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Abstract: Renewable energies have become pivotal in the global energy landscape. Their adoption
is crucial for phasing out fossil fuels and promoting environmentally friendly energy solutions. In
recent years, the energy management system (EMS) concept has emerged to manage the power
grid. EMS optimizes electric grid operations through advanced metering, automation, and commu-
nication technologies. A critical component of EMS is power forecasting, which facilitates precise
energy grid scheduling. This research paper introduces a deep learning hybrid model employing
convolutional neural network–long short-term memory (CNN-LSTM) for short-term photovoltaic
(PV) solar energy forecasting. The proposed method integrates the variational mode decomposition
(VMD) algorithm with the CNN-LSTM model to predict PV power output from a solar farm in
Boussada, Algeria, spanning 1 January 2019, to 31 December 2020. The performance of the developed
model is benchmarked against other deep learning models across various time horizons (15, 30, and
60 min): variational mode decomposition–convolutional neural network (VMD-CNN), variational
mode decomposition–long short-term memory (VMD-LSTM), and convolutional neural network–
long short-term memory (CNN-LSTM), which provide a comprehensive evaluation. Our findings
demonstrate that the developed model outperforms other methods, offering promising results in
solar power forecasting. This research contributes to the primary goal of enhancing EMS by providing
accurate solar energy forecasts.

Keywords: solar energy; energy management system (EMS); solar power forecasting; deep learning
(DL); convolutional neural network–long short-term memory (CNN-LSTM); variational mode
decomposition (VMD)

1. Introduction

Over the past few decades, the world has witnessed an increase in global energy needs,
accompanied by an increase in the integration of renewable energy sources (RESs) into
electric power grids. The increasing daily usage of RESs has limited the ability to manage
traditional power systems effectively [1]. To adapt to this challenge, a new concept called
the energy management system (EMS) has emerged as a solution for managing the power
grid. The EMS is crucial in guiding operational decisions within power grids, facilitating
efficient energy supply and demand management between distributable generators and
loads. By harnessing the benefits of economical energy storage [2], the EMS ensures fair
compensation for adaptability while promoting the utilization of RESs. This strategic
approach aligns with environmental and economic goals, emphasizing sustainability and
optimal resource allocation.
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Within the framework of the research project that we seek to develop, the authors put
forward an intelligent energy management system (IEMS) architecture that aims to manage
energy from the demand side, considering renewable resources. An artificial intelligence
(AI) approach is employed in the proposed architecture to predict the future energy output
of each energy source. The IEMS negotiates the available power, and control actions are
prioritized according to the device’s consumer based on the predicted information. The
main focus of the current study is to develop an AI approach for forecasting the output
power of photovoltaic (PV) systems. This task is challenging due to its high dependence on
meteorological conditions, which are subject to frequent fluctuations. Using new methods
to overcome these challenges is essential for accurate results. Thus far, several researchers
and developers have given AI approaches substantial consideration for forecasting solar
systems’ output power.

In recent decades, considerable focus has been placed on machine learning (ML)-based
approaches, which have attracted significant attention. Various techniques, such as support
vector machine (SVM) [3] and k-nearest neighbors (kNN) [4], have been implemented
within the machine learning framework to achieve accurate predictions. Although these
ML algorithms have several advantages, such as their reasonable and simple architecture,
they still need to be more efficient than deep learning (DL) algorithms, which use a complex
neural network structure to learn data and patterns [5]. Recently, deep learning methods
have increasingly become the focus for predicting time series data. Many works on various
DL methods for forecasting solar power have been published in the literature. Some
examples of these approaches include the gated recurrent unit (GRU) [6], the long short-
term memory network (LSTM) [7–10], and the convolutional neural network (CNN) [11–13].

The primary aim of this research is to explore the application of advanced ML tech-
niques in developing and enhancing a DL model that integrates the variational mode
decomposition method with the convolutional neural network–long short-term memory
(CNN-LSTM) neural network. This model is specifically designed to predict the PV power
output of a solar plant in Boussada City.

The key contributions of this study are outlined as follows:

• Proposing a novel hybrid model combining the VMD algorithm with the CNN-LSTM
architecture for PV power forecasting, marking the first initiative to explore such a
hybrid model for these specific tasks.

• Conducting a comparative analysis against various DL models, including VMD-CNN,
VMD-LSTM, and CNN-LSTM, to assess the precision and performance enhancement
attributed to the unique integration of CNN, LSTM, and VMD components.

• Effectively utilizing actual data from the solar PV farm, ensuring the practical applica-
bility of our forecasting approach to real-world applications in energy management
systems.

The subsequent sections of the paper are organized in the following manner: Section 2
offers a comprehensive literature review, highlighting key studies and developments in
solar power forecasting using DL techniques. Section 3 describes the dataset and elaborates
on the data-processing techniques employed, alongside providing theoretical backgrounds
for VMD, the hybrid CNN-LSTM model, and the proposed method’s framework. Section 4
details the experimental results, comparing the performance of the developed VMD-CNN-
LSTM neural network against the aforementioned models across different time horizons
and seasons. Finally, Section 5 highlights the research findings and provides a comprehen-
sive summary of the study results and valuable insights into the effectiveness of the hybrid
VMD-CNN-LSTM model in accurately predicting solar power generation.

2. Literature Review

Deep learning (DL) algorithms have gained increasing attention in recent years due to
their proficiency in handling complex datasets and the progress made in computational
power. Unlike machine learning models, DL algorithms exhibit robustness when presented
with novel datasets, as slight changes to the input will not impact the initial hypothesis
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learned by the model. Various architectures of artificial neural networks (ANNs) have
proven effective for predicting renewable energy outputs.

Several studies have explored the application of ANN models for solar radiation
and PV system forecasting. Abdelaziz Rabehi et al. [14] conducted a comparative study
examining the effectiveness of the multi-layer perceptron (MLP), boosted decision tree
(BDT), and a hybrid model integrating these with linear regression (LR) for daily global
solar irradiation forecasts. Their analysis, focusing on key statistical measures, revealed that
the MLP model outperformed the other models, demonstrating superior performance with
a normalized root mean square error (nRMSE) of 0.033 and a coefficient of determination
(R2) value of 97.7%. In another study, Moreira et al. [15] utilized a novel approach by
integrating experimental techniques with an ANN to forecast weekly output from photo-
voltaic systems. They applied the design of experiments (DOE) methodology to examine
both the photovoltaic data series and the variables influencing the ANN, followed by a
cluster analysis to pinpoint the most efficient network configuration. The outcomes of their
study highlighted the model’s precision, achieving an impressive forecast accuracy with a
weekly average absolute percentage error of 4.7%. Jebli et al. [16] developed a multi-layer
perceptron model integrated with the clear sky index for classifying environmental factors.
They enhanced solar PV output power predictions by optimizing the MLP’s weights using
the artificial bee colony algorithm. This approach proved superior to linear models due
to solar power output’s intermittent and random nature, showcasing the effectiveness of
nonlinear forecasting in this context.

While ANN algorithms are adept at modeling intricate relationships within data, they
lag in leveraging long-term and short-term historical dependencies [5]. These dependencies
relate to the ANN’s capability to recognize and retain behavioral patterns from the distant
and recent past. Recurrent neural networks (RNNs) were introduced to address this issue.
However, RNNs encountered a significant problem called the vanishing gradient, limiting
their usefulness [17]. Long short-term memory (LSTM)-type RNNs emerged in 1997 as a so-
lution to this issue, owing to their memory units in network cells [17]. Several studies have
explored the application of LSTM neural networks and their variants for solar power and
PV forecasting. In [7], Liu et al. presented a solar power forecasting technique that utilizes a
simplified LSTM neural network on distributed energy resources. Their findings indicated
that LSTM demonstrated superior accuracy compared to MLP models. Akhter et al. [8]
developed a deep learning methodology employing RNN alongside LSTM frameworks
for forecasting PV output power. This methodology was compared against established
regression techniques, and the adaptive neuro-fuzzy inference system (ANFIS) was inte-
grated with machine learning strategies, demonstrating improved forecasting precision.
The research in [9] compared four LSTM architectural variants—vanilla, stacked, encoder–
decoder, and bidirectional long short-term memory (BiLSTM) models—within the context
of PV power prediction one hour in advance. This evaluation highlighted the superior
accuracy of the BiLSTM architecture, affirming its efficacy over the other architectures. An
innovative study [10] introduced a model combining LSTM and self-attention mechanisms
to enhance PV power generation forecasting, utilizing actual data from a Japanese building.
This model outperformed traditional methods by effectively leveraging weather forecast
data, demonstrating significant improvements in prediction accuracy across various time
frames, with a notable increase in the coefficient of determination for both short-term and
long-term forecasts.

Convolutional neural networks (CNNs) have gained recognition as a key solution for
addressing the challenge of PV energy prediction due to their strong nonlinear recognition
abilities. Several studies have explored the application of CNNs in this domain. In [11],
Suresh et al. proposed a CNN methodology for accurate short-term forecasting. The
proposed approach contained two distinct architectures, namely multi-headed CNN and
CNN-LSTM, which leveraged data-preprocessing techniques. The input variables utilized
for forecasting included solar irradiance, PV module temperature, ambient temperature,
and wind speed. The work published in [12] introduced SolarNet architecture, a deep
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CNN model designed to forecast one-hour-ahead global horizontal irradiance (GHI) using
sky images, eliminating the need for numerical measurements. Through an end-to-end
learning approach across 20 layers of convolutional, max-pooling, and fully connected
layers, SolarNet, tested over six years of data, outperformed benchmark models, resulting
in an nRMSE value of 8.85%, showcasing its superior performance across diverse weather
conditions. In their research, Heo et al. [13] constructed a multi-channel CNN model to
estimate PV output power, leveraging solar radiation data along with four other meteoro-
logical parameters, yielding accurate predictive outcomes. This approach assigned equal
weighting to all five input parameters to forecast PV power despite the differing degrees of
influence that solar radiation and other meteorological factors may exert.

To address the limitations of single LSTM or CNN models and leverage their respective
strengths for improved prediction efficacy, many researchers have proposed integrating
CNN and LSTM models for forecasting solar energy. A hybrid model presented in the
study [18] incorporates both LSTM and CNN architectures, and the paper highlights
the model’s effectiveness by utilizing a dataset obtained from Rabat, Morocco, which
represents real-world conditions. The CNN-LSTM architecture demonstrated superior
performance compared to conventional ML techniques and single DL models in terms of
prediction accuracy and stability, which was evidenced by the evaluation of error metrics
such as mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean square error (RMSE). The study referenced as [19] introduced two hybrid models,
namely CNN-LSTM and convolutional LSTM (ConvLSTM), as improved approaches for
power production prediction in a PV plant. These models were compared against an
LSTM model, which served as the baseline for comparison. The model was trained using
two datasets: one consisting of a single variable representing historical output power and
another consisting of many variables, including weather-related factors. The hybrid models,
spanning forecasting time horizons from one day to one week, demonstrated superior
accuracy compared to the standard LSTM model. This underscores the advantages of
incorporating diverse data features in PV power production forecasting, emphasizing
the efficacy of hybrid approaches for achieving enhanced predictive performance. In
a prominent study, Alharkan et al. [20] introduced a novel deep learning framework
(DSCLANet), which integrates a dual-stream CNN-LSTM network with a self-attention
mechanism. This model employs LSTM to extract temporal dynamics and CNN for
spatial pattern recognition. The synthesized spatial and temporal feature vectors are
subsequently merged, with the most informative features being selected through a self-
attention technique for advanced analysis. In their research paper, BouHouran et al. [21]
proposed a proficient method for short-term forecasting of wind and solar power, utilizing
the coati optimization algorithm (COA) in conjunction with a CNN-LSTM architecture,
based on data gathered from the Chinese State Grid in 2021. This COA-CNN-LSTM
configuration reported an nRMSE of 3.9%, a normalized mean absolute error (nMAE) of
2.1%, and an R2 of 0.9829 across eight locations.

As the field advances, cutting-edge research introduces even more advanced DL mod-
els for solar energy forecasting, leveraging complex architectures for increased accuracy.
Phan et al. [22] proposed a transformer deep learning model for one-hour-ahead PV power
generation forecasting, leveraging two years of numerical weather prediction (NWP) data
from Taiwan’s Central Weather Bureau and PV output from North Taiwan sites. This
model notably surpasses traditional ANN, LSTM, and GRU models in accuracy metrics like
nRMSE and normalized mean absolute percentage error (nMAPE), highlighting its effec-
tiveness amidst the challenges posed by solar energy’s dependency on fluctuating weather
conditions and day/night cycles. Lopez Santos et al. [23] conducted an evaluative study
contrasting the performance of the temporal fusion transformer (TFT) model against several
predictive algorithms, including the autoregressive integrated moving average (ARIMA),
LSTM, MLP, and extreme gradient boosting (XGBoost) algorithms, in forecasting hourly
PV generation during daylight hours. The outcomes of their investigation highlighted the
TFT model’s superior predictive capability over the compared models. In their paper [24],
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Wu et al. proposed a hybrid model CNN-Informer for PV power prediction. This approach
combines a CNN for feature extraction with the Informer model, a transformer-based
architecture. The CNN extracts relevant features from the input data, and its outputs are
then integrated with the inputs to the Informer model. The CNN-Informer model can
capture temporal correlations within the historical data by exploiting information source
modeling techniques, thus improving PV power forecasting accuracy.

3. Materials and Methods
3.1. Data Collection

The database used in this study is sourced from a photovoltaic (PV) plant located in
Boussada, a central–eastern city in Algeria known for its partly desert climate. The PV
plant has a capacity of 10 megawatts. Data collection spanned from 1 January 2019, to
31 December 2020, with measurements taken at fifteen-minute intervals, counting 69,195 data
points. The dataset contains parameters such as PV panel temperature, tilt radiation, total
radiation, direct radiation, humidity, and PV power, as listed in Table 1.

Table 1. PV plant-monitored data.

Parameters Values Range

Panel temperature (◦C) 1.70–71.70
Tilt radiation (W/m2) 0.0–1651.20

Total radiation (W/m2) 0.0–1387.20
Direct radiation (W/m2) 0.0–1365.60

Humidity (%) 0.10–74.80
PV power (kW) 0.0–10,815.0

Figure 1 illustrates the seasonal distribution of PV power for 2019 and 2020. Winter
shows the highest average photovoltaic energy production, peaking at 5265.0 kilowatts.
Spring and summer also exhibit stable energy outputs, while autumn reflects consistent
efficiency, indicating effective energy capture from the farm across all seasons.
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3.2. Data Processing

The raw data derived from PV power databases often exhibit inconsistencies due to
varied factors such as equipment degradation and system processing errors. Addressing
these issues is essential to ensure the reliability of the predictive models built upon these
data. In this work, we encountered missing values and outliers within the dataset. Two
approaches were employed to address these issues. In most cases, missing values were
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replaced by the temporal average, derived from values recorded immediately before and
after the missing values. In scenarios where the outliers skewed the dataset considerably,
the data point was deleted to maintain the integrity of the analysis. For this study, power
values were exclusively recorded during daytime hours, from 6 AM to 6 PM, because of the
negligible power generation recorded during nighttime hours in PV systems. Considering
the previous points, the database contains in final 33,465 samples. We employed the min–
max normalization method to optimize the model’s performance and ensure homogeneity
within the dataset. This process transforms each data point, ensuring values range from 0
to 1. For a given value x, its normalized value xnorm is calculated as follows:

xnorm =
x − min(x)

max(x)− min(x)
(1)

Such normalization serves multiple purposes: speeding up the optimization solution
of the model, minimizing the disparity between the highest and lowest values, removing
the influence dimensions, and reducing the calculation amount.

3.3. Variational Mode Decomposition (VMD)

The PV power output is subject to time-variant and often nonlinear variations. These
fluctuations are primarily influenced by factors like solar irradiance, temperature, etc.
For a deep analysis of these fluctuations, the time series data of PV power output can
be decomposed into simpler components. The empirical mode decomposition (EMD)
is a notable method for this purpose. Introduced in [25], EMD is widely applied for
handling nonstationary and nonlinear time series. It decomposes a time series into a
set of intrinsic mode functions (IMFs). However, EMD is known for limitations like
sensitivity to noise and sampling [26]. To address some of these limitations, VMD was
proposed by Dragomiretskiy and Zosso in 2014 [26]. This algorithm is designed explicitly
for nonstationary and nonlinear time series. VMD optimizes the decomposition process
using an alternating direction method of multipliers approach, significantly enhancing
its performance in signal decomposition [26]. Contrary to the EMD, VMD systematically
decomposes the original signal into distinct IMFs, each representing different frequency
components. This structured approach, particularly in reducing sensitivity to noise, makes
VMD a more robust choice for analyzing complex time series data like PV power data.
The VMD algorithm decomposes an original signal f (t) into K intrinsic mode functions, as
represented by Equation (2):

uk(t) = Ak(t)cos[ϕk(t)] (2)

where variables Ak(t) and ϕk(t) represent the amplitude and phase functions of time t,
respectively, and the computation in VMD involves solving a bandwidth-constrained
problem, where all modes’ number k and center frequency ωk are initialized.

min
uk,ωk

{
∑
k

∥∥∥∥∂

[
(δ(t) +

j
πt

) ∗ u(t)k

]
e−jωkt

t

∥∥∥∥
2

}
(3)

f(t) = ∑
k

uk(t) (4)

where ∂t represents the derivative with respect to the time variable t, and the function uk(t)
denotes the kth mode associated with the center frequency ωk. The term corresponding to
δ(t) is the real component of uk(t).

An enhanced Lagrange multiplier, represented by λ, is utilized to mitigate the min-
imization of the objective function. This enables the integration of the constraint into a
cohesive function L.
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L(uk,ωk, λ) = α∑
k

∥∥∥∥∂

[
(δ(t) +

j
πt

) ∗ u(t)k

]
e−jωkt

t

∥∥∥∥
2
+

∥∥∥∥∥f(t)− ∑
k

uk(t)

∥∥∥∥∥
2

+

〈
λ(t)

∣∣∣∣∣f(t)− ∑
k

uk(t)

〉
(5)

where α represents a penalty parameter that is utilized to guarantee the precision of the
reconstructed signal; on the other hand, λ(t) denotes the time-varying Lagrange multiplier.

3.4. Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM)
3.4.1. Convolutional Neural Network (CNN)

The CNN is a specialized artificial neural network that is commonly utilized in image
recognition and classification. One of its most important strengths is its sparse connectivity
and weight-sharing characteristics [27]. Unlike traditional neural networks, CNNs incorpo-
rate specialized layers such as convolutional and pooling layers. The convolutional layer
applies convolution operations, extracting the spatial characteristics of features from the
input. On the other hand, the pooling layers help reduce the spatial dimensions, keeping
the essential information intact and aiding in computational efficiency. The extracted fea-
tures are then fed into a fully connected layer, where the network predicts the final output
values based on the learned representations, as shown in Figure 2.
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Transitioning to a variant, 1D-CNNs can also be effectively utilized for processing
one-dimensional sequential data, making them suitable for tasks involving natural lan-
guage processing, audio signal processing, and, notably, time series analysis. Within the
architecture of a 1D-CNN, both the convolutional kernel and the input data sequence are
one-dimensional. This design choice ensures the kernel moves along a singular dimension,
efficiently capturing local patterns and intricate dependencies within sequential data. The
following equations summarize how the one-dimensional convolution layers work.

y(l)
j =

 ∑
i∈G|

tl−1
i ⊕ w(l)

j

+ b(l)
j (6)

tl
j = f

(
y(l)

j

)
(7)

f(x) = max(0, x) (8)

where y(l)j is the output of the j-th feature map at layer l. tl−1
i is the output from the

i-th feature map at layer l−1 (i.e., the previous layer’s output). w(l)
j is the weight (or

filter/kernel) associated with the j-th feature map at layer l. b(l)j is the bias term for the j-th
feature map at layer l. ⊕ indicates the convolution operation.
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This process enables the network to extract essential elements, facilitating the devel-
opment of important representations from the input sequence. One-dimensional convo-
lutional neural networks (1D-CNNs) provide intrinsic efficiency in capturing temporal
dependencies. This attribute is fundamental in several fields, such as predicting energy
consumption and detecting faults in power systems.

3.4.2. Long Short-Term Memory (LSTM)

Recently, neural networks have become popular in time-series forecasting tasks due to
their ability to model complex relationships. However, traditional neural networks struggle
to handle dependencies in historical data efficiently. Recurrent neural networks (RNNs),
which utilize network loops to incorporate information from previous time steps, were
introduced to address this issue. While RNNs can handle short-term dependencies, they
face challenges with long-term dependencies due to problems like gradient explosion and
vanishing gradient. To overcome these challenges, Hochreiter and Schmidhuber initially
proposed the LSTM network [18]. This neural network has a specialized architecture that
automatically stores and removes temporal state information. This capability allows them
to capture complex relationships in short and long time-series while solving the vanishing
gradient problem.

The LSTM model consists of memory cells, as depicted in Figure 3. The memory block
comprises three primary components: the input gate, the forget gate, and the output gate.
In essence, each of the gates has a specific function.
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• The input gate controls which parts of the new information will be stored in the cell
state.

• The forget gate controls which parts of the cell state will be thrown away.
• The output gate computes the cell’s output and sends it to the next cell in the chain.

The equations below represent the mathematical representation of the network layer’s
memory cell update at each time step t. The vector of the input sequence at time step t is
denoted xt, whereas the hidden layer value of the memory cell at time step t is denoted ht.
The candidate, current, and preceding cell states are denoted gt, ct, and ct−1, respectively.
Firstly, the input and forget vector gates are computed in the following manner:

it = σ(Wxi·xt + Whi·ht−1 + bi) (9)

ft = σ(Wxf·xt + Whf·ht−1 + bf) (10)
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The computation of the candidate and current cell states is performed as follows:

gt = tanh
(

Wxg·xt + Whg·ht−1 + bg

)
(11)

ct = ft × ct−1 + it × gt (12)

Ultimately, the computation of the output gate’s value and the memory cell’s output
value is given as follows:

ot = σ(Wxo·xt + Who·ht−1 + bo) (13)

yt = ht = ot × tanh (ct) (14)

3.5. Framework of the Proposed Method

The proposed PV solar power forecasting method is based primarily on the CNN-
LSTM hybrid model, as depicted in Figure 4.
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The methodology is built upon three pivotal stages: (1) input data preparation,
(2) forecasting model design, and (3) proposed model evaluation throughout a comprehen-
sive comparison. To enhance forecasting precision, historical PV power data are decom-
posed using VMD, decomposing the data into diverse feature scales. This decomposition
results in five intrinsic mode functions (IMFs), as illustrated in Figure 5.

Upon completing this decomposition, these IMFs are combined with the meteoro-
logical parameters (panel temperature, tilt radiation, total radiation, direct radiation, and
humidity), as listed in Table 1, to serve as input data. The sliding window technique is
used on these combined data, alongside the target PV power variable, as demonstrated in
Figure 6, where a fixed 24-step window slides over the time series, a value chosen based on
trials. Each window’s data become the input, while the subsequent PV power value is the
target output.
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The core CNN-LSTM model, visualized in Figure 7, is a sequence of two CNN layers,
one LSTM layer, and two fully connected layers. The model processes ten input variables,
encompassing the five dataset features (panel temperature, tilt radiation, total radiation, di-
rect radiation, and humidity) and the five IMFs. The dual convolutional layers in the model,
with 96 and 128 kernels, respectively, focus on feature extraction, while the 60-neuron
LSTM layer captures temporal dependencies. The architecture concludes with two fully
connected layers of 128 and 1 output neuron, respectively. For model training, we utilized
30,094 data instances; in contrast, 3344 samples were reserved for model testing.
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4. Case Study

Through this section, we seek to comprehensively evaluate the reliability of the de-
veloped VMD-CNN-LSTM model over different prediction time horizons, which include
15 min, 30 min, and 60 min.

The comparative analysis is designed to evaluate the performance of the VMD-CNN-
LSTM model with three other neural network configurations: VMD-LSTM, VMD-CNN,
and the standalone CNN-LSTM. This selection serves a twofold purpose. Firstly, it aims
to unveil the impact of VMD in enhancing predictive decision making capabilities. This
is achieved by comparing the performance of the VMD-CNN-LSTM model against the
standalone CNN-LSTM model. The second objective is to explore the advantages of
combining CNN and LSTM architectures in scenarios requiring accurate predictions. To
this end, the analysis compares the results of the VMD-CNN-LSTM model with both the
VMD-LSTM and VMD-CNN models.

The experiments were conducted using the Keras library in Python 3.9.13 version,
using a laptop equipped with a 2.70 GHz Intel Core i7-7500U CPU and 8 GB DDR4 RAM.
The training approach employed the Huber loss function, optimized using the Adam
optimizer. The most effective model configuration was obtained through a process of
trial and error, ultimately resulting in a batch size of 128, a learning rate of 0.0001, and a
maximum of 100 epochs. An early stopping technique was incorporated to enhance the
model’s generalization capabilities and prevent overfitting.

To evaluate the models’ forecasting performances, four distinct error metrics were
used: mean absolute error (MAE) [28], root mean square error (RMSE) [28], normalized
root mean square error (nRMSE) [29], and the coefficient of determination (R2) [30]. These
metrics are crucial for a nuanced understanding of each model’s strengths and weaknesses.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

nRMSE =

√
1
n ∑n

i=1(yi − ŷi)
2

y
(16)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (17)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (18)

In this context, the variable yi represents the current value of the observation, ŷi
represents the predicted value, and y represents the mean of the current observed values.
Additionally, n denotes the number of samples used for evaluation.
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Experimental Studies and Results

This section presents and discusses the outcomes of four PV power forecasting models,
namely (VMD-LSTM, VMD-CNN, VMD-CNN-LSTM, and CNN-LSTM). The experiments
were conducted for different forecasting horizons: one step (15 min), two steps (30 min),
and fourth steps ahead (60 min). Error metrics (RMSE, MAE, NRMSE, and R2) for each
model and time horizon are shown in Table 2.

Table 2. Performance metric results of 1 step, 2 step, and 4 step (15 min, 30 min, and 60 min ahead
forecast).

Forecasting Time
Horizon Models

Metrics

RMSE (kW) MAE (kW) nRMSE (%) R2 (%)

15 min ahead

VMD-LSTM 157.62 115.26 3.7 99.2
VMD-CNN 116.68 77.12 2.7 99.7

VMD-CNN-LSTM 96.04 60.50 2.2 99.8
CNN-LSTM 247.61 160.36 5.9 99.0

30 min ahead

VMD-LSTM 186.52 142.54 4.5 99.4
VMD-CNN 183.35 126.89 4.3 99.5

VMD-CNN-LSTM 160.31 105.80 3.8 99.6
CNN-LSTM 311.66 194.55 7.4 98.5

60 min ahead

VMD-LSTM 184.20 138.29 4.4 99.4
VMD-CNN 221.12 156.26 5.2 99.2

VMD-CNN-LSTM 160.31 115.17 3.7 99.6
CNN-LSTM 472.40 276.41 11.3 96.6

The 1-step-ahead forecasting results, as presented in Table 2, Figures 8 and 9, highlight
the superior performance of the VMD-CNN-LSTM model when compared to the VMD-
LSTM, VMD-CNN, and standalone CNN-LSTM models. In terms of prediction accuracy,
the VMD-CNN-LSTM model achieved the lowest MAE value of 60.5 kW, outperforming
the VMD-LSTM (115.26 kW), VMD-CNN (77.12 kW), and CNN-LSTM (160.36 kW) models.
This superior accuracy is further underscored by the model’s RMSE value of 96.04 kW and
nRMSE of 2.2%, making it the most proficient among all models evaluated. Regarding the
R2 metric, the VMD-CNN-LSTM model slightly edged out the other algorithms with an
R2 value of 99.8%, followed by VMD-CNN (99.7%), VMD-LSTM (99.2%), and CNN-LSTM
(99.0%). These findings collectively highlight the VMD-CNN-LSTM model’s capability of
achieving accurate forecasting results and ensuring dependable outcomes for 1-step-ahead
predictions.
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Figures 10 and 11 illustrate the predictive capabilities of the four evaluated algorithms
in forecasting solar power generation a single step ahead, focusing on two distinct days
characterized by cloudy and sunny weather conditions, respectively.
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The 2-step ahead forecasting outcomes, summarized in Table 2, Figures 12 and 13,
reveal notable results. The mean absolute error metric highlights the VMD-CNN-LSTM
model as the best-performing algorithm, with a value of 105.80 kW. This result show-
cases the model’s precision over the VMD-LSTM (142.54 kW), VMD-CNN (126.89 kW),
and CNN-LSTM (194.55 kW) models. The superiority of the VMD-CNN-LSTM model in
2-steps-ahead forecasting is further confirmed by the root mean squared error and normal-
ized root mean squared error metrics. The VMD-CNN-LSTM model achieved an RMSE
of 160.31 kW and an nRMSE of 3.8%, outperforming the other algorithms evaluated. The
VMD-CNN model emerged as the second-best algorithm, with an RMSE of 183.35 kW
and an nRMSE of 4.3%. Regarding the R2 metric, which evaluates the predictive fit of the
model, the VMD-CNN-LSTM demonstrated the highest performance, with an R2 value
of 99.6%. This result further underscores the model’s ability to produce dependable and
precise outcomes in the 2-steps-ahead prediction experiment.
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Figure 13. VMD-CNN-LSTM model predictions versus target data (30 min ahead).

Figures 14 and 15 illustrate the predictive capabilities of the four evaluated algorithms
in forecasting solar power generation two steps ahead, focusing on two distinct days
characterized by cloudy and sunny weather conditions, respectively.

The results provided in Table 2, Figures 16 and 17, related to the 4-steps-ahead prediction
again confirmed the effectiveness of the VMD-CNN-LSTM approach. In terms of the MAE
metric, the VMD-CNN-LSTM model demonstrated superior performance with the lowest
error value of 115.17 kW. In comparison, the CNN-LSTM model produced an error value of
276.41 kW, while the VMD-LSTM and VMD-CNN models reported error values of 138.29 kW
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and 156.26 kW, respectively. The effectiveness of VMD-CNN-LSTM remained evident in the
assessment of RMSE and nRMSE, achieving errors of 160.31 kW and 3.7%, respectively.

Energies 2024, 17, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 12. Error metrics’ comparison for the 2-steps (30 min)-ahead forecast. 

 

Figure 13. VMD-CNN-LSTM model predictions versus target data (30 min ahead). 

Figures 14 and 15 illustrate the predictive capabilities of the four evaluated algo-

rithms in forecasting solar power generation two steps ahead, focusing on two distinct 

days characterized by cloudy and sunny weather conditions, respectively. 

 

Figure 14. Solar PV forecast results for 30 min (two steps) ahead (cloudy day). 
Figure 14. Solar PV forecast results for 30 min (two steps) ahead (cloudy day).

Energies 2024, 17, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 15. Solar PV forecast results for 30 min (two steps) ahead (sunny day). 

The results provided in Table 2, Figures 16 and 17, related to the 4-steps-ahead pre-

diction again confirmed the effectiveness of the VMD-CNN-LSTM approach. In terms of 

the MAE metric, the VMD-CNN-LSTM model demonstrated superior performance with 

the lowest error value of 115.17 kW. In comparison, the CNN-LSTM model produced an 

error value of 276.41 kW, while the VMD-LSTM and VMD-CNN models reported error 

values of 138.29 kW and 156.26 kW, respectively. The effectiveness of VMD-CNN-LSTM 

remained evident in the assessment of RMSE and nRMSE, achieving errors of 160.31 kW 

and 3.7%, respectively. 

 

Figure 16. Error metrics’ comparison for the 4-steps (60 min)-ahead forecast. 

 

Figure 17. VMD-CNN-LSTM model predictions versus target data (60 min ahead). 

Figure 15. Solar PV forecast results for 30 min (two steps) ahead (sunny day).

Energies 2024, 17, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 15. Solar PV forecast results for 30 min (two steps) ahead (sunny day). 

The results provided in Table 2, Figures 16 and 17, related to the 4-steps-ahead pre-

diction again confirmed the effectiveness of the VMD-CNN-LSTM approach. In terms of 

the MAE metric, the VMD-CNN-LSTM model demonstrated superior performance with 

the lowest error value of 115.17 kW. In comparison, the CNN-LSTM model produced an 

error value of 276.41 kW, while the VMD-LSTM and VMD-CNN models reported error 

values of 138.29 kW and 156.26 kW, respectively. The effectiveness of VMD-CNN-LSTM 

remained evident in the assessment of RMSE and nRMSE, achieving errors of 160.31 kW 

and 3.7%, respectively. 

 

Figure 16. Error metrics’ comparison for the 4-steps (60 min)-ahead forecast. 

 

Figure 17. VMD-CNN-LSTM model predictions versus target data (60 min ahead). 

Figure 16. Error metrics’ comparison for the 4-steps (60 min)-ahead forecast.



Energies 2024, 17, 1781 16 of 21

Energies 2024, 17, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 15. Solar PV forecast results for 30 min (two steps) ahead (sunny day). 

The results provided in Table 2, Figures 16 and 17, related to the 4-steps-ahead pre-

diction again confirmed the effectiveness of the VMD-CNN-LSTM approach. In terms of 

the MAE metric, the VMD-CNN-LSTM model demonstrated superior performance with 

the lowest error value of 115.17 kW. In comparison, the CNN-LSTM model produced an 

error value of 276.41 kW, while the VMD-LSTM and VMD-CNN models reported error 

values of 138.29 kW and 156.26 kW, respectively. The effectiveness of VMD-CNN-LSTM 

remained evident in the assessment of RMSE and nRMSE, achieving errors of 160.31 kW 

and 3.7%, respectively. 

 

Figure 16. Error metrics’ comparison for the 4-steps (60 min)-ahead forecast. 

 

Figure 17. VMD-CNN-LSTM model predictions versus target data (60 min ahead). Figure 17. VMD-CNN-LSTM model predictions versus target data (60 min ahead).

Regarding the R2 metric, the VMD-CNN-LSTM model achieved a score of 99.6%, demon-
strating exceptional performance, closely followed by the VMD-LSTM model with a value
of 99.4%, the VMD-CNN model with a score of 99.2%, and the CNN-LSTM model with a
value of 96.6%. Overall, the evaluation of the previous metrics confirms the superiority of
VMD-CNN-LSTM in providing coherent and reliable forecasts for the 4-step horizon ahead.

Figures 18 and 19 illustrate the predictive capabilities of the four evaluated algorithms
in forecasting solar power generation four steps ahead, focusing on two distinct days
characterized by cloudy and sunny weather conditions, respectively.
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The preceding findings demonstrated a distinct advantage of the suggested approach
compared to the other methods across all time horizons due to its reliance on a precise
architecture that can deal with instantaneous fluctuations in solar energy data. The VMD-
CNN-LSTM algorithm’s superiority, put simply, can be attributed to the following factors:

• VMD preprocessing: VMD is adept at extracting intrinsic modes in data. This becomes
especially important in solar energy predictions, where the input signals can be non-
stationary or possess multiple modalities. VMD simplifies the task for the subsequent
layers by addressing such complexities during preprocessing.

• The 1D-CNN advantage: 1D-CNNs are fine-tuned for handling sequential data, per-
fectly aligning with the time series nature of data. Their expertise rests in efficiently
identifying specific temporal trends. In solar energy prediction, capturing short-term
patterns, such as variations in solar irradiance, becomes pivotal.

• The LSTM advantage: While LSTM models are widely recognized for effectively
retaining and utilizing information related to long-term dependencies, their real
strength is their proficiency in modeling sequential data. Even for short-term forecasts,
the ability of LSTMs to incorporate information from previous time steps can be useful.
They capture the flow of data, which can be crucial for solar forecasts.

• The hybrid approach: The integration of VMD, 1D-CNN, and LSTM techniques allows
their respective functionalities to be combined into a unified methodology. With the
complexity simplified by VMD, 1D-CNN identification of local patterns, and LSTM’s
ability to incorporate information from past time steps, the model can address the
diverse challenges inherent in solar forecasting.

To evaluate the performance and efficiency of the proposed deep learning architectures,
various metrics were analyzed, including model complexity, as measured by the number of
learnable parameters and prediction time. The comparative analysis is presented in Table 3.
The proposed algorithm VMD-CNN-LSTM exhibited the lowest model complexity among
the evaluated models, with 80,977 learnable parameters. Furthermore, it achieved the third-
lowest prediction time of 0.50 s. Conversely, the VMD-CNN neural network possessed
the shortest prediction time of 0.11 s, albeit with the highest model complexity, with
224,545 learnable parameters. These findings suggest that the proposed approach strikes
an optimal balance between prediction performance, model complexity, and prediction
time, potentially offering a viable choice for practical applications.

Table 3. Comparing the prediction times and complexities of models.

Deep Learning Models Prediction Time (s) Model Complexity

VMD-LSTM 0.68 172,929 parameters
VMD-CNN 0.11 224,545 parameters

VMD-CNN-LSTM 0.50 80,977 parameters
CNN-LSTM 0.41 130,897 parameters

Furthermore, in addition to the abovementioned comparison, the different models
were again evaluated in the context of the year’s four seasons. This comparison provides
empirical evidence supporting the suggested model’s robustness and higher performance
than alternative methods. The findings of this comparative analysis are displayed in Table 4
and Figure 20.

Table 4. Performance metric forecast results for the different seasons.

Season Models
Metrics

RMSE (kW) MAE (kW) nRMSE (%)

Winter

VMD-LSTM 187.83 133.51 4.4
VMD-CNN 138.49 93.90 3.2

VMD-CNN-LSTM 111.54 73.09 2.5
CNN-LSTM 270.60 174.76 9.9
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Table 4. Cont.

Season Models
Metrics

RMSE (kW) MAE (kW) nRMSE (%)

Spring

VMD-LSTM 176.47 127.39 4.1
VMD-CNN 135.73 87.36 3.1

VMD-CNN-LSTM 112.48 69.17 2.6
CNN-LSTM 263.20 172.37 9.7

Summer

VMD-LSTM 125.49 94.96 2.9
VMD-CNN 86.63 56.71 2.0

VMD-CNN-LSTM 73.07 43.72 1.7
CNN-LSTM 189.89 126.48 6.9

Autumn

VMD-LSTM 180.23 131.10 4.2
VMD-CNN 136.87 94.38 3.2

VMD-CNN-LSTM 110.82 72.72 2.5
CNN-LSTM 303.19 204.97 11.2
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The comprehensive evaluation of RMSE, MAE, and nRMSE metrics yielded insightful
results for each season. For autumn, the RMSE, MAE, and nRMSE were recorded at
110.82 kW, 72.72 kW, and 2.5%, respectively, indicating a precise predictive capability
during this season. The winter season displayed similar precision, with RMSE and MAE
values at 111.54 kW and 73.09 kW, while the nRMSE is 2.5%. For spring, the model
sustained this level of accuracy, with an RMSE of 112.48 kW, MAE of 73.09 kW, and
an nRMSE of 2.6%. The model excelled in the summer, demonstrating the lowest error



Energies 2024, 17, 1781 19 of 21

with an RMSE of 73.07 kW, MAE of 43.72 kW, and an impressive nRMSE of 1.7%. In
parallel, the VMD-CNN model’s performance was quantified with RMSE, MAE, and
nRMSE values of 136.87 kW, 94.38 kW, and 3.2% for autumn; 138.49 kW, 93.90 kW, and
3.2% for winter; 135.73 kW, 87.36 kW, and 3.1% for spring; and 86.63 kW, 56.71 kW, and
2.0% for summer. Comparatively, the VMD-LSTM model exhibited higher RMSE, MAE,
and nRMSE values, suggesting less precision: 180.23 kW, 131.10 kW, and 4.2% for autumn;
187.83 kW, 133.51 kW, and 4.4% for winter; 176.47 kW, 127.39 kW, and 4.1% for spring;
and 125.49 kW, 94.96 kW, and 2.9% for summer. Lastly, the CNN-LSTM model showed
the highest errors with RMSE, MAE, and nRMSE measurements of 303.19 kW, 204.97 kW,
and 11.2% for autumn; 270.60 kW, 174.76 kW, and 9.9% for winter; 263.20 kW, 172.37 kW,
and 9.7% for spring; and 189.89 kW, 126.48 kW, and 6.9% for summer, indicating room for
improvement in the model’s predictive accuracy.

Despite the inherent variability in seasonal data features, encompassing diverse envi-
ronmental conditions, the proposed algorithm consistently demonstrated excellent levels of
accuracy. The error rates across seasons exhibited a consistent pattern, suggesting no bias
towards any particular seasonal data. These results, in conjunction with the forecast results
illustrated in Figures 10, 11, 14, 15, 18 and 19, which were obtained under different climatic
conditions (cloudy day/sunny day), confirm the robustness of the proposed VMD-CNN-
LSTM approach. The consistent performance across varying seasonal and environmental
conditions highlights the algorithm’s ability to generalize effectively, which is essential for
practical applications.

5. Conclusions

With the impressive implementation of solar power in modern grids, the main chal-
lenge is their unstable power generation, which is mainly affected by metrological con-
ditions. Consequently, there is a growing demand for precise photovoltaic (PV) power
generation prediction to enhance their seamless integration into a smart grid.

This paper introduces a hybrid convolutional neural network–long short-term memory
(CNN-LSTM) model to forecast the PV power generation from a solar farm in Boussada,
Algeria. The proposed approach leverages the strengths of both CNNs’ and LSTMs’ neural
networks and the variational mode decomposition (VMD) algorithm to enhance forecasting
accuracy. The PV output power data were initially decomposed using the VMD technique.
This decomposition generated several frequency bands, each representing a power subseries
within the historical time series. The power subseries were concatenated with the metro-
logical parameters and fed as input to the hybrid CNN-LSTM neural network. The model
performance is benchmarked against other deep learning models (VMD-CNN, VMD-LSTM,
CNN-LSTM) across various time horizons to provide a comprehensive evaluation.

The experimental results were divided into prediction horizons of 15 min, 30 min, and
60 min ahead. The results showed the clear superiority of the proposed method, achieving
the lowest RMSE and MAE values of 96.04 kW and 60.50 kW for the one-step forecast,
followed by the VMD-CNN model with an RMSE and MAE value of 116.68 kW and
77.12 kW. The same scenario was also observed for the two-step and four-step pre-forecast
horizons. When analyzing the seasonal results, it is evident that the VMD-CNN-LSTM
model yielded appropriate outcomes across all seasons without exhibiting any bias towards
a particular season.

Overall, the proposed hybrid model demonstrates enhanced precision in short-term
PV power forecasting and can meet the requirements of real-world systems. The future
contributions of this study will delve into the exploration of the following areas:

• Investing in more robust data collection methods, including diverse metrological
conditions and geographic locations, can improve model accuracy and applicability.

• Practical incorporation into an existing energy management system by addressing
real-world challenges such as variable data flows, system integration complexities,
and operational constraints.
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