wastewater process-
ing. After this biological treatment, the sludge was subjected to mechanical dehydration,
resulting in a moisture content of approximately 79%. To further reduce this moisture
content, the samples were then dried in an oven at 105 ◦C for 24 h. This drying process
aimed to eliminate as much water as possible. The resulting dried sludge was manually
ground using a mortar and pestle, sieved through a 100 µm sieve, and designated with the
abbreviation SSB (Sewage Sludge of Benguerir).

2.2. Proximate, Ultimate, and HHV Analyses

Proximate analysis was carried out by the ASTM standard method (D5142-90) [22]
using the thermogravimetric instrument NETZSCH STA 449F5. Ultimate analysis was
performed using the elemental analyzer Thermo Scientific FlashSmart (Thermo Fisher
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Scientific, Waltham, MA, USA). And to determine higher heating value HHV, a calorimetric
bomb was used according to ASTM standard method (D2015-19) [23].

2.3. FTIR Analysis and X-ray Diffraction

The Fourier transform infrared FTIR analysis was achieved by the spectrometer
THERMO IS50 FTIR system spectrum X (Thermo Fisher Scientific, Waltham, MA, USA)
in the range 600–4000 cm−1, with a total of 16 scans for each measurement. The X-
ray diffraction analysis was performed with XRDynamic 500 diffractometer (Rigaku,
Tokyo, Japan) with Cu-Kα radiation (λ = 1.54 nm) in a range of 5 and 70◦.

2.4. TG-DTG, TG-MS, and DSC Analysis

The thermal behavior of the samples was studied through TG-DTG and DSC analysis,
performed on an STA 449 F5 Jupiter Netzsch instrument (NETZSCH-Gerätebau GmbH,
Selb, Germany). For TG-MS analysis, the QMS 403 Aeolos Quadro instrument (NETZSCH-
Gerätebau GmbH, Germany) was utilized. The samples were placed in alumina crucibles
and heated from room temperature to 1050 ◦C at three different rates (5, 10 and 20 K/min).
Pyrolysis was performed under an argon flow of 50 mL/min and a shielding gas flow
of 20 mL/min. The released gases were detected with the infrared spectrometer already
connected to the instrument. To avoid condensation of the gaseous products for the TG-MS
analysis, the transfer line of the TG balance head was heated to 250 ◦C.

2.5. Kinetic Study

The kinetic study of sewage sludge pyrolysis is essential to understand the evolution
of the reaction and to determine the dependence of the rate of progression on the process
parameters. It is generally carried out in two steps: the first step consists of experiments
at different heating temperatures, and the second step is to determine mathematically the
kinetic parameters such as the activation energy and the pre-exponential factor.

The second step is performed by mathematical methods which can be classified into
three methods: model fitting, single heating rate, and iso-conversion, which are the most
recommended compared to the other methods [24].

The transformation and decomposition of biomass during pyrolysis is described by
Equation (1) [25]:

dα

dt
= κ(T) f (α) (1)

where,

α =
m0 − mt

m0 − mr
(2)

where, α is the conversion, m0 is the initial weight of the sample, mt is the weight of the
sample at time t, and mr is the weight of the residual of the sample during the process
of pyrolysis.

Using the Arrhenius Equation (3), the TGA data can be analyzed:

κ(T) = Aexp
(
−Ea

RT

)
(3)

where A is the pre-exponential coefficient (min−1), Ea is the activation energy (J/mol), and
R is the universal constant of perfect gases (8.314 J/mol.K)

By replacing the reaction rate with its formula (Equation (3)), Equation (1) becomes

dα

dt
= Aexp

(
−Ea

RT

)
f (α) (4)

where the term f (α) represents the conversion dependence of conversion and can be labeled
as the “reaction model”. By introducing β = dT/dt as the heating rate and integrating
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Equation (4) for the initial conditions (α = 0 at T = T0) the integral form of the conversion
rate will be:

g(α) =
∫ α

0

dα

f (α)
=

A
β

∫ T

T0

exp
(
−Ea

RT

)
dT =

AEa

βR
p(x) (5)

where x = Ea/RT. Equation (5) cannot be solved by analytical solutions, but approximate
numerical methods can be used to solve it. In this work, the iso-conversional methods of
FWO, KAS, and Starink have been used for the determination of Ea and A [24].

2.5.1. Activation Energy

The activation energy is the minimum energy needed to start a chemical reaction. As
mentioned, the following methods are used to determine it.

(a) Flynn–Wall–Ozawa (FWO) method

The Flynn–Wall–Ozawa method estimates the temperature integral using the Doyle
approximation [24]:

p(x) ∼= exp(−2.315 − 0.4567x) (6)

Equation (6) applies the calculation of p(x) for x > 20, and inserting the formula into
Equation (5) gives:

ln(β) = ln
(

AEa

Rg(α)

)
− 5.331 − 1.052

(
Ea

RT

)
(7)

Activation energy Ea can be calculated by evaluating the slope of ln(β) versus 1/T
curves plotted for each value of α.

(b) Kissinger–Akahira–Sunose (KAS) method

The KAS equation uses the approximation given by Murray and White Equation (8),
for the calculation of the temperature integral [24]:

p(x) ∼=
exp(−x)

x2 (8)

By replacing Equation (5) with Equation (8), and after simplifications, the KAS equa-
tion becomes [26]:

ln
(

β

T2

)
= ln

(
AR

Eag(α)

)
− Ea

RT
(9)

The calculation of activation energy evaluated by the slope of versus 1/T curves
plotted for each value of α.

(c) Starink method

The method developed by Starink allows obtaining the activation energy with more
precision. Similar to the FWO and KAS methods, it is based on determining the slope as a
function of 1/T for each value of α [24].

The Starink equation is given by the following formula:

ln
(

β

T1.92

)
= ln

(
AR

Eag(α)

)
− 1.0008

(
Ea

RT

)
(10)

2.5.2. Pre-Exponential Factor

The pre-exponential coefficient is related to the frequency of collisions between
molecules (entropy) and the probability that these collisions lead to a reaction. It can
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be derived from Kissinger’s equation. The Ea values from the iso-conventional method can
be substituted into Equation (11) to obtain the corresponding pre-exponential factor values:

A =
βEaexp

(
Ea

RTm

)
RTm

2 (11)

where Tm is DTG temperature peak (K).

2.5.3. Thermodynamic Parameters

Calculating thermodynamic data is important for defining process feasibility and
performing energy calculations. Thermodynamic considerations are essential for under-
standing the changes in enthalpy (∆H, kJ/mol), entropy (∆S, kJ/mol.K), and free energy
(∆G, kJ/mol) in transformations. These parameters were calculated using the following
formulas [24]:

∆H = Ea − RT (12)

∆G = Ea + RTmln
(

KBTm

hA

)
(13)

∆S =
∆H − ∆G

Tm
(14)

where, KB is Boltzmann constant (1.38064852 × 10−23 J.K−1) and h is Plank’s constant
(6.62607004 × 10−34 J.s).

3. Results and Discussion
3.1. Proximate, Ultimate, and HHV Analysis

To determine the chemical characteristics of the sewage sludge, proximate and ultimate
analyses were performed on SSB by external calibration using two high-purity organic
compounds: methionine (C5H11NO2S) and BBOT (2,5-Bis(5-tert-butyl-2-benzoxazol-2-yl)
thiophene, C26H22N2O2S). The objective of the proximate analysis is to determine the
moisture content (M), volatile matter (VM), fixed carbon (FC), and ash content of the
sewage sludge. The ultimate analysis aims to determine the content of Nitrogen (N),
Carbon (C), Hydrogen (H), Sulfur (S), and Oxygen (O) of the samples [27].

The main results obtained were summarized in Table 1 and compared with results
found in the literature [28–30].
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Table 1. Ultimate and proximate analyses of sewage sludge.

Sample

Ultimate Analyses Proximate Analyses

N
(wt.% db)

C
(wt.% db)

H
(wt.% db)

S
(wt.% db)

O
(wt.% db) M (wt.%) VM

(wt.%)
FC

(wt.%)
Ash

(wt.%)

HHV
(MJ/kg)

Experimented

HHV
(MJ/kg)

Estimated

Present work

SSB
(methionine) 3.93 33.55 4.44 1.36 18.74 2.44 48.54 11.04 37.98 15.16 14.282

SSB (BBOT) 3.86 33.55 4.49 1.39 18.75 2.44 48.54 11.06 37.96 15.01 14.344

Previous
work

Sewage
sludge [28] 4.1–5.3 28.9–32.3 4.4–4.9 0.57–1.1 20.2–24.9 4.2–19.1 63.5–64.9 - 32–36.2 - 12.24–13.12

Sewage
sludge [29] 2.9–5.78 25.39–38.2 4.06–6.19 0.77–1.17 20.84–22.08 4.3–6.8 53.1–64.9 2.1–7.9 27.2–44.8 - 11.84–17.75

Rice straw
[30] 0.87 38.24 5.20 0.18 36.26 - 65.47 15.86 18.67 15.09 -

db: dry basis.
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The moisture content, volatile matter, and ash content were obtained from the TG
analysis curves performed in inert and oxidizing media, and the fixed carbon content was
calculated using Formula (15).

FC = 100 − M − VM − Ash (15)

According to the results obtained in Table 1, the SSB have a lower volatile matter
rate (48%) and a higher fixed carbon rate (11%) than those found in sewage sludge from
previous works [28,29]. This difference is due to several factors such as the activity of the
areafrom which the water comes, and the treatments used in the wastewater treatment
plant.. Concerning the ash content, it reaches an average value of 37.97%, which is a very
high value compared to other types of biomasses such as rice straw [30].

For the ultimate analysis results, the sludge contains a very high amount of carbon
and oxygen (33.5 and 18.7%) and a low amount of nitrogen, hydrogen, and sulfur (3.9,
4.4, and 1.3%). The rates of organic elements found in SSB are within the ranges found in
previous investigation [28,29].

The correlation developed by Channiwala and Parikh (2002) [31] is used for the
estimation of the higher heating value (HHV) since the rate of elements is in the range 0%
≤ C ≤ 92.25%, 0% ≤ H ≤ 25.15%, 0% ≤ O ≤ 50%, 0% ≤ N ≤ 5.6%, 0% ≤ S ≤ 94.08%, 0%
≤ Ash ≤ 71.4%.

HHV = 0.3491C + 1.1783H + 0.1005S − 0.1034O − 0.0151N − 0.0211Ash (16)

For more accuracy, a bomb calorimeter was used to determine the HHV according
to the ASTM standard method (D2015-19), and the results show higher values than that
estimated with Equation (16) (15.085 MJ/kg against 14.31 MJ/kg, average value). The SSB’s
HHV is similar to that of rice straw which has proven, after its pyrolysis, that it has energy
potential [32], which encourages energy conversion of sewage sludge.

3.2. FTIR Analysis and X-ray Diffraction

The objective of the infrared spectroscopic analysis is to determine the chemical
composition of the sewage sludge. Figure 1 shows the spectrum obtained from the FTIR
analysis.
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Figure 1. Infrared spectrum of SSB.

The broad peak 3288 cm−1 was a stretching vibration of the -OH surface association
that also appeared at the 1640 peak [33]. This association structure resulted in many
hydrogen bonds in the sewage sludge. It prevents the release of H2O during the drying
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process and maintains the structure. The stretching vibration that was related to the
prominent absorption peak at 2930 and 2853 shows the existence of C-H in aliphatic [34,35].

The stretching region of double bonds, such as N=H and C=O, is found between 2000
and 1500 cm−1 [36]. The stretching vibrations of CaCO3 are indicated by peaks at 1426
and 875 cm−1 [37,38]. Additionally, the peaks that appear between 1000 and 840 cm−1

correspond to C-O stretching vibrations in polysaccharides and Si-O bond stretching
vibrations in silicates [35]. These could also be associated with vibrations from P-O-P
and P-O bonds, especially considering that the sludge was sourced from an area with a
prevalent phosphate mining industry.

To identify the crystalline phases and surface functional groups of SSB, an X-ray
diffraction analysis was performed, and the results are presented in Figure 2.
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Figure 2. X-ray diffraction patterns of SSB.

The main peaks found in the XRD spectrum are muscovite, microcline, nepheline,
quartz, calcite, alunogen, chloritoid, paragonite, and clinochlore minerals, noting that
quartz and calcite are the most dominant in the SSBs. These minerals contain alkali metals
such as Na, K, Mg, and Ca, metalloids such as Al and Si, and transition metals such as Fe.

3.3. TG-DTG, TG-MS, and DSC Analysis

The curves of the thermogravimetric analysis (TG) and (DTG) of the SSB for the three
heating rates during the pyrolysis process are shown in Figure 3. According to the results,
the pyrolysis of the SSB can be distinguished into four stages. The first stage occurs in the
temperature range 0–150 ◦C with a loss of mass not exceeding 1.8% for the three heating
rates; it is the preheating phase which corresponds to the loss of water and a small amount
of volatile substances [39,40]. The second stage is where the degradation of the organic
matter begins as the decomposition of hemicellulose and cellulose compounds [41]; it is
located in the temperature range 150–560 ◦C where the degradation of the mass reaches
an average value of 48% for the three-heating speeds. The two types of organic matter
degradation that occurred during this stage are the degradation of lipids and carbohydrates
between 150 and 400 ◦C and the decomposition of proteins between 400 and 560 ◦C [40].
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Figure 3. The TG and DTG curves of SSB at different heating rates. 

Figure 3. The TG and DTG curves of SSB at different heating rates.

In the third stage, which occupies the temperature range 560–900 ◦C, the mass loss
becomes slow, about 7%, and this is mainly due to the decomposition of the calcium
carbonate as shown by the DTG peaks between 680 and 725 ◦C of the dry sludge [29].
Further confirmation of the presence of calcium carbonate in the SSB comes from the
X-ray diffraction analysis already carried out as calcite. After 900 ◦C, the fourth stage
arrives where lignin decomposition can continue even though its existence is low in
sewage sludge [42,43] but its pyrolysis is a slow process that occupies a wide temperature
range [36,42,44].

Regarding the influence of the heating rate on the TG-DTG analysis, as the curves
show (Figure 3), with the increase of its speed, the peaks of mass loss move towards the
region of the high temperatures, the intensity of the peaks becomes wider, and the loss
of mass increases. This can be explained by the difficulty in accurately measuring the
temperature of the sample due to the increase in the temperature gradient between the
surface and the interior of the solid, noting that the temperature gradient increases with the
heating rate, resulting in the shift of the curves towards the high temperature region [35].
Also, when the sample undergoes chemical reactions in a temperature region, the reaction
depends strongly on the heating rate, therefore, the higher the heating rate the more the
reactions move to higher temperatures [45].

The literature describes that a higher heating rate increases the production of volatiles
(governed by chemical reactions) and favors the retention of volatiles (controlled by diffu-
sion). So, the chemical events occurring result from a competition between the kinetics of
the formation of volatiles and their diffusion [46].

This can also be explained by the influence of the heating rate on the reaction residence
time. The lower the heating rate, the slower the reaction residence time, therefore, the
degradation of the substrate ends in lower temperatures [47].

The results of TG-MS analysis are presented in Figure 4a–f. This analysis allows
for the following of the gas emissions produced by the SSB degradation during the
pyrolysis process.
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Figure 4. Gas evolution during SSB pyrolysis, (a) m/z = 18, (b) m/z = 2, (c) m/z = 15, (d) m/z = 16,
(e) m/z = 28 and 44, (f) m/z = 30 and 48.

The mass spectrum of the water molecule (m/z = 18) in Figure 4a was detected in
two temperature ranges:

From 0 to 200 ◦C, where the sludge is dewatered, and the water molecules are released
by evaporation;

From 200 ◦C to 400 ◦C, where the pyrolysis phase occurs and the crystalline water is
decomposed [48]. The highest H2O production is detected at 300 ◦C.

The H2 molecule (m/z = 2) occurs in three temperature regions according to Figure 4b.
The first two regions are the regions where drying and degradation of organic matter take
place, and this is due to the release of H2O as already shown in Figure 4a. The main H2
production between 600 and 900 ◦C is issued from the loss of aromatic CH groups and
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heterocyclic compounds [48,49]. The intensity of the H2 peak increases at 500 ◦C, which
corresponds to the beginning of the third phase of pyrolysis.

The spectra corresponding to methane CH4 (m/z = 15 and 16) in Figure 4c,d occupies
the temperature region between 200 and 600 ◦C. The emission of methane comes from
the decomposition of organic matter that occupies phase II of pyrolysis, as mentioned in
the section of TG-DTG analyses, and it was detected to have its maximum release at the
temperature 300 ◦C. Another peak was observed for (m/z = 16) between 680 ◦C and 730
◦C. This peak can be related to the release of O2 from the calcination of calcium carbonate
CaCO3 performed with the following chemical equation:

CaCO3 → CaO + CO2 (17)

CO2 can decompose and give (CO + O), explaining the appearance of the peak be-
tween 680 and 730 ◦C.

It can be noted that the intensity of the peaks of the spectra increases with the increase
of the heating rate and that the curves move towards the higher temperatures. This can
be explained by the fact that the gradient of temperature increases when the heating rate
increases and the explanation is the same as for the displacement of the TGA-DTG curves.
However, for the three heating speeds (5, 10, and 20 K/min), the gas emissions are similar
in the same temperature regions. In the spectra of (m/z = 28, 30, 44, and 48), only the curves
obtained at the 20 K/min heating rate were presented.

Figure 4e depicts the spectrum of (m/z = 28) CO gas and (m/z = 44) CO2 gas or C3H8
gas. The emissions of these gases cover the temperature region between 150 and 800 ◦C. The
second phase of pyrolysis takes place between 150 and 600 ◦C, during which the organic
matter decomposes, and thus releases CO and CO2. It is noted that the intensity of CO2 at
300 ◦C is greater than that of CO, knowing that there is no oxygen present in the pyrolysis
process. Therefore, the peak may present the C3H8 or the CO2, explaining the increase of
the peak at the temperature of 300 ◦C compared to the peak of CO at the same temperature.

Normally the release of CO and CO2 decreases with increasing temperature [50],
which is not validated in this case. The intensity of the CO and CO2 peaks increased
between 600 and 800 ◦C. This can be explained by the fact that calcium carbonate degrades
in this temperature region as already mentioned in the TG-DTG analysis, thus the emission
of CO2, which decomposes itself and gives CO with such an intense peak, confirm the
appearance of O already in Figure 4d.

Figure 4f presents two spectra, the first of which corresponds to (m/z = 30) which may
be C2H6 or NO gas, and the second corresponds to (m/z = 48) which may be SO related.
There is a high probability of NO and SO gas release because the SSB showed the presence
of nitrogen and sulfur from the ultimate analysis. Both gases are released during the second
phase of pyrolysis. Additional analysis and testing are important to increase the certainty
and determine if the amount of harmful gases produced complies with environmental
regulations as the TG-MS gas analysis is insufficient to quantify these products.

DSC calorimetry is a thermal analysis technique that measures the differences in heat
exchange between the sample under the test and a reference. Figure 5 shows the results
of SSB differential scanning calorimetry during pyrolysis. As shown in the figure, three
main endothermic reactions appear. The first reaction occurs between 0 ◦C and 150 ◦C,
indicating the evaporation of water from the sewage sludge. The second reaction occurs
between 200 ◦C and 560 ◦C and has three distinct peaks, indicating the decomposition of
the organic matter. The last reaction presents a large and intense peak between 600 ◦C and
800 ◦C, showing the decomposition of the calcium carbonate. These results confirm what
was found in the TG-DTG results.
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3.4. Kinetic Study
3.4.1. The Activation Energy

In this study three isoconversional methods were used with three heating rates
(5, 10, and 20 K/min) for the calculation of kinetic parameters of SSB pyrolysis. It can be
noted that the isoconversional methods are the methods recommended by the International
Confederation of Thermal Analysis and Calorimetry (ICTAC) [51] in 2011 and 2014 for the
determination of kinetic parameters.

Figure 6 shows the linear fit for the three isoconversional methods: FWO, KAS,
and Starink for different conversion rates ranging from 0.1 to 0.9 with a step size of 0.1.
The determination of the straight-line slopes from Figure 6 allows the calculation of the
activation energy as summarized in Table 2.

Table 2. Activation energies Ea and coefficient of determination R² versus conversion rate α for SSB.

α

KAS Method FWO Method Starink Method

Ea
(kJ/mol) R² Ea

(kJ/mol) R² Ea
(kJ/mol) R²

0.1 175.4 0.953 200.0 0.985 166.9 0.944
0.2 209.2 0.979 201.9 0.975 202.5 0.976
0.3 228.5 0.979 222.1 0.976 222.6 0.976
0.4 191.1 0.998 182.6 0.998 183.2 0.998
0.5 258.4 0.954 253.3 0.947 253.9 0.948
0.6 443.4 0.997 447.7 0.997 448.1 0.997
0.7 810.8 0.856 833.7 0.850 833.8 0.85
0.8 953.3 0.856 983.1 0.851 983.1 0.851
0.9 450.9 0.915 451.9 0.907 452.5 0.907

Average 413.4 0.946 419.6 0.947 416.3 0.938
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Figure 6. Graphical representation of FWO (A), KAS (B), and Starink (C).

The results of the activation energy from Table 2 are presented in Figure 7. The
graphical representation shows that there is not a big difference between the Ea calculated
by the three methods KAS, FWO, and Starink. It can be noted that Ea increases with the
increase of conversion rate until reaching the maximum value at α = 0.8, then it decreases
for the three models. The increase is due to the decomposition of lignin which needs higher
energy than the one necessary for the decomposition of cellulose and hemicellulose [52].
However, it should be noted that sewage sludge is composed of various constituents other
than cellulose, lignin, and hemicellulose which make up the majority of biomass [53].
Furthermore, the decrease can be attributed to a shift in the pyrolysis reaction mechanism.
As the process progresses, the decomposition of simpler or already partially degraded
materials becomes dominant, requiring less energy compared to the initial stages where
complex polymers like lignin are decomposed.

The coefficient of determination R2 is almost the same for the three isoconversional
methods. It reaches values (>0.95) for a conversion rate (<0.7), with a maximum value
at α = 0.6, therefore the values of the activation energy are more accurate for the lower
conversion rate.
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For the FWO, KAS, and Starink models, Ea values range between 182.6–983.1 kJ/mol,
175.4–953.3 kJ/mol, and 166.9–983.1 kJ/mol, respectively. They are higher than those calcu-
lated in Shahbeig and Nosrati’s (2020) [13] work, who found values between
59.3–247.4 kJ/mol, 52.2–235.4 kJ/mol, and 52.3–235. 9 kJ/mol using the FWO, KAS, and
Starink methods respectively. This was also observed in Naqvi et al.’s (2018) [17] work
which determined the values of Friedman (10.6–306.2 kJ/mol), FWO (45.6–231.7 kJ/mol),
KAS (41.4–232.1 kJ/mol), and Popescu (44.1–241.1 kJ/mol) accordingly.

The high Ea values in this study are recorded at conversion rates (α > 0.7), where com-
plex reactions occur, such as the decomposition of lignin and the calcination of calcium car-
bonate. The CaCO3, in particular, may require significantly high activation energies [54,55],
which explains the elevated values observed in this study.

3.4.2. The Pre-Exponential Factor

The pre-exponential factor is determined by Equation (11) using the activation energy
calculated by the KAS, FWO, and Starink methods. The results are grouped in Table 3.

The results indicate that the factor A increases with the conversion rate. The point that
validates the calculated results of the activation energy is that the higher the pre-exponential the
more energy the reaction requires to start, therefore Ea is also higher.

The factor A describes the solid phase chemistry of the reaction, which is directly related to
the structure of the material and is crucial to optimize the pyrolysis of the biomass. The calculated
values of A are between 1.40 × 1016 and 5.13 × 1086 min−1, 1.98 × 1018 and 2.32 × 1089 min−1,
and 2.51 × 1015 and 2.32 × 1089 min−1 with KAS, FWO, and Starink methods, respectively. The
three range values are >1010 min−1 which reflects the complex nature of the sample and the
complexity of the reaction during the decomposition of the material [56].

The pre-exponential factor was evaluated using the compensation factor approach. The
approach assumes that a linear relationship will exist between Ea and A if their values differ very
significantly with each reaction model.

The compensation factor approach observed for the KAS, FWO, and Starink methods
is presented in Figure 8. The presentation of ln(A) as a function of Ea is expressed as

ln(Ai) = a + bEai (18)

with i is the heating rate (5, 10, and 20 K/min).
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Table 3. The pre-exponential coefficient for different heating rates of SSB.

Pre-Exponential Coefficient A (min−1)

α
KAS Method FWO Method Starink Method

5 K/min 10 K/min 20 K/min 5 K/min 10 K/min 20 K/min 5 K/min 10 K/min 20 K/min

0.1 6.66 × 1016 2.79 × 1016 1.40 × 1016 1.17 × 1019 4.35 × 1018 1.98 × 1018 1.11 × 1016 4.83 × 1015 2.51 × 1015

0.2 8.05 × 1019 2.87 × 1019 1.26 × 1019 1.75 × 1019 6.43 × 1018 2.91 × 1018 1.96 × 1019 7.21 × 1018 3.26 × 1018

0.3 4.50 × 1021 1.46 × 1021 5.95 × 1020 1.19 × 1021 3.99 × 1020 1.67 × 1020 1.34 × 1021 4.46 × 1020 1.86 × 1020

0.4 1.78 × 1018 6.91 × 1017 3.26 × 1017 3.05 × 1017 1.23 × 1017 6.01 × 1016 3.44 × 1017 1.39 × 1017 6.75 × 1016

0.5 2.32 × 1024 6.53 × 1023 2.37 × 1023 8.14 × 1023 2.34 × 1023 8.66 × 1022 9.08 × 1023 2.61 × 1023 9.63 × 1022

0.6 1.11 × 1041 1.29 × 1040 2.27 × 1039 2.72 × 1041 3.08 × 1040 5.33 × 1039 2.94 × 1041 3.33 × 1040 5.75 × 1039

0.7 9.22 × 1073 1.83 × 1072 7.67 × 1070 1.04 × 1076 1.86 × 1074 7.10 × 1072 1.06 × 1076 1.89 × 1074 7.24 × 1072

0.8 5.13 × 1086 5.14 × 1084 1.23 × 1083 2.32 × 1089 2.02 × 1087 4.31 × 1085 2.32 × 1089 2.02 × 1087 4.31 × 1085

0.9 5.28 × 1041 5.89 × 1040 1.01 × 1040 6.52 × 1041 7.25 × 1040 1.23 × 1040 7.28 × 1041 8.08 × 1040 1.37 × 1040
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Figure 8. Linear fit plots of the SSB’s compensation technique for the KAS (A), FWO (B), and
Starink (C) models.

The R2 for all equations presented in Figure 8 are of order 1, which gives an excellent
linear relationship between ln(A) and Ea.

3.4.3. Thermodynamic Parameters

Equations (12)–(14) have been used to calculate the thermodynamic parameters, which
are listed in the Table 4.

Table 4. Thermodynamic parameters of SSB using FWO, KAS, and Starink methods.

α
β

(K/min)

KAS Method FWO Method Starink Method

∆H
(kJ/mol)

∆G
(kJ/mol)

∆S
(kJ/mol.K)

∆H
(kJ/mol)

∆G
(kJ/mol)

∆S
(kJ/mol.K)

∆H
(kJ/mol)

∆G
(kJ/mol)

∆S
(kJ/mol.K)

0.1
5

10
20

171.198
171.108
171.066

153.401
157.348
160.611

0.030
0.022
0.017

195.811
195.721
195.679

152.759
156.691
159.941

0.073
0.064
0.058

162.680
162.590
162.549

153.644
157.597
160.865

0.015
0.008
0.003

0.2
5

10
20

204.680
204.632
204.548

152.539
156.466
159.711

0.088
0.080
0.073

197.386
197.338
197.254

152.713
156.644
159.892

0.076
0.067
0.060

197.945
197.896
197.813

152.700
156.630
159.879

0.077
0.069
0.062

0.3
5

10
20

223.700
223.652
223.569

152.110
156.026
159.263

0.121
0.112
0.104

217.346
217.298
217.215

152.248
156.167
159.407

0.110
0.101
0.094

217.890
217.841
217.758

152.236
156.156
159.395

0.112
0.103
0.095
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Table 4. Cont.

α
β

(K/min)

KAS Method FWO Method Starink Method

∆H
(kJ/mol)

∆G
(kJ/mol)

∆S
(kJ/mol.K)

∆H
(kJ/mol)

∆G
(kJ/mol)

∆S
(kJ/mol.K)

∆H
(kJ/mol)

∆G
(kJ/mol)

∆S
(kJ/mol.K)

0.4
5

10
20

186.121
186.031
185.948

152.984
156.921
160.175

0.056
0.048
0.041

177.724
177.634
177.551

153.203
157.146
160.405

0.041
0.034
0.027

178.306
178.215
178.132

153.188
157.130
160.389

0.043
0.035
0.029

0.5
5

10
20

253.241
253.151
253.109

151.509
155.411
158.635

0.173
0.162
0.153

248.214
248.124
248.082

151.605
155.509
158.735

0.164
0.153
0.145

248.744
248.654
248.612

151.595
155.499
158.725

0.165
0.155
0.146

0.6
5

10
20

437.930
437.881
437.840

148.870
152.709
155.879

0.491
0.473
0.459

442.236
442.187
442.146

148.823
152.660
155.830

0.499
0.481
0.466

442.620
442.572
442.530

148.819
152.657
155.826

0.500
0.482
0.467

0.7
5

10
20

804.882
804.875
804.833

145.921
149.689
152.800

1.121
1.088
1.062

827.844
827.837
827.795

145.785
149.550
152.657

1.160
1.127
1.100

827.939
827.932
827.891

145.785
149.550
152.657

1.161
1.127
1.100

0.8
5

10
20

946.972
946.965
946.924

145.130
148.879
151.973

1.364
1.326
1.295

976.693
976.686
976.645

144.980
148.725
151.816

1.415
1.375
1.343

976.699
976.692
976.650

144.980
148.726
151.817

1.415
1.376
1.344

0.9
5

10
20

442.949
442.818
442.776

148.788
152.625
155.794

0.500
0.482
0.467

443.978
443.847
443.805

148.777
152.613
155.782

0.502
0.483
0.469

444.512
444.380
444.339

148.772
152.608
155.776

0.503
0.485
0.470

The enthalpy is the sum of the available internal energy of the biomass. Its variation
with the variation of conversion rate α expresses the amount of energy consumed by the
raw material during pyrolysis for its transformation during pyrolysis. The values of ∆H
vary between 171.066 and 946.972 kJ/mol, 177.551 and 976.693 kJ/mol, and 162.549 and
976. 699 kJ/mol for the kinetic methods KAS, FWO, and Starink, respectively. The values
of ∆H are all positive because the reaction of pyrolysis is endothermic. This confirms the
results found in the DSC analysis. Also, there is a difference about 5 kJ/mol between the
values of Ea and ∆H. This indicates the formation of products during the reaction is favored
by a lower potent energy [57]. Moreover, the values of ∆H are consistent with the values of
Ea and A which shows the reliability of the data.

The maximum amount of mechanical effort that can be produced from a given
amount of a certain substance is called Gibbs free energy. As the reaction progresses,
the change in the available energy of the system is represented by the difference in the
free energy values (∆G). It can be observed from the table that ∆G values are all positive
which are, on average, 153.784, 153.743, and 153.837 KJ/mol for KAS, FWO, and Starink
methods, respectively.

In Table 4, the calculated values of ∆S (entropy variation) are all positive indicating
higher disorder of products than reactants by dissociation of liaison [14] sewage sludge
during slow pyrolysis. Since the Gibbs energy values are also positive, it means that the
chemical reaction is spontaneous in the high temperatures or in the opposite direction.
This conclusion is different from those found in the work of Naqvi et al. (2018) [17] and
Shahbeig and Nosrati (2020) [13], who observed that during the pyrolysis of sewage sludge,
the chemical reaction is not spontaneous. This difference can be explained by the higher
activation energy values found in this work compared to those found in previous works.
The reason is linked to high values of ∆H which induces a positive value of the difference
between ∆H and ∆G. This is due to the complexity of the composition of sludge, especially
because biomass can take a different form of chemical composition depending on the source
of the wastewater and the activity of the area where it comes from. It is also remarkable that
∆S values vary in a wide range (0.003 and 1.415 KJ/mol.K) which confirms the complexity
of the reaction of the sludge during pyrolysis.
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4. Conclusions

The pyrolysis of the sludge from the wastewater treatment plant is carried out after its
physicochemical characterization with the help of proximate analysis, ultimate analysis,
FTIR, and XRD. The investigation showed that the sludge is generally composed of organic
matter with a high rate of volatile matter and ashes, as well as an important HHV with a
value of 15 MJ/kg.

The behavior of the sludge during pyrolysis is divided into 4 stages as determined by
TG-DTG analyses; the first and second are devoted to drying and degradation of organic
matter, while the third corresponds mainly to the beginning of calcium carbonate decom-
position, and the last stage to the inorganic matter decomposition at high temperature. The
TG-MS analysis showed the release of several gases such as H2O, H2, CH4, O2, CO2, C3H8,
CO, NO, and SO. The thermokinetic study was carried out using three isoconversional
methods: KAS, FWO, and Starink. The values calculated from these methods are almost
the same and the activation energy reaches very high values compared to the literature
results. A positive ∆G and a positive ∆S showed that the chemical reaction during the
pyrolysis is spontaneous at high temperatures or in the opposite direction. This is related
to the complexity of the sludge chemical composition studied in this work.

The results of the study are essential for improving the modeling of the pyrolysis
process. This will not only improve process efficiency, but also contribute to the advance-
ment of pyrolysis technologies in the field of waste management. The application of this
knowledge offers significant potential in optimizing the use of sewage sludge, underlining
the practical relevance of this research.
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