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Abstract: In this paper, a thermal storage system based on a phase change material is proposed and
investigated. The system is composed of several tubes that cross a phase change material mass. A fluid
flowing in the tubes charges and discharges the heat storage system. A mathematical model of the
system has been developed, which provides the time and space distribution of velocity, temperature,
and liquid phase-changing material concentration in a non-stationary regime. A hybrid solution
method based on finite volumes and finite differences techniques has been employed for the model
equations in the MATLAB environment. To the tubes, a rectangular cross section has been assigned.
The performance of the system in terms of accumulated energy density and accumulated power
density has been investigated by varying some geometric parameters. The considered geometric
parameters influence the number of tubes per unit of system width, the tube hydraulic resistance,
the amount of phase change material around each tube, the heat transfer surface of the tube, and
the heat storage velocity. In the parametric analysis, peaks have been evidenced in the investigated
performance parameters at different instants after the beginning of the heat storage.

Keywords: PCM; thermal storage; energy density

1. Introduction

Thermal storage systems play an important role in energy management, as they enable
the decoupling of energy production from use. In applications where there is intermittent
energy generation, such as in waste energy recovery or solar thermal systems, the adoption
of an appropriate storage system is essential. Thermal storage systems based on phase
change materials (PCM) allow for high energy storage density with very small temperature
variations. A thermal energy storage system with PCM [1] in the configuration of a heat
exchanger has been redesigned, concluding that the type, encapsulation shape, and amount
of PCM slightly impacted the system’s performance; however, selecting a suitable sensible
heat storage material had the highest impact on meeting the system’s targets. A PCM
storage system, which therefore utilizes the latent heat of fusion energy, can store from
5 to up to 14 times more heat per unit of volume than a system based only on sensible
energy [2]. The first scientific papers in the literature were related to the heating and
cooling of buildings, written by Telkes in 1975 [3] and by Lane in 1986 [4]. One of the most
promising technologies is combined PV-thermal systems (PVT) [5], where some authors
reported an increase in overall efficiency greater than 40% compared with state-of-the art
systems. Currently, thermal storage systems designated for heating and cooling buildings
are becoming increasingly important due to limited fossil fuel reserves and the need to
preserve the environment. Aiming to increase efficiency, “free-cooling” starts to become
popular [6–9]. Free-cooling is understood as a means to store outdoor coolness during the
night and supply indoor cooling during the day. The use of PCMs is suitable because of
the small temperature difference between daytime indoors and nighttime outdoors. The
main parameters that must be taken into account when choosing the most suitable material
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to be used in a PCM storage tank are: melting temperature, latent heat of fusion, thermal
conductivity, chemical and physical stability to thermal cycles, and compatibility with
other materials. PCM materials are classified into organic, inorganic, and eutectic mixtures.
Numerous systems have been proposed in the latest research with the aim of improving
heat transfer in PCM accumulators [10–21].

These can be grouped into the following categories:

• PCM material embedded in a metal frame.
• PCM material composed of metal particles with high thermal conductivity.
• Macro and micro encapsulation of the PCM material.
• Use of graphite-composite or other composite PCM materials
• Use of finned tubes.

In general, the PCM exchanges the stored heat with a vector fluid, flowing in a tube or
a mantel. Optimizing the shape of the channels that allow the fluid to pass through can
be very effective in improving heat storage performance. Some research [22–25] indicates
that the predominant heat transfer mechanism for these storage systems is conduction.
Therefore, mainly when the PCM density scarcely varies with temperature and even during
the fusion, convective phenomena within the PCM can be neglected. This is the case
assumed in the present work, where a PCM heat storage system has been analyzed using a
numerical model. The value of some parameters has been changed, describing the heat
vector fluid channel geometry. The heat storage performance has been evaluated in order
to determine how to increase it and to optimize the system design.

2. PCM Heat Storage

The proposed heat storage system is shown in Figure 1. It is composed of 10 metal
thin-walled rectangular cross-section tubes that cross a phase-changing mass. Such a mass
is represented in Figure 1 by a gray-transparent color and tubes by a dark gray color. The
parts of the tubes outside the phase changing mass are long enough to ensure that the
velocity profile in the part inside is completely developed. Moreover, the parts of the tubes
outside are thermally insulated.
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Figure 1. PCM heat storage with boundaries.

Due to the symmetry of the tubes, the mass, and the boundary conditions, the behavior
of the storage system can be investigated by only analyzing the domain depicted in Figure 2
adopting the following boundary conditions:

.
Qy

∣∣∣
y=0

= 0,
.

Qy: thermal flux in direction y.
.

Qy

∣∣∣
y=Ly

= 0, Ly: thermal storage size in direction y.
.

Qz

∣∣∣
z=0

= 0,
.

Qz: thermal flux in direction z.
.

Qz

∣∣∣
z=Lz

= 0, Lz: thermal storage size in direction z.
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.
QxPCM

∣∣∣
x=0

= 0,
.

QxPCM: thermal flux in x-direction, concerning only the PCM material surface.
.

QxPCM

∣∣∣
x=Lx

= 0, Lx: thermal storage size in direction x.
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Figure 2. Single channel with boundaries.

3. Case Study

Let us consider paraffin as the changing phase material and aluminum as metal of
the thin-walled tube. Under these conditions, the thermal resistance of the tube wall in
the thickness direction is negligible in the heat transfer process, while in the perpendicular
direction, the heat conduction is negligible. Therefore, we can only impose that paraffin
and water cannot mix together and ignore the presence of the wall for all other effects.

The channel section is shown in Figure 3a.
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The channel section has two symmetry axes, one parallel to the z-axis (y = Ly) and one
parallel to the y-axis (z = Lz).

Ly = Ly1 + Ly2

This has the advantage of reducing the domain size up to ¼ (Figure 3b) and conse-
quently reducing the calculation time during simulation.

One of the problems in heat propagation lies in the fact that liquid paraffin has a lower
thermal conductivity than solid paraffin.

ks = 0.4
W

m◦C
, kl = 0.2

W
m◦C

As a consequence, it occurs that as soon as the paraffin in the vicinity of the channel
crossed by the hot fluid melts, the thermal conductivity is lowered, resulting in slower heat
conduction within the domain.

4. Mathematical Model

The equation for the field of motion of the heat vector fluid is derived from the general
Navier–Stokes equation (Equation (1)):

ρ
Dv
Dt

= −∇p −∇·τ́ + ρg (1)

We introduce the following assumptions for the fluid flow:

• Steady-state regime;
• Fully developed laminar flow;
• A duct with a straight axis and constant cross-section with rigid, non-porous walls;
• Constant properties for incompressible Newtonian fluid.

Under these conditions, the only non-zero velocity component remains the axial
one: v = (vx(x, y, z), 0, 0). Moreover, it is possible to write the following relationship:
τ́ = −µ∇v = −µ∇vx.

Applying the continuity equation ∂ρ
∂t +∇·(ρv) = 0, the Navier–Stokes one (Equation (1))

reduces to:
∇2vx =

1
µ

∂p
∂x

(2)

Namely
∂2vx

∂y2 +
∂2vx

∂z2 =
1
µ

∂p
∂x

(3)

if expressed in Cartesian coordinates.
The term ∂2vx

∂x2 is not present due to the fully developed flow hypothesis:

vx(x) = cost ⇒ ∂vx
∂x = 0 ⇒ ∂2vx

∂x2 = 0 .
Note that ∇2vx = ∇·∇vx is a scalar, then the Navier–Stokes equation has changed

from being a vector, (Equation (1)), to a scalar, (Equation (2)).
∂p
∂x , which represents the pressure drop per unit length of the channel, is constant as

the motion is hydrodynamically developed.
The boundary condition for the fluid velocity is defined as follows:
ucw = 0, with cw referring to the channel wall.
Referring to the solid part, let us consider the Fourier equation excluding the generative

term, which can be written as:

α∇2T =
∂T
∂t

(4)

With the thermal diffusivity equal to: α = k
ρcp

.
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With regard to the theoretical treatment of the continuity equation referring to the
solid/liquid mass, i.e., to a two-phase fluid, the following assumptions and considerations
can be made:

• natural convection is neglected, so v = vx = vy = vz = 0;
• and so D

Dt =
∂
∂t + vx

∂
∂x + vy

∂
∂y + vz

∂
∂z = ∂

∂t ;

• ρ ≃ ρm = ρs+ρl
2 ;

• k ≃ km = ks+kl
2 ̸= f (T).

Under these assumptions, it is possible to consider the phase transition separately
from the heat transfer in the solid phase and the heat transfer in the liquid phase, since
these can be described by Equation (4).

With regard to the material in phase transition, thus at constant temperature, the heat
flow, instead of causing a change in temperature ∂T

∂t , causes a change in the value of title χ:

.
Q = ρV

∂χ

∂t
;

χ =
ml

ms + ml
;

where ml is the liquid mass and ms is the solid mass.
The energy that enters the infinitesimal control volume of the Fourier equation is equal

to the term with the change in temperature over time only when there is no phase change;
otherwise, it is equal to the latent heat for the density of the liquid PCM for the change in
concentration of the liquid PCM over time.

The boundary condition resulting from thermal insulation in the studied domain is:

.
Qy

∣∣∣
y=0

= 0

while those resulting from symmetries are:

∂T
∂y

∣∣∣∣
y=Ly

= 0;
∂T
∂z

∣∣∣∣
z=Lz

= 0;
∂T
∂z

∣∣∣∣
z=0

= 0

By Fourier’s law, we can write:

.
Qy

∣∣∣
y=Ly

= 0;

.
Qz

∣∣∣
z=Lz

= 0;

.
Qz

∣∣∣
z=0

= 0

The velocity and temperature differential equations have been integrated using a
composite finite volume and finite difference method. In particular, the studied spatial
domain (corresponding to a quarter of the channel and the amount of PCM it exchanges heat
with) has been divided into finite dimensions parallelepiped, disposed in L layers along
the x axis. Each layer was composed of M rows of N parallelepiped. The integration of the
differential equations in each layer provided the same hydraulic and thermal resistance as in
the method employed in [26–30]. The integration between one layer and the other provided
conductive thermal resistance for the PCM and hydraulic, conductive, and convective
resistance for the heat vector fluid.

The integration of the differential equations in the time dimension has been carried out
using the finite difference method. The time domain has been divided into finite time steps.
Starting from an initial distribution of velocity, temperature, and PCM liquid concetration
for each finite volume of the spatial domain, changes in the latent and sensible thermal
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energy have been calculated for each parallelepiped by considering the thermal resistance
and then obtaining the distribution of velocity, temperature, and PCM liquid concentration
for the new time step. The procedure has been iterated until a final instant has been reached.

The solution procedure has been realized in the MATLAB R13 (MATLAB 6.5) environment.

5. Parametric Analysis

Some preliminary simulations have been carried out in order to determine an efficient
heat storage system geometry. In each channel, a pressure gradient dP

dx = −3.45 kg
m2·s2 has

been imposed. The initial system temperature (internal fluid + external phase changing
mass) is equal to 20 ◦C; the inlet temperature of the internal fluid is 80 ◦C from the beginning
of the simulation. The melting temperature of the phase-changing mass is equal to 56 ◦C.

The parameter values of the determined efficient geometry are reported in Table 1.

Table 1. Geometric Parameters.

Ly1[m] Ly2[m] Lz[m] Lz1[m]

0.0035 0.0115 0.01 0.005

Such a determined efficient geometry has been assumed as a reference for a subsequent
analysis, carried out by separately changing the values of three parameters: Ly1, Lz, and
Lz1. The velocity distribution in the heat vector fluid obtained for the reference geometry is
reported in Figure 4.
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Figure 4. Velocity distribution in the reference channel.

As shown in Figure 4, the velocity is very low, on the order of a few centimeters per
second, with a maximum speed of umax = u

(
Ly, Lz

)
= 0.0756 m/s, an average speed of

u = 0.0397 m/s, and a flow rate
.

V f , relative to the studied domain, i.e., the channel divided
into four parts, equal to 1.8266·10−6 m3/s.

The temperature and liquid PCM concentration in different system sections placed at
three points along the heat vector fluid motion direction (x) and in four time instants from
the beginning of the simulation are shown in Figure 5.
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After only 20 s, the temperatures of the heat vector fluid are uniform and close to the
maximum temperature Ti f = 80 ◦C, in all heat storage sections.

First of all, in the first sections of the heat storage, the temperatures of the solid/liquid
parts adjacent to the channel rise, melting rapidly. This leads to a sudden drop in heat
conduction in those areas, as liquid paraffin has a lower thermal conductivity than solid
paraffin. As time passes, heat is transferred to the parts of the solid/liquid material far from
the channel walls and to the sections far from the inlet of the heat transfer fluid. The part
of the solid/liquid material that melts last is in the section x = Lx, for z = 0, particularly
close to y = 0.

Figure 6a,b shows the stored energy and power density as a function of time.
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Figure 6. (a) accumulated energy density; (b) accumulated power density.

The trend of the stored energy density is typical of a negative exponential curve with
a horizontal asymptote, as the step-response of a first-order dynamical system.

From the previous graphs, we could also summarize that 99% of energy Qsl per unit
of volume accumulates in tQslmax99% = 806.06 s and 90% of energy Qs accumulates in
tQslmax90% = 536.36 s. The maximum accumulated instantaneous power Q·

slmax per unit

of volume (
.

Qslmax
Vtot

) is equal to 9.0138·105 W/m3 and occurs in the initial instants, at time
t .
Qslmax

= 9.1 s, after which it decreases until it asymptotically tends to zero.
Taking such performances as a reference, a parametric analysis has then been carried

out by modifying the geometric parameters of the channel cross section. These are Ly,
Ly1, Lz, and Lz1. Dividing the last three by the first one, we obtain three dimensionless
parameters: e1, e2, and e3. The parametric analysis has been carried out by varying the
dimensionless parameters from +/−20% to +/−40% and by observing the heat stored
density after 300, 600, and 1200 s since the beginning of the simulation. The results obtained
are shown in Figure 7a–c.
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Figure 7. (a) Q/V (accumulated energy density) vs. parameter variation (+/−20%)_ε1; (b) Q/V
(accumulated energy density) vs. parameter variation (+/−20%)_ε2; (c) Q/V (accumulated energy
density) vs. parameter variation (+/−20%)_ε3.

Under the considered conditions, parameters e1, e2, and e3 influence the number
of channels per unit of system width, the channel hydraulic resistance, the heat vector
fluid mass flow rate, and the amount of PCM around each channel. By reducing e1 and
e3, the channel cross-section area decreases, and so the hydraulic resistance increases.
Moreover, the heat transfer surface between the PCM and the heat vector fluid is reduced.
By increasing the same dimensionless parameters for given e2, the amount of PCM reduces.
Therefore, a compromise should be made in order to optimize the system’s performance.
In addition, the amount of PCM is determined by e2 when e1 and e3 are given.

Looking at Figure 7a–c, we can also observe how the dimensionless parameters
influence the time response of the system. In particular, some parameter configurations that
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seem to maximize the heat stored per unit of volume around each channel at the beginning
of the simulation do not provide the highest value of such a parameter after a longer time.

Due to the complex relationship between the cross section geometric parameters and
the heat storage velocity, it is convenient to use an optimization technique in order to
maximize the heat stored in the shortest time.

6. Conclusions

In the present work, we proposed a new system for heat storage composed of several
tubes crossing a volume containing a phase-changing material. The presented mathematical
model allows the heat storage system’s performance to be investigated by varying some
geometric parameters. It provides the time and space distribution of velocity, temperature,
and liquid phase-changing material concentration in a non-stationary regime. A rectangular
cross section has been considered in this study for the tubes. However, more complex
geometries described by more parameters can be managed by the model.

The parametric analysis carried out on the energy storage density for our two-phase storage
resulted in peaks for each of the main parameters analyzed (Lz, Ly1, Lz1) remaining within
the physical as well as geometric constraints. The preliminary results that were obtained show
that the proposed heat storage system can reach an accumulated energy density peak near
1.25 × 105 W/m3 in a short time (t = 300 s) and 3.5 × 105 W/m3 in a longer time (t = 1200 s).

Better performances of the proposed heat storage system, in terms of heat stored per
unit of volume and storage velocity, will be obtained by utilizing mathematical methods in
an optimization procedure, such as a genetic algorithm [26–30], and assigning to the tubes
a more complex cross section described by more parameters.
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Nomenclature

Al aluminum
cp specific heat at constant pressure
f refers to the heat transfer fluid
l refers to liquid
Lx Length of channels within the phase changing mass
Ly thermal storage size in direction z
Lz thermal storage size in direction z
m paraffin mass
.

Qz thermal flux in direction z
.

Qx PCM thermal flux in x-direction, concerning only PCM material surface
.

Qz thermal flux in direction z
.

Qy thermal flux in direction y
Q total energy stored
V thermal storage volume
α thermal diffusivity
k thermal conductivity
ρ density
χ title ratio
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