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Abstract: The diagenetic facies of tight oil reservoirs reflect the diagenetic characteristics and micro-
pore structure of reservoirs, determining the formation and distribution of sweet spot zones. By
establishing the correlation between diagenetic facies and logging curves, we can effectively identify
the vertical variation of diagenetic facies types and predict the spatial variation of reservoir quality.
However, it is still challenging work to establish the correlation between logging and diagenetic
facies, and there are some problems such as low accuracy, high time consumption and high cost.
To this end, we propose a lithofacies identification method for tight oil reservoirs based on hybrid
intelligence using the Fuyu oil layer of the Sanzhao depression in Songliao Basin as the target
area. Firstly, the geological characteristics of the selected area were analyzed, the definition and
classification scheme of diagenetic facies and the dominant diagenetic facies were discussed, and
the logging response characteristics of various diagenetic facies were summarized. Secondly, based
on the standardization of logging curves, the logging image data set of various diagenetic facies
was built, and the imbalanced data set processing was performed. Thirdly, by integrating CNN
(Convolutional Neural Networks) and ViT (Visual Transformer), the C-ViTM hybrid intelligent model
was constructed to identify the diagenetic facies of tight oil reservoirs. Finally, the effectiveness of the
method is demonstrated through experiments with different thicknesses, accuracy and single-well
identification. The experimental results show that the C-ViTM method has the best identification
effect at the sample thickness of 0.5 m, with Precision of above 86%, Recall of above 90% and F1 score
of above 89%. The calculation result of the Jaccard index in the identification of a single well was 0.79,
and the diagenetic facies of tight reservoirs can be identified efficiently and accurately. At the same
time, it also provides a new idea for the identification of the diagenetic facies of old oilfields with
only logging image data sets.

Keywords: tight oil reservoirs; diagenetic phases; log recognition; hybrid intelligence; reservoir
prediction

1. Introduction

With the continuous exploration and development of unconventional oil and gas
resources, tight oil reservoirs have attracted increasing attention [1,2]. China’s tight oil
reservoirs are mainly distributed in Songliao Basin, Ordos Basin, Bohai Bay Basin and
Junggar Basin [3,4]. Tight oil reservoirs are deeply buried and have the characteristics
of coexistence of source rock and reservoir, low porosity and low permeability, complex
pore structure and strong heterogeneity after complex diagenetic processes [5–9]. The
analysis of the influence of diagenetic change on reservoir quality can effectively guide
the exploration and development of tight oil reservoirs, so the study of diagenetic facies
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is of great significance for the quality evaluation of tight oil reservoirs and “sweet spots”
prediction [10,11].

At present, there is no standard definition for diagenetic facies. The meaning of diage-
netic facies has been expressed by scholars from different perspectives, but it is generally
believed that diagenetic facies are the integration of diagenetic type, diagenetic degree
and diagenetic mineral combination [12,13]. The high cost and discontinuity of coring
make it relatively difficult to study the diagenetic facies space [14,15]. For this purpose,
many scholars have utilized the multidimensional nature and continuity of logging data
to establish the correlation model between diagenetic facies and logging data, identify
diagenetic facies and screen favorable reservoirs [16]. Common methods for identifying
diagenetic facies logging include rendezvous diagram method, spider diagram method
(also known as radar chart method), diagenetic facies strength calculation method and
mathematical method. The rendezvous diagram method establishes the identification
criteria of each type of diagenetic facies by selecting different types and quantities of log-
ging curves. Ran [17] and Shi [18] et al. used the logging rendezvous diagram method
to quantitatively characterize the diagenetic facies of tight oil reservoirs in Ordos Basin
and established the logging quantitative identification standard of diagenetic facies. The
spider diagram method maps the logging responses of various types of diagenetic facies to
the axis to identify diagenetic facies types. Lai [19] et al. proposed the method for identi-
fying diagenetic facies with spider diagram logging and distinguished different types of
diagenetic facies with graphs. The identification plates of the rendezvous diagram method
and spider diagram method are simple to make, but require a lot of time for experienced
domain experts to complete, and the identification effect is affected by the number of
logging curves. The diagenetic facies strength calculation method achieves quantitative
characterization of diagenetic facies by calculating diagenetic strength parameters such as
compactional and cementational porosity loss. Ozkan [20] et al. calculated the intergranular
volume, compactional porosity loss and cementational porosity loss based on established
point data, and realized diagenetic facies type judgment and reservoir quality evaluation in
combination with logging data. This method has a high identification accuracy, but requires
a large amount of experimental data support and high cost. Based on the logging response
characteristics, the mathematical method realizes the identification of typical diagenetic
facies types by identifying the morphological characteristics of logging curves. It mainly
includes principal component analysis and neural network prediction methods. Cui [21]
and Zhu [22] et al. established a diagenetic facies prediction model based on principal
component analysis, but this method only applies to the case where the degree of overlap
is less than 15%. Qi [5] et al. proposed a logging identification method for the diagenetic
facies of tight oil reservoirs based on CNN. This method completes the identification of
diagenetic facies type by extracting local features from logging curve images. However,
due to the insufficient learning of the overall features of logging curve images by CNN
and the long training time, it still needs to be further improved. In order to improve the
deficiency of CNN algorithm in learning the overall features of images, Dosovitskiy [23]
et al. proposed the Vision Transformer (ViT) method and applied the image patch sequence
converter to complete the task of image classification and identification.

In summary, the existing methods have problems such as dependence on domain
experts, high time cost and the need to improve identification accuracy. To this end,
we referred to the hybrid intelligent algorithm design idea of “complementary advan-
tages” [23–25] and proposed the intelligent identification method for the diagenetic facies
of tight oil reservoirs based on the integration of CNN and Vision Transformer, C-ViTM. The
overall process of the method is shown in Figure 1. The hybrid intelligent algorithm idea
of this method is mainly reflected in the following: the local features of logging curves in
samples are extracted with CNN, and the ViT is applied to learn the global features of each
logging curve, realizing the rapid and accurate intelligent identification of diagenetic facies.
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Figure 1. C-ViTM method process.

The remaining parts of this study are organized as follows. The second section elabo-
rates the geological setting. The diagenetic facies types and logging response characteristics
are analyzed in the third section. The fourth section provides a detailed introduction
to the C-ViTM method. The experimental scheme is described in the fifth section. The
experimental results are discussed in the sixth section. The seventh section is about the
summary of the research work and the prospects for future work.

2. Geological Setting

Fuyu reservoir (K1q4) at the top of Quantou Formation (K1q) is a typical tight oil reser-
voir in Sanzhao Sag of north Songliao Basin, China, and it belongs to the lacustrine delta
sedimentary system [26], as shown in Figure 2. The depth of reservoir rock is 1043–2302 m,
and the diagenesis mainly includes compaction, cementation and dissolution, and the
lithology is mainly siltstone, mudstone and fine sandstone [27,28]. Due to strong com-
paction, Fuyu reservoir has a low porosity and permeability, with an average porosity of
10.8% and air permeability of 0.64 mD [29]. There is a good linear relationship between
porosity and permeability, indicating that Fuyu reservoir is a typical porous tight sandstone
reservoir [30].
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Figure 2. Structural locations of Fuyu reservoir of Sanzhao sag in Songliao Basin: (A) Location of
Songliao Basin; (B) Study area Fuyu oil layer location; (C) Location of research wells.
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Fuyu reservoir in Sanzhao Sag has the characteristics of fine particle size and high
shale content [31]. Generally, reservoir compaction strength is positively correlated with
the burial depth of sediments [28]. By observing cast thin sections, it is found that due
to compaction, the brittle particles are broken, the clastic particles are mainly in linear
contact, and the long particles are arranged semi-directionally, as shown in Figure 3a. The
types of cement in the reservoir include carbonate cement, authigenic clay minerals, quartz
secondary enlargement, authigenic feldspar, etc., all of which produce destructive effects on
the physical properties of the reservoir, as shown in Figure 3b,d,e. Through the dissolution
of feldspar, lithic fragment, calcite cement, argillaceous matrix and other components, new
pores are created or the original pores are enlarged, and the physical properties of the
reservoir are improved, as shown in Figure 3c,e,f.
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Figure 3. Photo of Fuyu reservoir in Sanzhao Sag: (a) Fang 186-32 Well, 1848.09 m, cast thin section,
unipolar light, ×40, feldspar fine sandstone. Due to compaction, the clastic particles are in linear
contact, and the long particles are arranged semi-directionally; (b) Fang 188-138 Well, 1789.4 m, cast
thin sheet, unipolar light, ×100, feldspathic lithic fine sandstone, quartz authigenic enlargement,
calcite stained. It is presumed that calcite cementation is later than quartz secondary enlargement;
(c) Fang 186-132 Well, 1847.0 m, cast thin sheet, unipolar light, ×40, lithic feldspar fine sandstone.
Interparticle and intragranular dissolution pores are visible, feldspar particles undergo dissolution,
and calcite is stained; (d) Fang 186-32 Well, 1831.59 m, ×920, intergranular calcite cement; (e) Fang
186-32 Well, 1835.6 m, ×4680. Soda feldspar particles undergo dissolution to form intragranular
dissolution pores, which are filled with lamellar illite; (f) Fang 188-138 Well, 1793.0 m, ×1820. Feldspar
particles undergo dissolution to form secondary pores, with filamentous illite visible on the surface
of particles.

3. Diagenetic Facies Classification and Logging Response Analysis

This section elaborates the definition and classification scheme of diagenetic facies.
Based on the screening of logging curves, the logging response characteristics of different
types of diagenetic facies were analyzed.

3.1. Definition of Diagenetic Facies

As a response to the combined results of different diagenetic histories, diagenetic
facies reflect the comprehensive features of diagenetic types, diagenetic degrees, diagenetic
mineral composition types and their evolution, and determine the formation and distri-
bution of sweet spots in tight reservoirs, and it is an important basis for the evaluation
of tight reservoirs [21,32–34]. Zou et al. [13] defined diagenetic facies as a comprehensive
description of sedimentary diagenesis and diagenetic mineral evolution under diagenesis
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and tectonism. Zhang et al. [35] defined diagenetic facies as the product of diagenesis
and evolution of sediments under fluid and tectonic action, which is a comprehensive
characterization of minerals such as rock particles, cements, fabrics and fracture-caves.
Duan et al. [36] defined diagenetic facies as the product of sediments reflecting petro-
logical and geochemical characteristics after diagenetic and tectonic processes in specific
sedimentary and physicochemical environments, including comprehensive characteristics
such as rock particles, cements, fabrics, pores and fractures. We define diagenetic facies
as the stratigraphic unit of sediments that reflects the diagenetic degree, diagenetic type
and diagenetic mineral composition through fluid, tectonic and diagenetic processes in
sedimentary and physicochemical environments, which can be identified based on thin
section analysis and logging response, including compaction, lithology, cementation and
dissolution [2,20,21,37–39].

3.2. Classification of Diagenetic Facies

The diagenetic facies types of Fuyu reservoir in Sanzhao Sag were classified based on
compaction, lithology, cementation and dissolution. The compaction effect increased with
the burial depth, and the porosity decreased from 25.5% to 17.5% when the burial depth
reached 1800 m. Cements such as carbonate minerals and quartz secondary enlargement fill
the reservoir, which inhibits the compaction and pressure dissolution to some extent. The
porosity increased from less than 15% to 20.7% when the burial depth exceeded 1800 m, be-
cause the dissolution of feldspar, rock debris and carbonate cement results in the formation
of interparticle dissolution pores and intragranular dissolution pores to form secondary
pore development zones, which improves the reservoir performance [31]. According to the
buried depth of 1800 m, Fuyu reservoir compaction was divided into weak compaction
(buried depth ≤ 1800 m) and medium to strong compaction (buried depth > 1800 m).
According to the logging response, the lithology is mainly divided into fine sandstone, silt-
stone and mudstone [3]. Cementation and dissolution are divided into weak cementation
dissolution and weak dissolution cementation according to the action strength. In addition,
diagenetic facies whose lithology type is mudstone have poor reservoir performance, so
they are classified into one class. According to the above standards, the diagenetic facies
types of Fuyu reservoir in Sanzhao Sag are divided as follows: weakly compacted weakly
cemented dissolved siltstone phase (Wip), weakly compacted weakly cemented dissolved
fine sandstone phase (Wap), medium to strong compaction of weakly cemented dissolved
fine sandstone phase (Map), medium to strong compaction of weakly cemented dissolved
siltstone phase (Mip), medium to strong compaction of weakly dissolved colluvial fine
sandstone phase (Msap) and mudstone phase (Mp).

Wip: buried depth ≤ 1800 m, mainly siltstone, with loose samples and good particle
sorting. The pores are relatively developed, mainly interparticle dissolution pores, with
a maximum of 60 µm, and have connectivity. There are a few calcite cements, which are
distributed in a scattered way. The rock exhibits the oil impregnation phenomenon and
good reservoir properties.

Wap: buried depth ≤ 1800 m, mainly fine sandstone, with loose samples and good
particle sorting. The pores are relatively developed, mainly interparticle dissolution pores,
with a maximum of 60 µm, and have connectivity. There are a few calcite-filled interparticle
metasomatic particles. The rock exhibits the oil impregnation phenomenon and good
reservoir properties.

Map: buried depth > 1800 m, mainly fine sandstone, with loose samples and good
particle sorting. The pores are relatively developed, mainly interparticle dissolution pores,
with a maximum of 80 µm, and have connectivity. There are a few calcite-filled interparticle
metasomatic particles. The rock exhibits the oil impregnation phenomenon and good
reservoir properties.

Mip: buried depth > 1800 m, mainly siltstone, with loose samples and good particle
sorting. The dissolution pores are relatively developed, mainly interparticle dissolution
pores, granular dissolution pores and intragranular dissolution pores. The interparticle
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dissolution pores can reach up to 50 µm, and have certain connectivity. There are calcite-
filled interparticle metasomatic particles. The rock exhibits good reservoir properties.

Msap: buried depth > 1800 m, mainly fine sandstone, with loose samples and gen-
eral particle sorting. The pores are relatively developed, mainly interparticle dissolution
pores, with a maximum of 60 µm, and have certain connectivity. There are calcite-filled
interparticle metasomatic particles. The rock exhibits good reservoir properties.

Mp: mainly mudstone, with relatively dense or dense samples and general particle
sorting. The pores are undeveloped and unevenly distributed, and there are interparticle
dissolution pores and muddy micropores, which have poor connectivity. The interstitial
materials are argillaceous, calcite and quartz secondary enlargement. The rock exhibits
poor reservoir performance.

According to the reservoir properties of different diagenetic facies types, Class I reser-
voir, Class II reservoir and Class III reservoir were classified. Class I reservoir corresponds
to Wip, Wap and Map. Class II reservoir corresponds to Mip and Msap. Class III reservoir
corresponds to Mp.

3.3. Diagenetic Facies Logging Response Characteristics

In order to establish the correlation between diagenetic facies and logging, and analyze
the logging response characteristics of various diagenetic facies, the importance of each
logging curve was scored by using the decision tree scoring method. Gamma ray (GR),
spontaneous potential (SP), borehole compensated acoustilog (AC), deep lateral resistivity
(RLLD), shallow lateral resistivity (RLLS) and caliper (CAL) were selected as the response
curves [40].

Wip: GR shows low-amplitude micro-tooth shape, RLLD and RLLS present small-
amplitude frame shape, and AC has low-amplitude micro-tooth shape characteristics. Wap:
GR has a stable shape, and RLLD and RLLS exhibit a high-amplitude bell shape. Map:
GR shows low-amplitude smoothness, RLLD and RLLS are box or bell shaped, and AC
is in a symmetrical tooth shape. Mip: GR shows low-amplitude smoothness, RLLD and
RLLS values are lower, and AC exhibits a low-amplitude finger type. Msap: GR shows
low-amplitude smoothness, RLLD and RLLS are box or toothed curves, and AC is finger
shaped. Mp: GR value is higher, RLLD and RLLS values are lower, and AC is bell shaped.
See Figure 4 for details.
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4. C-ViTM Method

In this section, the research process of the C-ViTM method is introduced in detail,
including five steps of logging data analysis, data set establishment, imbalanced data set
processing, diagenetic facies identification model design and model training.

4.1. Logging Data Analysis

Logging data and core analysis data provide accurate lithology and physical property
information, and they are the main basis for diagenesis and diagenetic facies logging
identification [3,40]. The cumulative logging depth of 30 wells in Fuyu reservoir is 3064.5 m,
as shown in Table 1. The well locations in the study area are shown in Figure 1.

Table 1. Log data statistics of Fuyu reservoir in Sanzhao depression.

Order Well
Coring Depth (m)

Length (m) Order Well
Coring Depth (m)

Length (m)
Top Bottom Top Bottom

1 B7 1872.700 2081.100 208.40 16 F464 1835.039 1939.989 104.95
2 B17 1858.025 2043.475 185.45 17 H23-6 1800.020 1831.170 31.15
3 B18 1836.001 2139.951 303.95 18 S52 1719.000 1872.000 153.00
4 B102 1914.500 1963.400 48.90 19 S541 1818.025 1946.975 128.95
5 B183 1895.012 1906.962 11.95 20 S55 1754.000 1793.950 39.95
6 B211 1775.000 1792.550 17.55 21 X18 1943.025 2021.975 18.95
7 B351 1982.981 2021.181 38.20 22 X21 2182.000 2228.000 46.00
8 BF59-51 1720.690 1854.940 134.25 23 X23 2068.000 2138.000 70.00
9 F13 1787.300 1998.800 211.50 24 X141 2030.000 2095.981 69.95

10 F27 1755.125 1843.125 88.00 25 Z11 1810.000 2004.700 194.70
11 F29 1843.000 1875.000 32.00 26 Z22 1695.800 1798.900 103.10
12 F98-16 1760.000 1870.950 110.95 27 Z43-251 1800.030 1861.830 61.80
13 F186-16 1920.040 2024.990 104.95 28 Z43-251-1 1800.009 1876.959 76.95
14 F188-138 1767.100 1858.050 90.95 29 Z43-261 1800.049 1885.999 85.95
15 F361 1765.325 1890.475 125.15 30 Z44-251 1773.950 1880.900 106.95

The quantity and thickness of various diagenetic facies were preliminarily counted
according to the logging curve data of the above 30 wells, and the statistical results are
shown in Figure 5. According to the statistical results, there is an imbalance in the data of
various diagenetic facies, among which the number of Mip is the highest (486), and the
number of Wap is the lowest (57), with a quantity difference of 429. The maximum thickness
of Mp is 753.45 m, and the minimum thickness of Wap is 68.75 m, with a thickness difference
of 684.70 m. According to the thickness statistics, the thickness of various diagenetic facies
is mainly in the range of 0 m–1.50 m. The external factor leading to this result may be that
the logging data are not standardized, so the standardization of logging curves is necessary
in the data establishment process to verify the accuracy of logging data.

4.2. Establishment of the Diagenetic Facies Image Data Set

To ensure the accuracy of the logging data, the GeoSoftwareSuite9.1 software was
applied to standardize the logging data. The standardized results of Well f188-138 are
shown in Figure 6. After the completion of standardization, the Plot method was used to
convert logging curve data into logging curve images, and the Resize method was applied
to convert logging curve images into a 224-pixel × 224-pixel logging curve image data
set. In addition, based on the statistical results of diagenetic facies thickness (Figure 5a),
we sampled the logging curve images according to the longitudinal uniform thickness
units of 0.50 m, 0.75 m, 1.00 m and 1.25 m to obtain the best diagenetic facies identification
effect. The obtained image sample data set is shown in Table 2 (1.50 m samples are not
displayed due to insufficient quantity). According to Table 2, there is an imbalance in the
number of samples of different diagenetic facies types. This imbalance will result in higher
identification accuracy of diagenetic facies type (Mp) with a large number of samples,
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and lower identification accuracy of diagenetic facies type (Wap) with a small number of
samples. For this reason, we conducted imbalance processing on the sample data set.
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Table 2. Statistics of the number of logging curve image samples of different thickness units.

Diagenetic Facies
Longitudinal Thickness Unit Interval

0.50 (m) 0.75 (m) 1.00 (m) 1.25 (m)

Wip 267 151 97 72
Wap 110 64 45 31
Map 442 242 150 105
Mip 768 449 290 194

Msap 364 183 114 70
Mp 1342 831 587 439

4.3. Processing of Imbalanced Data Sets

Over-sampling and under-sampling were combined to process various diagenetic
facies logging curve image samples, so as to reduce the influence of sample quantity
imbalance on the identification effect of diagenetic facies.

For Wap, Wip (0.50 m) and Msap (0.50 m) with a small number of samples, sliding
overlap-tile sampling was used for up-sampling. That is, based on the original diagenetic
facies logging curve image samples, a sliding window with a certain step size was set
on the image samples, and the sample interval was taken as the sampling window for
overlap-tile along the depth downwards to increase the number of samples [41]. We used
50% of the sample interval length as the sliding step size for overlap-tile sampling, as shown
in Figure 7. The total number of samples after sampling can be calculated by Equation (1).

N =
2 × (B−T)

SI
(1)

where N represents the total number of samples, B represents the bottom depth, T represents
the top depth, and SI represents the sample interval.
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Figure 7. Wap sliding overlap-tile sampling process.

The random under-sampling method was used for the sampling of diagenetic facies
(Mp) with a large number of samples, so that the sample size was the same as the average of
the total number of other 5 types of diagenetic facies samples, to ensure the overall sample
balance. The number of samples of various diagenetic facies obtained after screening is
shown in Table 3. We divided the training set and the testing set at a ratio of 8:2.
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Table 3. Statistics of the number of samples of various diagenetic facies after imbalance processing.

Diagenetic Facies
Longitudinal Thickness Unit Interval

0.50 (m) 0.75 (m) 1.00 (m) 1.25 (m)

Wip 600 150 95 70
Wap 525 150 110 80
Map 440 240 150 105
Mip 765 445 290 190

Msap 515 180 110 70
Mp 570 235 150 105

4.4. Design of Identification Model for the Diagenetic Facies of Tight Oil Reservoirs

To improve the identification efficiency and accuracy of the diagenetic facies of tight
oil reservoirs, we transformed the problem of diagenetic facies type identification into
the problem of logging curve image identification based on the characteristics of different
diagenetic facies logging curves. By referring to the ideas of Mo Zhao et al. [25], the
identification method for the diagenetic facies of tight oil reservoirs (C-ViTM) based on
hybrid intelligence was constructed by integrating the CNN network model and ViT model
structure, as shown in Figure 8. The C-ViTM model uses the ResNet101 network in CNN to
extract features of logging curves from image samples and applies ViT to learn the overall
features of each logging curve in image samples. The C-ViTM model gives full play to the
local feature extraction ability of ResNet101 and the global information control ability of
ViT. The specific process is described as follows:
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The local feature extraction of logging curve images using the ResNet101 network
includes 1 image input layer, 1 convolutional layer, 1 BatchNorm, 1 Relu activation function,
1 maximum pooling layer, 3 Conv Block layers and 27 Density Block layers. The ResNet101
network model structure is shown in Figure 9. ViT learns the global information of logging
curve images, including 1 Patch Embedding layer, 1 Class Embedding layer, 1 Position
Embedding layer, 2 Layer Norms, 1 Multi-Head Attention, 2 Dropout layers and 1 MLP
Head. See Figure 8 for details.
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Figure 9. ResNet101 network model structure.

Patch Embedding was used to divide the three-dimensional matrix [224, 224, 3] of the
image after feature extraction using the ResNet101 network into a two-dimensional vector
matrix [196, 768] according to the patch size of 16 × 16, to provide a basis for meeting the
input requirements of ViT. The specific process is shown below:

[224, 224, 3] → 196 × [16, 16, 3] → 196 × [768]
Images patch num patch patch num token

patches tokens
(2)

where patches represent the total number of patches. Token represents a one-dimensional
vector mapped from a single patch. Tokens represent the total number of tokens.

Class Embedding represents the sequence for the classification of diagenetic facies.
The principle is to concatenate a vector of length 168 with tokens [196, 768] generated from
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logging curve images, to generate the two-dimensional vector [197, 768] that meets the
input requirements of ViT. The specific process is shown below:

[196, 768] → Concat(token, [class]token) → Concat([196, 768], [1, 768]) → [197, 768] (3)

Position Embedding superimposes the position information encoding for curve fea-
tures in each patch to record the position of features. Layer Norm normalizes vector data
containing logging curve information to accelerate the learning speed. The role of Multi-
Head Attention is to improve the learning ability. Dropout mitigates the phenomenon of
model over-fitting. MLP Head outputs the diagenetic facies identification results.

4.5. Training of the Identification Model for the Diagenetic Facies of Tight Oil Reservoirs

The training process of the C-ViTM method includes two stages. In the first stage,
the transfer learning technology [42] was applied for pre-training of the C-ViTM model to
improve the learning efficiency of the model. In the second stage, the adaptive gradient
descent method (Adam) [43] was used to update the model training parameter θt and
complete iterative training. The update process of training parameter θt is described below:

Step 1: Calculate the gradient information gt of small batch samples.

gt = ∇θ J(θ, Xt, yt) (4)

where J(θ, Xt, yt) represents the objective function and Xt and yt represent the features and
labels of a small batch of samples, respectively.

Step 2: Calculate the first matrix estimator St and the second matrix vector Rt.

St = β1St−1 + (1 − β1)gt (5)

Rt = β2Rt−1 + (1 − β2)g2
t (6)

where St represents the first matrix estimation vector and Rt represents the second ma-
trix estimation vector. β1 and β2 represent the decay rate, with values of 0.9 and 0.999,
respectively.

Step 3: Calculate the gradient information g′t after bias correction.

∧
St =

St

1 − βt
1

(7)

∧
Rt =

Rt

1 − βt
2

(8)

g′t =
α
∧
St√

∧
Rt + ϵ

(9)

where
∧
St and

∧
Rt represent the first matrix estimation vector and the second matrix estima-

tion vector after bias correction, respectively. α indicates the learning rate. ϵ represents the
smoothing item, with a value of 10−8, preventing division by 0.

Step 4: Update the model parameter θt.

θt = θt−1 − g′t (10)

The iterative process loss is shown in Figure 10. It can be seen from the figure that the
70th epoch model tends to be stable.
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5. Experimental Scheme

The experiment was divided into three parts: experiment of identification effect for
different thickness units, accuracy comparison experiment and single-well identification
effect. The specific parameters of the experimental devices are shown below: Intel Xeon
Silver 4210R CPU, 64 G memory, RTX 6000/8000 GPU; Ubuntu 20.04.3 operating system;
PyTorch 1.7.1 experimental framework.

5.1. Experiment of the Identification Effect for Different Thickness Units

The experiment of identification effect for different thickness units took mean Average
Accuracy (mAA) [44] and mean Average Precision (mAP) [45] as evaluation indicators.

mAA denotes the average of the identification accuracy of multiple diagenetic facies
types. Accuracy represents the proportion of the number correctly identified in the to-
tal, which is expressed by Equation (11), where TP is the number of correctly identified
diagenetic facies, and N is the total number.

Accuracy =
TP
N

(11)

mAP represents the average of the average precision (AP) of multiple diagenetic facies
types. AP refers to the area below the Precision—Recall curve. Precision represents the
proportion of the correct number in the identified diagenetic facies types, which can be
represented by Equation (12). Recall represents the proportion of the correct number in the
actual composition, which can be expressed by Equation (13). The value of mAP is in the
range of [0, 1]. A larger value indicates a better identification effect.

Precision = TP/(TP + FP) (12)

Recall = TP/(TP + FN) (13)

where TP represents a true positive test; FP represents a false positive test; FN represents a
false negative test.

In the experiment process, data sets of the same number with intervals of 0.50 m,
0.75 m, 1.00 m and 1.25 m were selected to calculate the Accuracy and AP values of the
C-ViTM algorithm for the identification results of various diagenetic facies, and the mAA
and mAP values were calculated. The number of various diagenetic facies is shown in
Table 3.

5.2. Accuracy Comparison Experiment

In the accuracy comparison experiment, the Precision, Recall and F1 score [46] of the
identification results of diagenetic facies types were calculated as evaluation indicators by
establishing the confusion matrix. The meanings and calculation methods of Precision and
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Recall are the same as those in Section 5.1. The F1 score was calculated based on Precision
and Recall, and can be expressed by Equation (14). The value of F1 score is in the range of
[0, 1]. A larger value indicates a better identification effect.

F1 =
2 × (Precision × Recall)
(Precision + Recall)

(14)

In the experiment process, data sets of the same number were selected, CNN algorithm,
ViT algorithm and C-ViTM algorithm were used to identify diagenetic facies, and Precision,
Recall and F1 score were calculated to verify the effectiveness of the C-ViTM algorithm.

5.3. Single-Well Identification Effect Experiment

The Jaccard index [47] was used as the evaluation indicator in the single-well identi-
fication effect experiment. The Jaccard index completes the judgment by calculating the
intersection over union between the thickness of various diagenetic facies in a single well
judged by geologists (A) and the thickness of various diagenetic facies identified by C-ViTM
(B). The Jaccard index can be expressed by Equation (15).

J(A, B) =
|A ∩ B|
|A ∪ B| , 0 ≤ J(A, B) ≤ 1 (15)

6. Results and Discussion
6.1. Experimental Results of the Identification Effect for Different Thickness Units

The calculation results of mAA and mAP in the identification effect of diagenetic
facies with different thickness units are shown in Figure 11. Figure 11 shows that the
identification effect of various diagenetic facies is the best at the thickness unit of 0.5 m.
The Accuracy and mAA values of the identification result of various diagenetic facies are
all above 0.9, and the calculation results of AP value and mAP value are above 0.76. This is
because the mAA and mAP values of different diagenetic facies are related to the thickness
of various diagenetic facies and the thickness of sample intervals. In addition, Mip and
Mp have higher scores at the thickness units of 1.00 m and 1.25 m, possibly due to the
larger thickness of their diagenetic facies samples. This phenomenon is also verified by the
statistical results in Figure 4.
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Figure 11. Calculation results of mAA and mAP in the identification effect of various diagenetic
facies at different thickness units: (a) Calculation results of Accuracy and mAA values in the identifi-
cation effect of various diagenetic facies; (b) Calculation results of AP value and mAP value in the
identification effect of various diagenetic facies.



Energies 2024, 17, 1708 15 of 20

Since the 0.5 m thickness unit realized the best identification result, the sample of 0.5 m
thickness unit was used for the accuracy experiment.

6.2. Accuracy Comparison Experiment Results

To verify the accuracy of the C-ViTM method in identifying diagenetic facies, the
confusion matrix of the C-ViTM, CNN and ViT methods was constructed, and the influence
of geological characteristics on the method was analyzed, as shown in Figure 12. The
calculation results of Precision, Recall and F1 score are shown in Figure 13.
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According to Figure 12, the C-ViTM method has the best effect on the identification
of diagenetic facies, and the CNN method has a higher identification accuracy than ViT,
proving that the proposed method can identify diagenetic facies of tight reservoirs better
than a single CNN model and ViT model. Due to the limited number of selected target data
sets, the CNN method shows a better identification effect compared to the ViT method.
This phenomenon has been verified in natural image identification [23]. In addition, it
can be seen from Figure 12 that Wip is mainly misjudged as Mip and Mp; Wap is mainly
misjudged as Msap and Map; Map is mainly misjudged as Wap, Mip and Wip; Mip is mainly
misjudged as Wip, Mp and Map; Msap is mainly misjudged as Wap and Map; Mp is mainly
misjudged as Wip and Wap. The cause of misjudgment is related to the internal structural
characteristics during the formation of diagenetic facies, which makes the logging curves
have similar characteristics [46]. At the same time, it is found that although the diagenetic
facies of the same type are subjected to similar compaction, cementation and dissolution,
the different action intensity and diagenetic grade result in different particle size sorting
and pore connectivity of their components, which affect the reservoir performance.
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Figure 13 shows that the Precision, Recall and F1 score of C-ViTM method are higher
than those of the CNN method and ViT method, and those of the CNN method are higher
than those of the ViT method. It is known from Figure 13a that the three methods have
the lowest efficiency for Wap, mainly because Wap and Msap logging curves have similar
characteristics, so that some Msaps are misjudged as Wap, reducing the Precision. The
same phenomenon also exists in Wip and Mip. The C-ViTM method has a Precision of over
86% for various diagenetic facies, indicating its high Precision. It is learned from Figure 13b
that the three methods have the lowest efficiency for Map, mainly because its sample size
is relatively small, and some Maps are misjudged. The C-ViTM method has a Recall of over
90% for various diagenetic facies, indicating its good Recall. In Figure 13c, the C-ViTM
method has the highest FI scores, which are all above 89%, indicating that it has a good
identification effect on various diagenetic facies and can meet the accuracy requirements
for identifying the diagenetic facies of tight reservoirs. In addition, the labeling of sample
labels also affects the identification efficiency of the three methods.

6.3. Experimental Results of the Single-Well Identification Effect

To further validate the effectiveness of the C-ViTM method, a well from Fuyu reservoir
in Sanzhao Sag, Songliao Basin (not involved in the training) was randomly selected for
verification, and the identification results are shown in Figure 14. The Original Diagnostic
Facies in the figure are the results of manual identification, and the division of diagenetic fa-
cies is mainly based on core data and logging response characteristics. Predicted Diagenetic
Facies are the identification results of the C-ViTM method (the color is slightly deepened
for distinction). The calculation results of the Jaccard index for various diagenetic facies
are shown in Table 4. Table 4 shows that the Jaccard index of various diagenetic facies in a
single well is above 0.74, and the average Jaccard index is 0.79, indicating that the C-ViTM
method has a good single-well identification effect and can be applied to the identification
of diagenetic facies of tight reservoirs, with good application effect. Since the selected single
well is the well in the target area and has the same depositional environment, it has a good
identification effect. For the identification of diagenetic facies of other tight reservoirs with
similar geological characteristics, further research is needed according to the logging data.

Table 4. Calculation results of Jaccard index for various diagenetic facies.

Diagenetic Facies

Wip Wap Mip Map Msap Mp

Jaccard 0.78 0.74 0.75 0.74 0.81 0.91

6.4. Application Prospect and Limitation Analysis of the C-ViTM Method in Diagenetic
Facies Identification

As a diagenetic facies identification method based on hybrid intelligence, the C-ViTM
method has higher identification accuracy, and can replace the manual identification of
the diagenetic facies of tight reservoirs to a certain extent to determine the location of
high-quality reservoirs. However, due to the influence of sedimentation and diagenesis on
the characteristics of tight reservoirs, various diagenetic facies have similar characteristics
to some extent, resulting in misjudgment. At the same time, the identification effect of the
C-ViTM method is easily affected by the quantity of various diagenetic facies samples, the
geometric characteristics of logging curves and the design of model structure, so it needs to
be further optimized in the identification of the diagenetic facies of other types of reservoirs
such as carbonate reservoir and volcanic reservoir.
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7. Conclusions

Based on the intersection of geological big data and artificial intelligence, a new
C-ViTM method for the identification of the diagenetic facies of tight oil reservoirs was
proposed in this study, which solves the problems such as difficulty in the identification of
the diagenetic facies of tight oil reservoirs, time cost and human cost.

(1) Based on core data and logging response characteristics, the diagenetic facies of tight
reservoirs of Fuyu reservoir in Sanzhao Sag were classified into seven types: Wip, Wap,
Mip, Map, Msap, Mp, etc. The relationship between diagenetic facies and reservoir
performance was established. Wip, Wap and Mip were classified as Class I reservoirs;
Map and Msap were classified as Class II reservoirs; Mp was classified as a Class
III reservoir. The reservoir performance was completed while realizing diagenetic
facies identification.

(2) By comparing the identification results of diagenetic facies at different thickness inter-
vals of 0.50 m, 0.75 m, 1.00 m and 1.25 m, it was found that the best identification effect
can be realized at the sample thickness of 0.50 m, indicating that the identification
results are related to the thickness of various diagenetic facies and the thickness of
sample intervals.

(3) Compared with the single methods of CNN and ViT, C-ViTM has a better identification
effect, with Precision of above 86%, Recall of above 90% and FI score of above 89%.
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The C-ViTM method is suitable for the identification of the diagenetic facies of tight
reservoirs, but the identification effect is easily affected by the number of samples and
the similarity of the internal structural features of diagenetic facies (the similarity of
logging curve features), such as Wip and Mip.

(4) The average Jaccard index calculated by using the C-ViTM method in diagenetic facies
identification of a single well is 0.79, indicating that the C-ViTM method has a good
identification effect and wide application prospects.

In future work, we expect to optimize the C-ViTM method so that it can be better
applied to the identification and evaluation of diagenetic facies in other reservoirs such as
shale oil reservoirs, and evaluate the potential application of this method.
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