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Abstract: The Permian Longtan Formation in the Songzao coalfield, Southwest China, has abundant
coalbed methane (CBM) stored in high-rank coals. However, few studies have been performed on the
mechanism underlying the differences in CBM gas content in high-rank coal. This study focuses on the
characterization of coal geochemical, reservoir physical, and gas-bearing properties in the coal seams
M6, M7, M8, and M12 based on the CBM wells and coal exploration boreholes, discusses the effects
of depositional environment, tectono-thermal evolution, and regional geological structure associated
with CBM, and identifies major geological constraints on the gas-bearing properties in high-rank coal.
The results show that high-rank coals are characterized by high TOC contents (31.49~51.32 wt%), high
Tmax and R0 values (averaging 539 ◦C and 2.17%), low HI values (averaging 15.21 mg of HC/g TOC),
high porosity and low permeability, and high gas-bearing contents, indicating a post-thermal maturity
and a good CBM production potential. Changes in the shallow bay–tidal flat–lagoon environment
triggered coal formation and provided the material basis for CBM generation. Multistage tectono-
thermal evolution caused by the Emeishan mantle plume activity guaranteed the temperature and time
for overmaturation and thermal metamorphism and added massive pyrolytic CBM, which improved
the gas production potential. Good geological structural conditions, like enclosed fold regions, were
shown to directly control CBM accumulation.

Keywords: coalbed methane enrichment; Permian Longtan Formation; high-rank coal; depositional
environment; tectono-thermal evolution; regional geological structure

1. Introduction

Abundant coalbed methane (CBM) resources are stored in high-rank coals in China,
representing a geological resource of 1.044 × 1013 m3, which accounts for approximately
one-third of the total CBM resources [1–3]. Realizing the development and utilization of
high-rank CBM plays an important and reliable role in guaranteeing national green energy
security, reducing the hazards of coal mine gas, and decreasing carbon dioxide emissions [4–7].
To date, high-rank CBM has garnered extensive attention, with major breakthroughs and
commercial developments in the Jincheng and Shouyang–Yangquan areas (Qingshui basin) in
North China, the southern part of the Hancheng–Yanchuan area (Ordos basin), and several
areas of the Qianbei–Qianxi–Chuannan area in Southwest China [8–13].

However, to efficiently increase the supply of green energy and successfully achieve the
carbon peak and carbon neutrality in China by 2030 and 2060, high-rank CBM exploration
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and development should be carried out immediately. Some areas that have not been
extensively explored for high-rank CBM in Southwest China will become a major focus of
research, such as typical coalfields distributed in Chongqing city. Chongqing city is rich
in high-rank CBM resources, with a conservative value of 2 × 1011 m3. In particular, the
CBM resources from the Songzao coalfield account for 65.7% of the total resources, with
2 × 108 m3/km2, indicating a great resource potential. In addition, the Songzao coalfield is
also an important anthracite production base [14] and one of the coalfields with the most
serious coal and gas outburst accidents in China. Therefore, the Songzao coalfield is an
ideal area for further exploration, development, and utilization of high-rank CBM resources
in Chongqing city, Southwest China.

Previous studies effectively summarized the systematic geologic theory of high-rank
CBM formation in the carboniferous Taiyuan Formation and Permian Shanxi Formation of
the Jincheng area and Shouyang–Yangquan areas within the Qinshui basin, including their
geochemistry, reservoir physical, and gas-bearing properties, accumulation mechanism, enrich-
ment pattern, main controlling factors, a geological model, and a resource prospect [9,12,15–22].
High-rank CBM reservoirs are highly diverse, complex, and heterogeneous, with limited per-
meability, undersaturation, low pressure, overmaturation, and high gas contents. However,
there are distinct geological variables impacting high-rank CBM accumulation in different
regions of China, posing hurdles to improving the CBM production potential [2,15,23,24]. Com-
pared with the great progress regarding high-rank CBM within the Qinshui basin in North
China, although some geological investigations on high-rank CBM in the Permian Longtan
Formation in the northern and western parts of Guizhou province in Southwest China were
conducted [8,10,25–29], the geological characteristics of high-rank CBM in the Songzao coalfield
in Chongqing are still lacking in pertinence and validity, and CBM exploration has not yet
achieved a major breakthrough. A detailed study of the geological constraints on the CBM gas
content in the high-rank coals of the Longtan Formation from the coalfield is thus indispensable.

In this study, coal geochemical, coal reservoir physical, and gas-bearing properties
of the main high-rank coal seams in the Longtan Formation in the Songzao coalfield of
Chongqing city were analyzed. The effects of depositional environment, tectono-thermal
evolution, and regional geological structural conditions on coal formation, CBM gas pro-
duction potential, and gas accumulation in high-rank coals are comprehensively discussed,
and major geological constraints on the gas-bearing properties of high-rank coal from the
Longtan Formation in the Songzao Coalfield are identified.

2. Geological Setting

The Songzao coalfield is situated in the Qijiang District in the southwestern part
of Chongqing city in Southwest China and has a total area of approximately 235.5 km2

(Figure 1a,b). It mainly consists of twelve key coal mines, i.e., the Songzao, Tonghua, Guany-
inqiao, Yangchatan, Yuyang, Datong, Shihao, Zhangshiba, Liyuanba, Daluo, Xiaoyutuo,
and Macun mines (Figure 1b).

2.1. Regional Structural Features

The coalfield is located in the secondary fold belt on the western flank of the Jiudianya,
Jiulongshan, and Sangmuchang anticlines (Figure 1b). Its structural pattern presents a
radial shape that converges to the northeast and spreads to the southwest. The Lianghekou
syncline, Yangchatan anticline, Damushu syncline, and Yutiao anticline from east to west in
the coalfield form a “bulge-shaped structure” to the northwestward rise. This structure is
distinguished by wide, low anticlines and compact synclines with a gradual weakening of
fold amplitude from east to west. Surface fracture phenomena are relatively insignificant
and minor, and only those associated with the four folds affect the mining conditions.
In addition, the stratigraphic denudation in the anticline cores is more serious than that
in the syncline cores, the extension direction of the fracture zones is nearly parallel or
perpendicular to the anticline axis, and the fracture extensions are not far.
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Figure 1. (a) Location of the Songzao coalfield in Chongqing city, Southwest China; (b) regional
structural and lithostratigraphic divisions of the Songzao coalfield.

2.2. Regional Structural Features

The coalfield is located in the secondary fold belt on the western flank of the Jiudianya,
Jiulongshan, and Sangmuchang anticlines (Figure 1b). Its structural pattern presents a
radial shape that converges to the northeast and spreads to the southwest. The Lianghekou
syncline, Yangchatan anticline, Damushu syncline, and Yutiao anticline from east to west in
the coalfield form a “bulge-shaped structure” to the northwestward rise. This structure is
distinguished by wide, low anticlines and compact synclines with a gradual weakening of
fold amplitude from east to west. Surface fracture phenomena are relatively insignificant
and minor, and only those associated with the four folds affect the mining conditions.
In addition, the stratigraphic denudation in the anticline cores is more serious than that
in the syncline cores, the extension direction of the fracture zones is nearly parallel or
perpendicular to the anticline axis, and the fracture extensions are not far.

2.3. Coal-Bearing Stratigraphic Characteristics

The strata exposed in the coalfield mainly include the Paleozoic Permian series and
the Mesozoic Triassic and Jurassic series (Figure 1b). The Jurassic and Triassic strata are
widely distributed in the synclines in the western, eastern, and southeastern parts of the
coalfield, while the Permian strata are mainly exposed along the anticline axis or near the
axis in the eastern and southeastern parts of the coalfield. By the latest Permian integrative
stratigraphy and timescale of China [30], the upper Permian series in the coalfield include
the Wuchiapingian and Changhsingian stages. The Changhsingian stage includes the
Changxing Formation, and the Wuchiapingian stage includes the Longtan Formation.

The coal measure strata of the coalfield are exposed in the Longtan Formation, which
mainly consists of coal seams, bioclastic and siliceous limestone, sandstone, siltstone, silty
mudstone, calcareous mudstone, argillaceous shale, and tuffaceous sediments, and belong
to the shallow bay–tidal flat–lagoon mixed deposits of alternating marine–continental
transitional environments along the western margin of a shallow carbonate platform
within an epicontinental sea ([14,31–37] and Figure 1). The Kangdian Oldland is the
dominant terrestrial source for the coalfield. The total thickness of the coal measure strata is
generally approximately 66 to 80 m, containing 5 to 13 coal seams with a high metamorphic
degree (type III kerogen) and an average maximum vitrinite reflectance (R0, max) greater
than 2.0%, among which, the main coal seams include M6, M7, M8, and M12 throughout
the whole coalfield, which are important targets of CBM exploration and development
(Figure 2). The middle Permian Maokou Formation disconformably underlies the Longtan
coal measure strata, which consists of medium-to-thick-bedded and massive bioclastic
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limestones that are rich in marine fossils, mostly including fusulinids, corals, brachiopods,
ammonites, conodonts, benthic foraminifera, and calcareous algae [38,39]. The Longtan
Formation overlies the Changxing Formation, which is composed of medium-to thick-
bedded bioclastic limestone containing less dolomite and less banded and nodular cherts
dominated by marine fusulinid, coral, brachiopod, and ammonite fossils in a shallow
carbonate platform environment.
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Figure 2. Typical lithologic stratigraphic framework of the Permian Longtan Formation in the
Songzao coalfield.

2.4. Thickness and Distribution of the Main Coal Seams

The thickness and distribution of the main coal seams M6, M7, M8, and M12 in the
Longtan Formation in the Songzao coalfield are relatively stable (Figures 2 and 3 and
Table 1). The coal seams are usually buried at a depth of 400~1700 m, and their total
thickness is 4.01~9.88 m, with an average of 7.58 m and a total recoverable value of 5.45 m.
There is a thinning zone with a range of 2 km2 in the northwestern part of the coalfield,
which is situated at the junction of the Xiaoyutuo and Daluo mines. The total thickness
of the four coal seams averages approximately 3 m, but their largest area, distributed in
the Shihao, Datong, and Daluo mines located on the southeastern flank of the Damushu
syncline, has a total thickness of approximately 8 m. But in the monoclinal structure in the
southwestern area of the coalfield, the thickness of the four coal seams is generally small.
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Table 1. General parameters of the coal seams M6, M7, M8, and M12.

Coal Seam
Number

Depth of
Coal Seams

(m)

Thickness (m) Coal Seam
Interlayer

Spacings (m)

Tonstein
Thickness (m)

Lithological Characters of Coal Seam
Roof and Floor

Stable and RecoverableMinimum–
Maximum

Minimum–
Maximum Coal Seam Floor Coal Seam Roof

Average Average

M6

400~1700

0.4~1.47
7.1

0.03~0.24
mudstone–siltstone mudstone–siltstone

relatively stable
locally recoverable0.94 0.11

M7
0.71~1.62 0.01~0.57

mudstone–siltstone mudstone
relatively stable

locally recoverable1.11
6.6

0.26

M8
0.83~6.43 0.03~0.58

sandstone–siltstone mudstone–siltstone stable
recoverable3.04

22.6
0.24

M12
0.31~3.33 0.01~0.1 siltstone–sandy

mudstone
siltstone–sandy

mudstone
relatively stable

locally recoverable0.86 0.04

The coal seams M6, M7, and M8 are located in the middle part of the Longtan coal
measure strata, with interlayer spacings of 7.1 m and 6.6 m. The thickness of the coal seams
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M7 and M8 revealed a trend of gradual increase as the depth increased. The coal seam
M12 is located in the lower part of the coal measure strata, with an interlayer separation of
approximately 22.6 m from the coal seam M8. The total thickness of the coal seam M6 is
0.4~1.47 m, with an average of 0.94 m, and it serves as an unstable coal seam, containing
0~1 layer of tonstein and 2 local layers. The total thickness of these tonsteins is 0.03~0.24 m,
with an average of 0.11 m. The coal seam is thinner at the junction of the Xiaoyutuo
and Daluo mines, with a thickness of less than 0.75 m. The overall thickness of the coal
seam M7 is 0.71~1.62 m, with an average of 1.11 m. It is a thin coal seam with a simple
structure and a stable thickness. In certain regions, the middle part of the coal seam is
interspersed with a 0.01~0.57 m thick layer of argillaceous tonstein. The most important
recoverable coal seam, M8, is 0.83~6.43 m thick, with an average thickness of 3.04 m, and is
a medium-thickness and stable coal seam. The structure of the coal seam is simple, and
the tonsteins are generally located in its upper part, with a total thickness of 0.03~0.58 m
and an average thickness of 0.24 m. The thickness of the zone delimiting the lower part
of the coal seam is generally 6~9 times that of the upper part, leading to the formation
of a three-layer tonstein structure with two coal layers and one tonstein layer. The coal
seam M12, situated in the plunging crown of the Yutiao anticline, is located in the area
including the coal seams M11 and M12. It is directly overlain by aluminum mudstone, of
which the east side is the independent stratification area of the coal seams M11 and M12.
The coal seam M11 is located above the coal seam M12, with a thickness of 0.41~3.41 m. The
coal seam M11 is partially recoverable, while the coal seam M12 does not have, generally, a
recoverable thickness, belonging to a nonrecoverable coal seam. In this study, the two coal
seams are jointly referred to as coal seam M12. The total thickness of the coal seam M12 is
0.31~3.33 m, with an average of 0.86 m, indicating that it is a thin coal seam; its general
thickness is between recoverable and critically recoverable, making it a relatively stable
coal seam.

3. Sampling and Methods
3.1. Evaluation of the Samples

Samples from three CBM wells (QD1, QM1, and QM2 wells) and more than eighty coal
exploration boreholes of the Upper Permian Longtan Formation in the Songzao coalfield
were collected, with burial depths ranging from approximately 400 to 1700 m, and the
distribution of CBM gas in the main coal seams is described. Then, 99 experimental
samples of high-rank coal from 3 drilling cores in the QD1, QM1, and QM2 wells and
5 coal exploration boreholes (ZK1, ZK4, SZK8-2, SZK10-3, and SZK10-2) in the coalfield
were analyzed in depth. The experimental materials were systematically extracted from
the coal seams M6, M7, M8, and M12 of the Longtan Formation to determine geological
parameters such as macerals, vitrinite reflectance (R0), total organic carbon (TOC), amount
of free hydrocarbons plus yield of residual hydrocarbons (S1 + S2), maximum pyrolysis
temperature (Tmax) in rock pyrolysis, pore structure, porosity, and permeability, gas content,
and components. All the materials were sealed with desiccators and then measured in the
laboratory of the Chongqing Mineral Resources Supervision and Testing Center, Chinese
Ministry of Land and Resources. Some data for the coal seams M6, M7, M8, and M12 of
the Songzao coalfield, such as thickness, CBM gas content, and macerals, were primarily
obtained from previous studies [14,31,33–35,37,40,41] and geological reports on the detailed
investigation of coal resources in various coal mines of the coalfield.

3.2. Analytical Methods

In this study, macerals and R0 were measured using a Leica DM4500P light micro-
scope (Leica, Wetzlar, Germany) with a 40× objective to analyze the volume percentages of
macerals and evaluate the thermal maturity of organic matter based on reflectance spec-
trometry, fluorescence, and transmission spectrometry. The analytical methods referred to
the Chinese oil and gas industry standards SY/T 6414-2014 [42] and SY/T 5124-2012 [43].
Five thermal evolution stages could be generally identified, i.e., immature (R0 < 0.5%),
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lowly mature (R0, 0.5~0.7%), mature (R0, 0.7~1.3%), highly mature (R0, 1.3~2.0%), and
overmature (R0 > 2.0%) stages.

To determine the original parent organic matter material in the hydrocarbon source rock,
coal samples were pyrolyzed using a China Haicheng Rock-Eval VIII instrument (Haicheng
Petrochemical Instrument Factory, Haicheng, China) with a flame ionization detector. The
program was carried out in accordance with the national standard GB/T 18602-2012 [44].

The pore structure was observed, and the pores were counted by scanning electron
microscopy (SEM) and high-pressure mercury intrusion porosimetry. SEM imaging was
performed using an American Thermo Fisher Scientific Apreo SHiVac-Type field-emission
scanning electron microscope (FE-SEM) (Thermo Fisher Scientific, Waltham, MA, USA)
and an American Gatan 697 Ilion II Argon ion-polishing mill (AMETEK, Berwyn, PA, USA)
to determine the pore characteristics in the coal samples based on the Chinese oil and gas
industry standard SY/T 5162-2014 [45]. The classification of the pore type referred to a
previous work, which described organic matter pores, interparticle mineral pores, intra-
particle mineral pores, and fracture pores [46]. Based on the guidelines of the International
Union of Pure and Applied Chemistry (IUPAC), pores in coal can be classified into three
categories, i.e., “micropores”, with a diameter between 0 and 0.002 µm (0~2 nm), “meso-
pores” with a diameter between 0.002 µm and 0.05 µm (2~50 nm), and “macropores” with
a diameter greater than 0.05 µm (>50 nm) [47]. The mercury instrusion porosimetry was
conducted via an American Mike Autopore IV 9500 mercury porosimeter (Micromeritics,
Atlanta, GA, USA) to determine different pore volumes under the national standard of
GB/T 21650.1-2008 [48].

The porosity and permeability were determined via an American CORETEST SYS-
TEMS Inc. AP-609 porosity–permeability tester (CoreTest, Atlanta, GA, USA) with the ana-
lyzed porosity ranging from 0.1 to 40%, and permeability ranging from 0.001 to 10,000 mD
on the basis of the national standard SY/T 6385-2016 [49].

The gas content and its components were determined by in situ gas desorption and
isothermal adsorption experiments and gas composition determination. The contour map
of CBM gas concentration was established by referring to two geostatistical methods, krig-
ing and triangulation, based on previous research and geological data on coal resources in
the Songzao coalfield. The in situ CBM desorption was measured using a self-developed
in situ gas-bearing test instrument from the Chongqing Institute of Geology and Mineral
Resources to evaluate CBM potential and sweet spot prediction. The in situ test methods
referred to the national standard GB/T 19559-2008 [50]. The isothermal adsorption ex-
periment was performed using a ZJ466 Rubotherm IsoSORP HP StaticIII-Type magnetic
suspension balance gravimetric high-pressure isothermal adsorption–desorption instru-
ment (Rubotherm, Bochum, Germany). The Langmuir volume pressure is referred to as the
Langmuir adsorption isothermal [51]. The gas composition was evaluated by using an ITQ
900 gas chromatographer (GC) (Thermo Fisher Scientific, Waltham, MA, USA) equipped
with a thermal conductivity detector and a flame ionization detector based on the national
standard GB/T 13610-2014 [52].

4. Results
4.1. Coal Geochemical Characterization

The coal geochemical parameters were directly obtained from the maceral, rock pyrol-
ysis, and R0 experiments. The coal maceral analysis of samples from the Datong mine and
the QD1 well revealed that the average content of organic components in the coal seams
M7, M8, and M12 was 81.5 to 88.0%, with the coal seam M8 having the highest content
(Table 2). The content of typical inorganic components varied from 12.0 to 18.5%, with the
coal seam M12 possessing the highest content. On average, vitrinite was found to contribute
60.1–69.0% of the organic components, whereas inertinite accounted for 14.3~25.3% of them.
Clay minerals appeared to be the most abundant inorganic component, followed by sulfide
minerals, while oxide and carbonate minerals were less prevalent.
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Table 2. Coal macerals from the Datong mine and the QD1 well.

Coal Seam
Number

Coal Macerals from Main Coal Seams (Minimum~maximum
Average (quantity) )

Organic Component Inorganic Component
Vitrinite (%) Inertinite (%) Subtotal (%) Clay Mineral (%) Sulfide Mineral (%) Oxide Mineral (%) Carbonate Mineral (%) Subtotal (%)

M7
55.2∼64.3
60.1 (5)

19.3∼34.2
25.3 (5)

81.8∼89.4
85.4 (5)

5.6∼13.8
9.7 (5)

1.1∼4.9
2.5 (5)

0.7∼1.8
1.1 (5)

0.4∼2.2
1.3 (5)

13.9∼18.2
14.6 (5)

M8
60.3∼77.1
69.0 (7)

10.5∼25.6
19.0 (7)

85.6∼90.3
88.0 (7)

3.3∼9.8
7.6 (7)

1.2∼5.2
2.5 (7)

0.1∼5.8
1.6 (7)

0.1∼0.6
0.3 (7)

9.7∼14.4
12.0 (7)

M12
62.3∼72.2
67.2 (5)

11.0∼18.3
14.3 (5)

75.6∼85.5
81.5 (5)

8.7∼16.3
12.5 (5)

2.0∼7.1
4.1 (5)

0.1∼1.5
0.4 (5)

0.1∼3.7
1.5 (5)

14.5∼24.4
18.5 (5)



Energies 2024, 17, 1262 9 of 22

The four coal samples from the coal seams M6, M7, M8, and M12 in the QD1 well
had high TOC contents ranging from 31.49 to 51.32 wt% (Table 3). These studied coals
presented low S1 and S2 values in the ranges of 0.0916~0.12 mg/g and 4.3565~8.4797 mg/g,
respectively. The TOC and S1 + S2 values indicated that the coals are overmature, as
discussed below, and have a fair hydrocarbon generation potential. The Tmax values ranged
from 534 to 549 ◦C, with an average of 539 ◦C, suggesting that the coals experienced
thermal evolution to overmaturation. The hydrogen index (HI) values ranged from 13.83
to 16.52 mg HC/g TOC, with a mean value of 15.21 mg HC/g TOC, indicating that type
III kerogen (less than 200 mg HC/g TOC) is dominant in the coal seams M6, M7, M8, and
M12 of the Longtan Formation. The R0 values varied from 2.09 to 2.24%, averaging 2.17%.
In addition, the coals in the Longtan coal measure strata from Chongqing city contain
mostly semianthracite and anthracite, with R0 values of 1.88~2.6% on average, according to
previous studies [14,29,31], and underwent a highly thermal evolution process, leading to
high-rank coal with a post-thermal maturity and good potential for CBM accumulation.

Table 3. Geochemical parameters of the high-rank coal in the QD1 well.

Coal Seam Number S1 (mg/g) S2 (mg/g) Tmax (◦C) HI (mg/g) TOC (wt%) R0 (%)

M6 0.0975 7.183 534 15.66 45.86 2.13
M7 0.12 8.4797 535 16.52 51.32 2.09
M8 0.0916 7.3502 535 14.81 49.63 2.24
M12 0.1047 4.3565 549 13.83 31.49 2.2

Remarks: HI = S2 × 100/TOC, mg HC/g TOC.

4.2. Coal Reservoir Characterization
4.2.1. Pore Structure

The coal samples from the coal seams M6, M7, M8, and M12 analyzed by SEM showed
that the coal pores were mainly gas holes and erosion pores, which were distributed inside
the massive organic components. These pores’ diameters were generally 0.13~3.45 µm,
with a maximum of 10.69 µm (Figure 4). Coal fissures had not developed, and only a few
of them were visible. The width of these fissures was generally 1.0~7.18 µm. The fissures
were mainly shell-like and step-shaped. The organic components were distributed in flatter
blocks and strips, with clastic, agglomerate, and granular clay minerals dominating the
mineral composition of the coal.

The coal pore volumes in the study area varied from 1.48 to 48.40 × 10−4 cm3/g, with
an average of 10.86 × 10−4 cm3/g, and the average volume ratio was 33.33% (Table 4).
Meanwhile, the volume ratio of the coal seam M6 was more than 40%, and micropores were
predominant. The variation range of the micropore volumes was 2.34~48.40 × 10−4 cm3/g,
with an average of 11.78 × 10−4 cm3/g, and the average volume ratio of the micropores
was 32.28%. The variation range of the mesopore volume was 1.48~11.40 × 10−4 cm3/g,
with an average of 4.56 × 10−4 cm3/g. The volume ratio of the mesopores was 7.22~20.11%,
with an average of 13.59%. The mesopore volume in these coal seams was much smaller.
Moreover, the variation range of the macropore volumes was 7.87~27.24 × 10−4 cm3/g,
with an average of 16.22 × 10−4 cm3/g, and the volume ratio of the macropores ranged
from 28.12 to 81.37%, with an average of 54.14%. In summary, the coal in the coalfield
appeared to contain mainly macropores and micropores, and their total proportion was
greater than 80%. Among them, the coal seam M6 revealed a prevalence of micropores, and
the other coal seams presented a prevalence of macropores.

4.2.2. Porosity and Permeability

Depending on the porosity and permeability data of 19 coal samples from different
mines within the coalfield, it was determined that the coal porosity ranged from 2.36%
to 5.26%, with an average of 4.29%. The permeability varied from 0.0029 to 0.0221 mD,
with the majority of the samples having a permeability below 0.01 mD and an average
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permeability of 0.0069 mD and thus placed in the ultralow-permeability coal seam group
(Table 5). Except for the QM1 well, the coal permeability in the Daluo and Shihao mines
was found to be extremely low, with the highest permeability not exceeding 0.01 mD, and
the average being 0.006 mD, which is related to the fact that the tested coal samples were
taken from deep coal seams (buried more than 1000 m).
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Table 4. Coal pore structure and volume parameters in the coal seams M6, M7, M8, and M12

determined by mercury injection porosimetry.

Coal Seam Number Buried Depth (m) Pore Volume (10−4cm3/g) Pore Volume Ratio (%)
Well/Borehole NumberV1 V2 V3 Vt V1/Vt V2/Vt V3/Vt

M6

886.20 7.87 3.47 8.56 19.90 39.55 17.44 43.02 QM1 Well
1661.85 11.12 6.43 22.00 39.55 28.12 16.26 55.56 Daluo Mine, ZK1
1381.45 15.29 6.99 20.30 42.58 35.91 16.42 47.67 Daluo Mine, ZK4
912.41 15.32 5.16 13.70 34.18 44.82 15.10 40.08 Shihao Mine, SZK8-2

1074.34 25.22 11.40 48.40 85.02 29.66 13.41 56.93 Shihao Mine, SZK10-2
1444.85 19.75 6.89 15.50 42.14 46.87 16.35 36.78 Shihao Mine, SZK10-3
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Table 4. Cont.

Coal Seam Number Buried Depth (m) Pore Volume (10−4cm3/g) Pore Volume Ratio (%)
Well/Borehole NumberV1 V2 V3 Vt V1/Vt V2/Vt V3/Vt

M7

1672.09 15.84 2.23 3.24 21.31 74.33 10.46 15.20 Daluo Mine, ZK1
1393.31 15.73 2.50 5.98 24.21 64.97 10.33 24.70 Daluo Mine, ZK4
917.76 14.77 3.32 6.52 24.61 60.01 13.49 26.49 Shihao Mine, SZK8-2

1452.42 14.39 5.27 6.55 26.20 54.92 20.11 25.00 Shihao Mine, SZK10-3
1081.12 14.64 3.12 10.00 27.76 52.74 11.24 36.02 Shihao Mine, SZK10-2
898.70 14.20 3.76 8.05 26.01 54.59 14.46 30.95 QM1 Well

M8

1685.02 18.97 2.19 3.54 24.70 76.80 8.87 14.33 Daluo Mine, ZK1
1400.17 14.54 3.16 9.11 26.81 54.23 11.79 33.98 Daluo Mine, ZK4
929.95 14.36 3.13 5.37 22.86 62.82 13.69 23.49 Shihao Mine, SZK8-2

1461.11 16.48 5.19 14.60 36.27 45.44 14.31 40.25 Shihao Mine, SZK10-3
1091.12 18.45 5.45 14.00 37.90 48.68 14.38 36.94 Shihao Mine, SZK10-2
905.90 16.68 1.48 2.34 20.50 81.37 7.22 11.41 QM1 Well

M12

1704.07 10.89 3.50 7.51 21.90 49.73 15.98 34.29 Daluo Mine, ZK1
1431.64 27.24 2.74 6.32 36.30 75.04 7.55 17.41 Daluo Mine, ZK4
1114.23 20.42 10.90 24.50 55.82 36.58 19.53 43.89 Shihao Mine, SZK10-2
934.30 14.76 2.10 3.14 20.00 73.80 10.50 15.70 QM1 Well

Remarks: V1, V2, and V3 are the pore volumes of macropores, mesopores, and micropores, respectively. Vt is the
total pore volume.

Table 5. Coal porosity and permeability data of samples from the coal seams M6, M7, M8, and M12.

Coal Seam Number Burying Depth (m) Porosity (%) Permeability (mD) Well/Borehole Number

M6

1662 4.25 0.0063 Daluo Mine, ZK1
1381 4.32 0.0065 Daluo Mine, ZK4
1445 3.82 0.0077 Shihao Mine, SZK10-3
912 4.57 0.0050 Shihao Mine, SZK8-2
1074 4.67 0.0063 Shihao Mine, SZK10-2

M7

899 2.36 0.0221 QM1 Well
1672 5.01 0.0062 Daluo Mine, ZK1
1393 3.95 0.0054 Daluo Mine, ZK4
918 5.08 0.0059 Shihao Mine, SZK8-2
1452 4.68 0.0086 Shihao Mine, SZK10-3
1081 3.54 0.0072 Shihao Mine, SZK10-2

M8

1685 3.95 0.0043 Daluo Mine, ZK1
930 5.26 0.0068 Shihao Mine, SZK8-2
1461 4.16 0.0094 Shihao Mine, SZK10-3
1091 4.19 0.0031 Shihao Mine, SZK10-2
1400 3.94 0.0050 Daluo Mine, ZK4

M12

1704 4.31 0.0075 Daluo Mine, ZK1
1432 4.21 0.0042 Daluo Mine, ZK4
1114 5.18 0.0029 Shihao Mine, SZK10-2

4.3. Coal Gas-Bearing Properties
4.3.1. Composition of CBM

According to the gas component data of the 15 coal samples from the QD1, QM1, and
QM2 wells (Table 6), the concentration of desorbed CH4 in the coal seams M6, M7, M8,
and M12 ranged from 88.62 to 99.41%, with an average of 94.45%. The content of C2+ was
0~0.18%, while the inorganic component comprised minor amounts of CO2 and N2. The
CO2 content ranged from 0.48 to 1.55%, while the N2 content was typically less than 9.71%.

4.3.2. Distribution of the CBM Gas Contents

Based on the in situ desorption analysis of the CBM gas content in the QM1, QM2,
and QD1 wells, the in situ desorption gas contents in the coal seams M6, M7, M8, and M12
were 12.5~15.3 m3/t, 21.4~25.8 m3/t, 15.9~25.6 m3/t, and 12.1~21.1 m3/t, respectively. The
gas contents in the main coal seams from the three CBM wells were more than 8.0 m3/t,
indicating a good material foundation for gas generation. Meanwhile, vertically, the gas
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contents in the coal seams M7 and M8 were relatively higher than those in the coal seams
M6 and M12.

Table 6. Gas component data of samples from the coal seams M6, M7, M8, and M12 in the QD1, QM1
and QM2 wells.

Well Number Coal Seam Number
Content without Air of Components (Volume)/%

N2 CO2 CH4 C2+

QD1 Well
M6

6.90 0.88 92.18 0.04
QM1 Well 2.56 1.12 96.21 0.11
QM2 Well 7.81 0.90 91.12 0.18
QM2 Well M7

1.51 0.90 97.44 0.16
QM1 Well 9.54 0.65 89.71 0.10
QD1 Well

M8

6.26 0.89 92.84 0.01
QM1 Well 6.72 1.05 92.15 0.08
QM1 Well 0.00 0.50 99.41 0.09
QM2 Well 9.71 1.55 88.62 0.13
QM2 Well 8.69 1.24 89.92 0.15
QM2 Well 2.08 1.24 96.50 0.18
QD1 Well

M12

3.72 1.23 95.05 0.00
QM2 Well 1.21 0.83 97.74 0.23
QM2 Well 0.45 0.53 98.85 0.17
QM1 Well 0.35 0.48 99.03 0.13

As can be seen from the distribution of the CBM gas contents in the coal seams M6, M7,
M8, and M12 from different mines (Figure 5 and Table 7), the average CBM gas content in
these coal seams in the Xiaoyutuo mine ranged from 12.47 to 21.45 m3/t, with the highest
content was found in the coal seam M8. The average CBM gas contents in the coal seams
of the Datong and Shihao mines showed a very similar variation trend and were only
11.99~16.98 m3/t and 11.15~17.42 m3/t, respectively. The average CBM gas content in the
coal seams of the Daluo mine ranged from 26.14 to more than 30 m3/t and was the highest
in the study area.

Table 7. Average CBM gas contents of the coal seams M6, M7, M8, and M12 in different coal mines of
the Songzao coalfield.

Coal Mine Coal Seam Average Depth
(m)

Average Gas Content
(m3/t)

Xiaoyutuo

M6 776.98 12.47
M7 850.29 15.42
M8 918.95 21.45
M12 1057.1 18.14

Datong
M6 533.39 11.99
M7 640.27 15.92
M8 690.34 16.98

Daluo
M7 1152.59 26.14
M8 1549.19 26.25
M12 1587.06 28.18

Shihao

M6 885.48 11.17
M7 1025.49 17.42
M8 1076.72 17.02
M12 1079.65 11.51
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Figure 5. Regional distribution of the CBM gas contents in high-rank coal from the coal seams M6,
M7, M8, and M12. Typical CBM gas content data are reported in Table S1.

The average CBM gas content in the coal seam M8 in the coalfield was usually higher
than 16 m3/t, and some areas with lower gas contents were found only at the junction of
the Datong, Xiaoyutuo, and Daluo mines and at the junction of the Datong and Shihao
mines. The highest CBM gas content in regional coal seams was above 30 m3/t, and these
high-content sites are mainly distributed in deep areas of the Xiaoyutuo, Daluo, and Shihao
mines along the Yutiao anticline. The total CBM gas content in these coal seams appeared
to increase from east to west and as the elevation of the coal seam floor decreased.

4.3.3. Adsorption–Desorption Characteristics

The isothermal adsorption results of CBM gas analysis revealed that the Langmuir
volume and the Langmuir pressure in the coal seam M6 were 6.40 cm3/g and 1.30 MPa,
respectively (Figure 6). The coal seam M8 was characterized by the largest Langmuir
volume of 24.88 cm3/g and a Langmuir pressure of 1.04 MPa. The Langmuir volume of the
coal seam M12 was 15.24 cm3/g, and its Langmuir pressure was only 0.91 MPa.
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QD1 well.

The central depths (vertical depths) of the coal seams M6, M8, and M12 in the QD1
well were 888.1 m, 904.7 m, and 933.6 m, respectively. Based on the formation pressure
coefficient of 1.0 for the Xiaoyutuo mine, the formation pressures of the coal seams M6,
M8, and M12 were 8.88 MPa, 9.05 MPa, and 9.34 MPa, respectively. Combining these data
with the isothermal adsorption curve of the coal samples and the Langmuir isothermal
adsorption equation, the theoretical CBM gas contents of the coal seams M6 and M12 were
5.58 m3/t and 13.88 m3/t, respectively. However, the coal seam M8 showed the highest
theoretical gas content of 22.32 m3/t, appearing as the most promising candidate for CBM
exploration and development efforts.
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5. Discussion
5.1. Constraint of the Depositional Environment on Coal Formation

The depositional environment constrains the characteristics of coal accumulation,
the petrographic composition, and the spatial combinations of coal seams [14,31,53–55],
which largely provide the material basis for CBM generation. When the depositional
conditions are good, the coal seam thickness is large, and its distribution is stable, leading
to a significant possibility of CBM gas production. In contrast, when the subsidence
amplitude is not obvious, and the depositional conditions are poor, the coal seam thickness
is unevenly distributed, and CBM gas production may also be relatively small.

A set of lowland residual plain deposits, dominated by bauxitic mudstone and kaolin-
ite tonstein, developed steadily and were widely distributed throughout the weathering
and denudation substrate at the top of the Maokou Formation during the early Wuchiapin-
gian Period in the Songzao coalfield, as the crust started to sink slowly, and a large-scale
sea recession stopped (Figures 2 and 7a,b).
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As the crust continued to sink, and the first transgression invaded the area from the
northeast to the southwest of Chongqing, the range of the marine–continental transitional
zone gradually expanded, and large-scale coal accumulation occurred throughout the
coalfield, resulting in the formation of the stably developed coal seam M12, which is the
product of regional transgression and is commonly presented during the initial stage of the
early Wuchiapingian Period.

After that, seawater continued to rise slowly, the effect of coal gathering ended, the
littoral tidal flat environment began to develop in a large region, and a set of fine clastic
sediments such as siltstone and silty mudstone generally formed. Meanwhile, under
the dual effects of further crust sinking and seawater rising, marine carbonate sediments
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appeared locally in the coalfield, and a thicker layer of limestone formed, represented by
the Guanyinqiao limestone, which was deposited in a shallow bay with varying amounts
of siliceous clastics. As the transgression stopped briefly, and the crust rose slowly, tidal
flat and lagoon deposits developed on the top of the Guanyinqiao limestone, consisting
primarily of sandstone, shale, and mudstone, locally interspersed with thin layers of
limestone and unstable coal seams such as the coal seams M10 and M11. The largest
transgression of the Wuchiapingian Period occurred after the deposition of the coal seams
M10 and M11, forming the Wenshui–Liangcun limestone of the shallow bay environment
throughout the whole coalfield. The Wenshui–Liangcun limestone represents the highest
position of the transgression during the Wuchiapingian Period, and then the depositional
sequence of lagoon and tidal flat redeveloped due to a seawater falling trend toward the
east side of the coalfield and a crustal basement imbalance, forming the coal seam M7,
which also reflects the fluctuating in and out movement of seawater. During this stage, the
coal seams M8 and M9 with regional spreading also formed, among which the coal seam
M8 is the best developed.

With the beginning of a new transgression, the crust sank, and seawater rose, and
the depositional sequence shallow bay–lagoon–tidal flat manifested again over a wide
range, forming fine clastic sediments dominated by siltstone and silty mudstone, thin
coal seams (the relatively stable coal seams M6 and M7), and thin marker limestone layers
(the Liyuanba, Zhangshiba, and Xianyuan limestone layers). During this stage, there
were several short periods of regression, and the coal measure strata better developed
to the west side of the coalfield. By the Changhsingian Period, a long-term and stable
shallow carbonate platform had emerged in the Songzao field, implying the end of the
Wuchiapingian marine–continental transitional environment.

However, the interpretation of the attributes of sparse vertical and horizontal sections
and of borehole data using a geologic model, due to the heterogeneity and the inability to
explain their spatial distribution, is difficult [56]. The traditional geostatistical interpolation
approaches identified unhandled uncertainty in the Wuchiapingian marine–continental
transitional environment pattern. This issue can be overcome by incorporating supplemen-
tal testing data to obtain more accurate inference results using hybrid techniques, such as
a hybrid ensemble-based automated deep learning methodology [56]. In conclusion, the
Songzao coalfield experienced repeated transgression and regression events from northeast
to southwest throughout the Late Permian Wuchiapingian Period, with shallow bay–tidal
flat–lagoon deposits dominating the depositional system (Figure 7a,b). Large-scale and
stable coal accumulation mainly occurred in the early and middle Wuchiapingian. After
the progressive rising of seawater and the variable fluctuation of the crust, no favorable
coal-forming environment developed; hence, few coal seams formed in the coalfield in the
middle to late Wuchiapingian.

5.2. Tectono-Thermal Evolution Constraining the CBM Production Potential

The Emeishan mantle plume activity was a large-scale tectono-thermal evolution
event in Southwest China that constructed the Emeishan large igneous province in the
latest middle Permian [57–59], triggering multistage intermediate-acidic volcanic eruptions
during the late Permian Wuchiapingian and Changhsingian [60–62]. This event, with
different development stages (emplacement, doming, and erosion of the Emeishan mantle
plume and continued volcanism), deeply impacted the marine sedimentary strata in this
time interval, forming a high geothermal field [63–67]. The Dongwu movement between
the middle and the late Permian was a rapid differential uplift of the crust caused by mantle
plume activity, and the top of the middle Permian Maokou Formation exposed at the
surface underwent weathering and denudation [38]. The resulting tectonic fractures, such
as the Huayingshan and Qiyueshan fault belts, provided migration channels for magmatic
upwelling, intrusion, and volcanic activity throughout some regions of Sichuan province
and Chongqing city in Southwest China (Figure 8a,b).
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As the crust subsided again, marine–continental transitional deposits began to de-
velop during the late Permian Wuchiapingian Period, forming the coal measure strata of
the Longtan Formation. In addition, some tonstein (or tuff) layers were found near or
within the coal seams of the Longtan Formation in southern Sichuan province, southern
Chongqing city, western Guizhou province, and eastern Yunnan province ([33,35,36,68–70]
and Figure 2), which belong to the outer zone of the Emeishan large igneous province and
resulted from the waning activity of the mantle plume (Figure 8a,b). The tonsteins (or tuffs),
originating from various partial melting conditions, indicated that the volcanic activities
were characterized by multiple eruptions, relatively short time intervals, and small scales
during peat accumulation. These geological conditions ensured the required temperature
and time for the overmaturation and the achievement of the corresponding thermal meta-
morphic degrees of the whole coal seams in the Longtan Formation. Multistage volcanic
eruptions during the late Permian could have resulted in pronounced increases in the
geothermal gradient and heat flow [62,64,67,71,72], promoting the thermal metamorphism
of the coal seams and accelerating CBM gas formation.
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The reconstructed heat flow history modeling of the Emeishan large igneous province
region based on multiple paleogeothermal parameters indicated a high heat flow of
80~110 mW/m2 in the late Permian. The Longtan coal measure strata of the coalfield
are located within the region ([63,66] and Figure 8a,b), which could be viewed as direct
evidence of temperature anomalies related to mantle plume activity. Furthermore, thermal
metamorphism at higher temperatures could also change the molecular composition of
coal, resulting in an increase in the degree of coal metamorphism (high-rank coal) and
vitrinite reflectivity (1.88~2.14%). Thermal metamorphism may also lead to increases in
the local CBM pore volume (including gas hole and erosion pore numbers inside organic
components) and gas content, producing a huge amount of pyrolytic methane adsorbed in
the coal seams and further enhancing the gas production potential in high-rank coals.

5.3. Effect of the Regional Geological Structure on CBM Accumulation

The influence of regional geological structures on the CBM gas content is generally
significant. The structure may not only influence the folding, twisting, shape change,
fracture dislocation, and interbed sliding of coal seams [11,74,75], but also cause the escape
and redistribution of CBM stored in coal reservoirs, affecting the gas content in coal seams
in different structural sites [12,76,77]. In the Yuyang and Yangchatan mines of the Songzao
coalfield, several tiny reverse and normal faults have developed underground (Figure 1).
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Meanwhile, there is not much variation between the thickness of the coal seams M6, M7,
M8, and M12 of the Permian Longtan Formation in the two mines (Figure 3). However,
the CBM gas contents in the main coal seams in the Yuyang mine are significantly lower
than those in the Yangchatan mine (Figure 5). This implies that CBM is easily discharged,
and the gas content in the coal seams frequently decreases significantly in underground
tension fractures in the Yuyang mine. Nevertheless, in the Yangchatan mine, underground
compression fractures can effectively close and collect CBM, and the gas content in the coal
seams increases as the formation pressure increases. Few underground faults developed
in the other 10 mines of the Songzao coalfield, although the distribution of the CBM gas
content in the coal seams M6, M7, M8, and M12 has nearly always a certain regularity. For
instance, the coal seam M8 has a thickness of only 0.33 m at the plunging crown of the Yutiao
anticline, yet abundant tectonic coals developed inside it, with a CBM gas content of up to
32.77 m3/t. Furthermore, the CBM gas content of the coal seam M8 was found to be more
than 15 m3/t in the trap areas of the Yutiao and Yangchatan anticlines, such as the Datong
and Shihao mines. The coal seams of the adjacent Zhangshiba and Liyuanba mines are
monoclinic, with thickness ranging from 3.5 to 6.0 m. The gas content in the coal seam M8
normally fell between 12 and 20 m3/t. Moreover, the gas content in the coal seam M8 was
found to increase as the formation pressure rose in the northern and southern compound
structural areas at the plunging convergence site between the Lianghekou syncline and
the Yangchatan anticline, i.e., in the northern part of the Guanyinqiao mine, the southern
part of the Tonghua mine, and the southern parts of the Yangchatan and Shihao mines
(Figure 6). This case illustrates that whether the fold structure is enclosed is the most critical
element influencing variances in the lateral distribution of the CBM gas content. Tectonic
coals are very developed in the Songzao coalfield, with a high CBM gas content in strongly
folded areas or tightly bonded areas, such as the plunging crown of an anticline and the
trap area between two anticlines, destroying the original pores and fissures of coal seams
and increasing the CBM gas content to a high degree in certain enclosed areas.

6. Conclusions

(1) The high-rank coals in the coal seams M6, M7, M8, and M12 of the Permian Long-
tan Formation from the Songzao coalfield have high vitrinite and TOC contents
(60.1~69.0%, 31.49~51.32 wt%), high Tmax and R0 values (averaging 539 ◦C, 2.17%),
low HI values (averaging 15.21 mg HC/g TOC), high porosity and low permeability,
and comparatively high gas contents.

(2) The frequent changes among shallow bay, tidal flat, and lagoon depositional envi-
ronments triggered the formation of multiple coal seams and furnished the material
basis for CBM generation. The multistage tectono-thermal evolution caused by the
Emeishan mantle plume activity provided favorable temperatures and the necessary
time for the overmaturation and thermal metamorphism of the coal seams and the
acceleration of pyrolytic CBM formation.

(3) The effective regional structures, such as the enclosed fold regions like the plunging
crown of the anticline and the trap area between two anticlines, directly optimized
the conditions for CBM enrichment in the high-rank coals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en17051262/s1, Table S1: Typical average CBM gas contents in
different coal seams from boreholes in the Songzao coalfield.
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