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Abstract: A grid blackout is an intractable problem with serious economic consequences in many
developing countries. Although it has been proven that microgrids (MGs) are capable of solving
this problem, the uncertainties regarding when and for how long blackouts occur lead to extreme
difficulties in the design and operation of the related MGs. This paper addresses the optimal design
problem of the MGs considering the uncertainties of the blackout starting time and duration utilizing
the kernel density estimator method. Additionally, uncertainties in solar irradiance and ambient
temperature are also considered. For that, chance-constrained optimization is employed to design
residential and industrial PV-based MGs. The proposed approach aims to minimize the expected
value of the levelized cost of energy (LCOE), where the restriction of the annual total loss of power
supply (TLPS) is addressed as a chance constraint. The results show that blackout uncertainties have
a considerable effect on calculating the size of the MG’s components, especially the battery bank
size. Additionally, it is proven that considering the uncertainties of the input parameters leads to an
accurate estimation for the LCOE and increases the MG reliability level.

Keywords: microgrid; battery lifetime; optimal design; blackout

1. Introduction

MG design is a long-term planning process. In this process, the optimal size and types
of the MG components should be selected in such a way that guarantees a long-term reliable
and cost-effective energy source based on the customer’s requirements. The optimal design
of the MG includes a deep understanding of the operation, lifetime characteristics, and
environmental impacts of each component in the MG that highly increases the problem
complexity. Moreover, considering the uncertainty of fluctuating renewable energy sources
and grid blackouts plays an essential role in increasing the optimal design accuracy.

One can classify the solution approach for the optimal design problem of the MG
into the following two main categories: (1) deterministic optimal design of MGs and
(2) stochastic optimal design of MGs. The former can calculate the optimal sizes of the MG
components, but the solution may not be accurate enough to satisfy the design constraints.
The latter provides an optimal solution while satisfying the related technical constraints
considering the load, electricity cost, or power sources uncertainties. The the latter solution
approach is the subject of interest in this paper.

Several studies have been conducted to incorporate the uncertainty of renewable
power generation in the MG optimal design problem considering different stochastic pa-
rameters and models as well as solutions strategies [1,2]. For instance, a chance-constrained
programming approach was utilized in [3] to design a standalone wind–PV–battery system
considering the non-Gaussian stochastic model for the produced power by the wind turbine
and the PV system. In [4], a Monte Carlo simulation (MCS) and practical swarm algorithm
were used to find the optimal size of a wind–PV–battery system while considering the
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wind speed, solar irradiance, and load demand uncertainty. Also, the optimal size of a
PV–wind–battery system was investigated in [5]; meanwhile, MCS was utilized to handle
the uncertainty of the wind and the PV system production without considering the seasonal
variation in the developed stochastic model. A concept of design space was applied in [6]
to optimize the size of a PV–battery system incorporating the uncertainty of the generated
power from the PV array, taking into consideration the desired confidence level. Besides,
the design space approach was used in [7] for sizing an islanded wind–battery system by
considering the wind speed uncertainty. Chance-constrained programming method was
used in [8] to address the uncertainties in renewable resources to optimize a PV–wind–
battery system. Recently, a scenario reduction method has been proposed to simplify the
impact of the uncertainty in the load profile and the renewable energy output on the MG
optimal design problem [9].

Special attention was given to optimizing the energy storage system in order to
increase MG reliability and decrease the impact of uncertainty. As an example, the work
in [10] used the Markov chain method with MCS to calculate the optimal size of the
energy storage system in a MG to minimize the power mismatch between the generated
power from the renewables and load considering wind speed uncertainty. Moreover,
a stochastic optimization problem was formulated in [11] to find the optimal size of a
battery storage system in an islanded MG considering the wind speed and the load growth
factor uncertainty. In [12], the stochastic optimization problem was transformed into
a deterministic one using the point estimated method with Cholesky decomposition to
optimize the energy storage size considering the intermittent power generation from the
wind turbines. In [13], a stochastic programming technique was used to optimize energy
storage system size in a grid-connected MG to enhance its reliability under wind speed
uncertainties. Chance-constrained optimization (CCOPT) for optimal power flow was
introduced by Zhang and Li [14] and solved efficiently with sparse-grid integration [15].
From the above discussion, it can be noticed that most of the previous studies take into
account the uncertainty of the generated power from renewable energy sources and the
power consumption by the load. Nevertheless, the impact of grid blackout uncertainty
in the MG optimal design problem was considered in very few studies. Although, the
grid blackout problem is still present in many countries throughout the world [16–20], and
causes a significant economic loss for the customers [21,22]. For instance, in [23], the battery
and the diesel generator sizing problem was investigated considering the uncertainty of
renewable energy outputs and grid blackouts; however, a simplified stochastic model
with linear objective function and constraints were used to formulate the optimization
problem. Recently, a simulation-based design method for the battery in a grid-connected
PV–battery system for emergence usage was introduced in [24] considering only the yearly
grid blackout uncertainty. Besides, in [25] the influence of battery price and customer
damage cost on the optimal size of a PV–battery system was explored considering the
number of yearly blackouts and its duration uncertainty. It is worth mentioning that
parametric probability density functions were used to describe the uncertainty of grid
blackout in the studies mentioned previously.

In this paper, a comprehensive method for the optimal design of PV-based MGs,
considering the uncertainty of solar radiation, ambient temperature, and grid blackouts
is presented. Moreover, for appropriate consideration of the load consumption variation,
the deviation in the load consumption on workdays and weekends as well as the seasonal
variation in the load profiles are considered. The proposed method aims to minimize
the LCOE taking into consideration the limitation of the TLPS and the MG operational
constraints. In addition, a detailed model for battery lifetime estimation is introduced
based on the physicochemical mechanism of the lead–acid battery. In comparison to our
previous work [26] and the above studies, the major contributions of this study include
the following:
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• A new model is implemented to model the uncertainty of grid blackout starting time
and blackout period using kernel density distribution;

• A novel optimal design method utilizing a chance-constrained approach is developed
to optimize the sizes of the MG components considering the uncertainties of solar
radiation, ambient temperature, and grid blackout;

• An improved method to calculate the LOCE utilizing an accurate estimation of the
number of lead–acid battery replacements during the MG lifetime by considering
the impact of battery state of charge, discharging current, number of cycles, acid
stratification, and sulfate crystal structure on the battery lifetime.

The paper is constructed as follows: Section 2 describes the modeling of the uncertain
parameters considered in the optimal MG design. Section 3 presents the formulation of the
chance-constrained optimization problem. A numerical solution method to the problem is
presented in Section 4. The computation results of case studies are given in Section 5. The
paper is concluded in Section 6.

2. Modeling the Uncertain Parameters

In general, there are two methods to model the uncertainties of random parameters
using a probability density function (PDF), namely, the parametric and the non-parametric
techniques [27]. A parametric PDF involves a standard distribution function, e.g., Gaussian,
Beta, and Binomial etc., while a non-parametric PDF is used in the case that a parametric
distribution cannot characterize the stochastic behavior of the data accurately.

2.1. Blackouts Uncertainty Model

A grid-tie line status parameter αg is used to describe the grid performance, as shown
in Figure 1. In the event of a grid blackout αg = 0; otherwise αg = 1, which can be ex-
pressed as follows:

αg(Blst, Blpr) =

{
0, Blst ≤ t ≤ Blst + Blpr
1, otherwise,

(1)

where Blst and Blpr are the blackout starting time and the blackout period, respectively,
which are uncertain parameters considered in this study. However, it is hard to find
a general parametric PDF that describes the uncertainty of such blackout parameters.
Therefore, the method of kernel density estimator (KDE) is used in this study to estimate
the uncertainty of Blst and Blpr. KDE or Parzen’s window is a non-parametric density
estimator that can formulate its shape from the data itself [28]. A KDE builds for similar
data and samples their own probability density curve; then, these curves are smoothed and
combined in one curve that represents the PDF for all samples [29,30].

The general formula of a kernel density estimator fk for any real values of x is given by [28]

fk(x) =
1

nh

n

∑
i=1

K
( x − Xi

h

)
, (2)

where n is the samples number, h denotes the bandwidth that controls the smoothness of
the KDE probability density curve, K is a smooth function called the kernel function [28],
X1, X2, . . . , Xn are the random samples. The value of the bandwidth is important to shape the
KDE. Choosing a high value for the bandwidth leads to a smooth KDE that may hide some
characteristics of the distribution. Meanwhile, a small bandwidth value may overestimate
some characteristics of the distribution. In this study, the ksdensity function in MATLAB [31]
is utilized to generate a PDF of the blackout starting time and blackout period. In ksdensity,
the optimal value of the bandwidth is calculated based on the method proposed in [29].

As a result, the PDFs of the blackout starting time and the blackout period are deter-
mined by the following steps: (1) record the daily status of the grid-tie line (in this study,
we use recorded data from an area suffering from long periods of daily blackouts [32]);
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(2) extract daily blackout starting time and blackout period; (3) calculate their PDF using
the KDE method.

As a result, samples of daily blackout starting time and blackout period (Blst, Blpr)
can be generated by using the Cartesian product from the obtained PDE.

Figure 1. Illustration of the grid-tie line status variable αg.

2.2. Solar Irradiance Uncertainty Model

The uncertainty of solar irradiance has seasonal and diurnal patterns [33]. It is shown
in [34] that solar irradiance uncertainty can be properly described by a Beta PDF [34]:

fG =
Γ(ψ + ϱ)

Γ(ψ)Γ(ϱ)
G(ϱ−1)

x (1 − Gx)
(ψ−1), f or

ψ ≥ 0, ϱ ≥ 0, (3)

where Gx is the solar irradiance and x refers to the irradiance type that can be global, direct,
or diffused. ψ and ϱ are the parameters that can be calculated from the mean value µ and
the standard deviation σ of the historical data as [35]

ψ = (1 − µ)
(µ(1 + µ)

σ2 − 1
)

, (4)

ϱ =
ψµ

(1 − µ)
. (5)

In this study, an hourly Beta-PDF for the solar irradiance at each hour is used (see Figure 2)
where the seasonal variation is also considered.
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Figure 2. Illustration of solar irradiance in one day.
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2.3. Ambient Temperature Uncertainty Model

It was reported in [36] that a normal (Gaussian) PDF is the best parametric distribution
to describe the ambient temperature uncertainty, which is given by [37]

ft =
1

σT
√

2π
exp

(
− (Ta − µT)

2

2σ2
T

)
, (6)

where σT and µT are the standard deviations and mean value of the hourly ambient
temperature Ta, respectively, i.e., its hourly uncertainty is considered in this study.

3. Optimization Problem Formulation

The aim of optimizing an MG size is to find the optimal size of each component in the
MG that guarantees the lowest cost of the produced energy from the MG considering the
allowable limit of the total loss of power supply (TLPS) considering the uncertainty of the
power source within the MG. To achieve that, the following parameters are considered to
be optimized: the number of PV modules Npv.m, the size of the PV inverter PVinv.size, the
number of batteries Nbatt, the number of DGs Ndg, and the DG-rated power Pr.dgi

where
i ∈ 1, 2, . . . , Ndg.

According to this, the optimal design problem, which is considered in this study leads
to a chance-constrained mixed-integer nonlinear programming (MINLP) problem that can
be described in a compact form as follows:

min
u

E
[
LCOE(x, u, ζ)

]
s.t. (7)

g(x, u, ζ) = 0

umin ≤ u ≤ umax

Pr{TLPS(x, u, ζ) ≤ TLPSmax} ≥ αrel

ζ ∈ Ω.

where E[LCOE(x, u, ζ)] is the mean value of the LCOE, g(x, u, ζ) = 0 is the set of model
equations of the MG, x is the vector of the state variables that comprise the dispatched
power from the MG components, u is the vector of the decision variables, ζ is the vector
of random variables, which includes the solar radiation, ambient temperature, and the
blackout starting time and the blackouts period. Since the TLPS value is highly affected by
the uncertainty of the power sources in the MG, its limit is formulated as chance-constrained.
Therefore, the restriction of the TLPS will be satisfied with a predefined probability level
αrel to ensure the reliability of the MG operation.

It is worth mentioning that the studied MGs are considered to be work based on a
predefined rule-based operation strategy that gives the PV system the highest priority to
cover the load. More information regarding the operation and the models of the studied
residential and industrial MGs can be found in [37] and [38], respectively.

3.1. Calculation of LCOE

The levelized cost of energy (LCOE) is the standard criterion for evaluating energy
systems investments. In LCOE, the costs of acquiring, owning, operating, and maintaining
the energy system over its lifetime are included. The LCOE is calculated by [39]

LCOE =
TAPC

∑Tmax
t=1 Pdisp.t

, (8)

where
TAPC = ACC + AMOC + ARC, (9)
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where Tmax is equal to 8760 (i.e., the total number of hours in one year), ACC is the
annualized capital cost, AMOC is the annualized maintenance and operation cost, and
ARC is the annualized replacement cost.

ACC is calculated considering the total capital cost (TCC) and the capital recovery
factor (CRF) as follows:

ACC = TCC × CRF, (10)

where

TCC = CCpv + CCb.b +

Ndg

∑
i=1

CCdgi
+ CCpv.inv + CCb.inv, (11)

where CCpv and CCb.b are the PV array and the battery bank capital cost, respectively. CCdgi

is the ith DG capital cost, CCpv.inv, and CCb.inv are the PV inverter and the battery-inverter
capital cost, respectively.

In AMOC the maintenance cost of the MG components and the cost of the dispatched
power from each power source are considered. Therefore,

AMOC = Cm.pv + Cm.b + Cg + Cm.dg + Ca.op.dg, (12)

where

Cg = Ce.g

Tmax

∑
t=1

Pdisp.g(t), (13)

Ca.op.dg(t) =
Tmax

∑
t=1

Ndg

∑
i=1

(C f fcon.dgi
(t)

+Cupξup.dgi
(t) + Cdξd.dgi

(t)), (14)

In Equation (12), Cm.pv and Cm.b are the annual maintenance costs of the PV array and
the battery bank, respectively. Cg is the annual cost of the dispatched energy from the grid-tie
line, Cm.dg, and Ca.op.dg are the total annual maintenance and operation costs of the diesel
generator set, respectively. In Equation (13), Ce.g is the cost of each kWh dispatched from the
grid, Pdisp.g(t) is the total dispatched power from the grid at time t. In Equation (14), C f is the
fuel cost. In $/l, fcon.dgi

(t) is the diesel engine fuel consumption, Cup and Cd are the startup
and shutdown costs, respectively. ξup.dgi

(t) and ξd.dgi
(t) are auxiliary binary variables that

represent the changes at each diesel generator status.
To calculate ARC, the lifetime of each component is separately estimated at first,

then the present worth value (PWV) is used to convert the cost of the component at the
replacement time to its present value, and finally, the estimated cost is distributed over the
MG lifetime based on CRF. Therefore, the annualized replacement cost is expressed as

ARC = CRF × Compsize × PWV(Nrep.x, ltx), (15)

where Compsize is the component size, Nrep.x is the number of replacements of the compo-
nent during the MG lifetime, and ltx is the estimated lifetime of it. The lower script x can
be the battery bank, the diesel generator, the PV inverter, or the battery inverter. Moreover,
PWV is calculated by [26]

PWV =
Nrep.x

∑
R=1

Compcost
1

(1 + i)R×ltx
, (16)

where

Nrep.x =

⌈
ltmg

ltx

⌉
− 1. (17)
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The battery lifetime is calculated using the aging model studied in [26]. The lifetime of
the PV/battery inverter is assumed to be fixed as 10 years. The diesel generator’s lifetime
is defined by the maximum number of hours that can be operated, which is given by the
manufacturer. Therefore, the lifetime of the DG will be

ltdg =
hdg.lt

hop.dg
, (18)

where hdg.lt is the maximum number of operation hours of the DG before reaching the end
of its life and hop.dg is the total operation hours of the DG during one year, respectively.

3.2. Optimal Design Constraints

As equality constraints, we use a detailed model to describe the components (i.e., PV array,
battery bank, diesel generators, etc.) in the microgrid and an AC model for the power flow
description [40,41]. The following inequalities are imposed to satisfy the financial and operational
constraints of the design problem

0 ≤ Npv.m ≤Nmax
pv.m (19a)

0 ≤ PVinv.size ≤PVmax
inv.size (19b)

0 ≤ Nbatt ≤Nbatt.max (19c)

0 ≤ DOD ≤DODmax (19d)

0 ≤ Ndg ≤Ndg.max (19e)

0 ≤ Pr.dgi
≤Pmax

r.dgi
∀i = 1, . . . , Ndg (19f)

0 ≤ TCC ≤TCCmax. (19g)

It is to note that the maximum number of the PV modules Nmax
pv.m depends on the area

of installation (Apv.inst) for the PV array, thus [42]

Nmax
pv.m = Nsg × Nm.sg, (20)

with

Nsg =

⌊
Linst

SGd.min

⌋
+ 1, (21a)

Nm.sg =

⌊
Winst
Wpv.m

⌋
, (21b)

where Nsg is number of the PV strings, Nm.sg is the maximum number of PV modules per
string, Linst is the length of installation area, Winst is the width of installation area, and
Wpv.m is the width of the PV module. Moreover, SGd.min is the minimum distance between
the PV strings (see Figure 3), which is important to prevent the self-shading between the
PV strings and is given by the following [43]:

SGd.min = PVm.l ×
sin(γs + β)

sin(γs)
, (22)

where PVm.l is the module length (see Figure 3) and γs is the angle of the sunlight. A rule
of thumb to calculate γs is that at noon on December 21 in the northern hemisphere, there
must be no shading on the PV strings [43].

In addition to the constraints stated in Equations (19a)–(19g), the following constraint
is used to guarantee an acceptable annual loss of power supply TLPSmax percentage during
the MG operation

TLPS(x, u, ζ) ≤ TLPSmax (23)
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where TLPS is the annual total loss of power supply that happens when the available power
from the MG is not enough to cover the load. Accordingly, the TLPS is calculated by [44]:

TLPS =
∑Tmax

t=1 Lp(t)
Tmax

× 100, (24)

where Lp(t) is a binary variable, i.e., Lp(t) = 1 when the available power from the MG is
lower than the required load, else Lp(t) = 0.

β

PV-string

Ground

PV-String
1 2

PV m.l

Sgd.min

γs

Figure 3. Illustration of a PV array installation.

Since the TLPS value is affected by the uncertainty of the considered random parame-
ters, it will be uncertain to satisfy Equation (23). Therefore, this constraint is formulated as
a chance constraint, as indicated in Equation (7).

4. Solution Method

In general, there are two main approaches to solving nonlinear CCOPT problems,
namely, the analytic approximation and the numerical approximation approaches [45]. In
this study, the formulated optimization problem is a chance-constrained MINLP problem
that cannot be solved using the available analytic approximation methods. The solution
of the problem by a numerical approximation method requires the evaluation of the
probability of the chance constraint and the expected value of the objective function by a
set of samples extracted from the PDF of the uncertain parameters [46].

Therefore, a simulation-based solution framework is used in this study, as shown in
Figure 4. In each iteration, the battery lifetime is calculated using the mean values of the
uncertain input parameters based on the battery aging model in [26]. Then, the Monte
Carlo simulation is used to calculate the TLPS and LCOE values for each extracted sample
from the PDF of the uncertain parameters. After that, an approximated solution for the
chance constraint (see Equation (7)) is calculated by

Pr{TLPS(x, u, ζ) ≤ TLPSmax} =

Number of feasible samples
Total number of the samples

, (25)

where the feasible samples are those lower than TLPSmax. Finally, the expected value of
the LCOE is calculated and evaluated by the optimizer. The procedure is repeated until
the stopping criteria of the optimizer are satisfied. In this study, a genetic algorithm (GA)
is used as the optimizer because of its ability to solve complex optimization problems
irrespective of the model of the system [47].



Energies 2024, 17, 1892 9 of 15

Figure 4. Flowchart of the stochastic simulation-based optimization.

5. Case Studies

The proposed design approach is applied to optimize a residential PV battery MG and
an industrial PV–battery–diesel MGs studied in [26] and [48], respectively. Solar irradiance
data [49] and grid blackout historical data are from Gaza city in Palestine (latitude = 31.42◦

and longitude = 34.38◦). The parameters of the battery cell are taken from [26]. The parameters
in the economic model are listed in Table 1. Moreover, the MG components’ capital cost,
maintenance cost percentage from the capital cost, and lifetime are shown in Table 2.

Table 1. Economic model parameters of MG design [40,50].

Parameter r′i r f C f Cg lts
(-) (-) ($/l) ($/kWh) (Years)

Value 6.89% 3.16% 1.3% 0.15% 20

Using KDE, the PDF of the starting time and the period of the grid blackout is shown
in Figure 5. The confidence level in the chance constraint is chosen to be 98%.

All the computation is carried out on a Linux server with 64 processors of type AMD-
Epyc7601 X86-64 using the MATLAB 2018b software.
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Table 2. Microgrid components’ capital cost, maintenance cost, and lifetime.

Parameter CC MC Lifetime

PV array 550 $/kWp 0.5% 20 (years)
PV inverter 300 $/kW 0.5% 10 (years)
Battery bank 150 $/kWh 1% to be calculated
Battery inverter 300 $/kW 0.5% 10 (years)
Diesel Generator 250 $/kW 8% 10,000 (h)

(a)

(b)

Figure 5. Uncertainty of grid blackout. (a) Histogram of the blackout starting times (orange bars) and the
fitted PDF (blue line). (b) Histogram of the blackout periods (orange bars) and the fitted PDF (blue line).

5.1. Optimal Design of a Residential MG

In this case study, the decision variables include only the PV array and the battery
bank size as well as the DOD value of the battery bank. The residential loads for four
seasonal days in workdays and weekends are taken from [26] with a 5 kW peak value.
Moreover, the maximum value of TCC is considered to be 3500$. The maximum TLPSmax
is selected to be 2% with a reliability level of 98%.

To illustrate the impact of considering the parameter uncertainties, both the determin-
istic and stochastic optimal design of the residential MG are performed. In the deterministic
case, the mean values of the solar irradiance and the ambient temperature in each season
are used to build yearly input data. The mean values for the starting time and the period of
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daily grid blackouts are used, respectively, in the problem formulation. In the stochastic
case, the chance-constrained optimization under the uncertainties proposed in this paper is
used to solve the design problem.

The resulting optimal battery bank and the PV array sizes, as well as the DOD optimal
value, for both scenarios, are given in Table 3. It can be noticed from the table that the
size of the battery bank and the PV array, as well as the DOD value, are larger in the
stochastic case. Moreover, the realized reliability level of the chance constraint is calculated
for both cases via the Monte Carlo simulation. It can be seen that neglecting the parameter
uncertainties will lead to a considerable detriment in the reliability of the MG.

Table 3. Optimal design results of the residential MG.

Parameter Nbatt Npv.m DOD LCOE αrel
(-) (-) (-) ($/kWh) (%)

Deterministic 8 10 0.56 0.1835 27.8

Stochastic 10 12 0.68 0.2059 98

5.2. Optimal Design of an Industrial MG

The optimal design of a PV–battery–diesel MG under uncertainty is carried out here.
The active power load profiles are taken from [48] with a peak value of 500 kW.

Moreover, the maximum value of the TCC is assumed to be 720,000$.
It was shown in [38] that a power deficit in industrial facilities is very expensive.

Therefore, in this case study, the maximum TLPSmax is selected to be 0% (i.e., there should
be no loss of power supply at any time) with a reliability level of 98%.

To show the importance of considering the parameter uncertainties, the optimal design
problem is solved by considering the following different scenarios:

• Scenario 1: deterministic optimization employing the mean values of grid blackout
starting time and duration, solar irradiance, and ambient temperature;

• Scenario 2: stochastic optimization considering the uncertainty of grid blackout start-
ing time and duration, solar irradiance, and ambient temperature;

• Scenario 3: as in Scenario 1, but assume the blackout starts at midnight to include the
daily low load period in the grid blackout duration.

The results of solving these three problems are given in Table 4. It can be seen that
there is no significant difference in the sizes of the components in Scenario 1 and Scenario 2.
Moreover, it can be noticed that the total rated capacity of the DGs in both scenarios is
equal to the maximum load value (i.e., 500 kW), which makes the MG able to cover the
load at any time (i.e., TLPS = 0). Nonetheless, the difference in DGs sizes is due to the
difference in load levels to be covered by the DGs. Moreover, there is a notable difference
in the LCOE values in Scenario 1 and Scenario 2, although the component sizes are nearly
equal. Thus, if the uncertainties of the input parameters are not considered, there will be a
wrong estimation for the output energy cost over the MG’s lifetime, which could lead to
wrong investment decisions.

A lower LCOE value can be achieved in Scenario 1 and Scenario 2 if the TCC constraint
is neglected. As an example, the effect of increasing the battery number is shown in Figure 6,
it can be seen that a lower LCOE can be reached with 600 and 760 batteries in scenarios 1
and 2, respectively. This means that a bigger size of the battery bank is required to decrease
the LCOE, considering parameter uncertainties.

In Scenario 3, the blackout duration is shifted to a low load duration (from 0 to 8 o’clock).
As shown in Table 4, the resulting total rated capacity of the DGs is equal to the maximum
load value in the specified period (i.e., 420 kW) to cover the load at any time during the
blackout duration (i.e., TLPS = 0). However, the optimal solution of this scenario leads to a
very low reliability level. This is because the MG is unable to cover a load higher than the size
of the DG in the event of a grid blackout in periods other than the specified period. Therefore,
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it is highly essential to consider the grid blackout uncertainty so as to ensure covering the load
at any time of the year.

Table 4. Optimal design results of the Industrial MG.

Parameter Scenario 1 Scenario 2 Scenario 3

PV array 1450 1450 1450
PV inverter (Kw) 280 280 280
Battery size 568 568 464
DOD (%) 76 73 65
Diesel number 3 3 3
Diesel generator (Kw) 60 80 70
Diesel generator (Kw) 120 170 130
Diesel generator (Kw) 270 250 220

Battery life (year) 3.03 3.17 3.58

LCOE ($/Kw) 0.1896 0.2169 0.1729

TLPSmax (%) 0% 0% 0%

αrel (%) 100% 100% 16.61%
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Figure 6. Impact of the number of batteries on the design problem. (a) The relation between the
number of batteries and the LCOE in Scenario 1. (b) The relation between the number of batteries
and the LCOE in Scenario 2.

The annual cost analysis of the MG (in Scenario 1) is illustrated in Figure 7. It can be
seen that the cost of the dispatched power from the grid and the DG operation as well as
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maintenance costs Co&m.dg are substantial. Based on the following operation strategy, these
costs can be reduced by increasing the PV system and the battery bank capacities. Therefore,
the maximum number of PV modules is found by the optimizer as the optimal solution.
In addition, increasing the number of batteries decreases the operation and maintenance
cost (as shown in Figure 8); however, when the decrease in the DG operation cost cannot
compensate for the increment in ACC, ARC, and battery charging costs (see, the dashed
black line in Figure 8), then LCOE starts to rise, as shown in Figure 6.
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48%
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  C
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Figure 7. The annual cost analysis of the PV–battery–diesel MG.
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Figure 8. Analyze the effect of increasing the battery number on the annual costs.

6. Conclusions

A chance-constrained optimal design approach for PV-based MG is proposed in this
paper to increase the reliability of supplying energy under uncertainty. The uncertain
blackout starting time and duration are modeled by non-parametric PDFs, and the uncer-
tain solar irradiance and ambient temperature with parametric PDFs, respectively. The
restriction of the annual total loss of the power supply (TLPS) is treated as a chance con-
straint. A simulation-based optimization approach is used to solve the chance-constrained
MINLP problem. The proposed approach is able to optimize the sizes of MG’s components;
meanwhile, the levelized cost of energy is minimized, and the specified TLPS is satisfied.
The results of the two case studies show that it is important to consider the uncertainties
that have a considerable effect on the reliability of the optimal design.
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