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Abstract: For the energy transition in the residential sector, heat pumps are a core technology for
decarbonizing thermal energy production for space heating and domestic hot water. Electricity
generation from on-site photovoltaic (PV) systems can also contribute to a carbon-neutral building
stock. However, both will increase the stress on the electricity grid. This can be reduced by using
appropriate control strategies to match electricity consumption and production. In recent years,
artificial intelligence-based approaches such as reinforcement learning (RL) have become increasingly
popular for energy-system management. However, the literature shows a lack of investigation of
RL-based controllers for multi-family building energy systems, including an air source heat pump,
thermal storage, and a PV system, although this is a common system configuration. Therefore, in this
study, a model of such an energy system and RL-based controllers were developed and simulated
with physical models and compared with conventional rule-based approaches. Four RL algorithms
were investigated for two objectives, and finally, the soft actor–critic algorithm was selected for the
annual simulations. The first objective, to maintain only the required temperatures in the thermal
storage, could be achieved by the developed RL agent. However, the second objective, to additionally
improve the PV self-consumption, was better achieved by the rule-based controller. Therefore, further
research on the reward function, hyperparameters, and advanced methods, including long short-term
memory layers, as well as a training for longer time periods than six days are suggested.

Keywords: reinforcement learning; PV-optimization; heat pump; multi-family building; energy-
management system

1. Introduction

To achieve the German government’s goal of a climate-neutral country by 2045, the
scenario presented by Prognos [1] shows a need for a total of 14 million heat pumps in
the building sector. This electrification of the heat supply of buildings is often combined
with the installation of a photovoltaic (PV) system on the roof to produce renewable energy
on-site [2]. Both the grid consumption of the heat pump and the grid feed-in of the PV
system will place a load on the electricity grid that it was often not designed for. However,
the need for grid extension can be mitigated by matching electricity demand with on-site
generation and peak shaving, both of which reduce the load on the grid. The thermal inertia
of the building structure and the thermal storage provide flexibility in the operation of
modulating heat pumps by temporally decoupling heat consumption and heat production.
Using this flexibility can provide a cheaper alternative or additional flexibility to battery
storage [3].

Besides rule-based control strategies, more advanced approaches using model predic-
tive control (MPC) for PV-optimized control of heat pumps have been developed in the
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past, e.g., Kuboth et al. [4]. However, they require high quality forecasts [5] and cannot be
easily implemented due to the high effort of designing and parameterizing each energy
system model required for the variety of existing buildings [6].

To overcome these drawbacks, artificial intelligence (AI) approaches have become
increasingly popular for building energy-system control in recent years. In their review
article [7], Alanne and Sierla discuss the learning ability of buildings at a system level and
give an overview of machine-learning (ML) applications for building energy management.
A major application of ML is the control of heating ventilation and air conditioning (HVAC)
systems.

One of the three types of machine learning that is used for system control is rein-
forcement learning (RL) [8]. The so-called RL agent learns an optimal control strategy by
interacting with the building energy system (environment). It can also learn preferences,
such as comfort requirements, by interacting with users. RL is potentially model-free,
i.e., unlike the mixed-integer (non)linear programming (MI(N)LP) approaches, which are
most commonly used for MPC; there is no need for models of the building energy sys-
tem. Forecasts for weather and heat/electricity demand are also not required but can be
implemented and will improve the results [9–12].

(Deep) reinforcement learning (D)RL methods have been investigated for the control
of a variety of energy (sub)systems in residential buildings. While Yu et al. [10] want
to “. . .raise the attention of SBEM [smart building energy management; author’s note]
research community to explore and exploit DRL, as another alternative or even a better
solution for SBEM.”, Wu et al. [13] note that reinforcement learning algorithms “. . .could
be promising candidates for home energy management. . .”.

As the statistics in several publications [9,12,14–16] show, the number of publications
on (deep) reinforcement learning for building energy-system control has been increasing
significantly since approximately 2013.

Vázquez-Canteli and Nagy [9] collected, analyzed, and finally selected 105 articles
focusing on RL for demand response (DR), maximizing human comfort, and reducing
(peak) energy consumption. They classified the publications according to the type of energy
system, RL algorithm, and objective and analyzed whether the approach used a single agent
or multiple agents. As one of four major groups of energy systems, heating ventilation
and air conditioning and domestic hot water (DHW) systems have been identified as
having significant demand response potential. However, many publications on HVAC
systems only examine the reduction in thermal-energy demand but not the (flexible) heat
production. An energy system that includes an air source heat pump, thermal storage, and
a PV system, as described in Section 2, is not examined in any publication.

Mason and Grijalva [17] conducted a comprehensive review of RL for autonomous
building energy management (BEM), including HVAC systems, water heaters, and home
management systems (HMS) that control a variety of combinations of different appliances
or energy subsystems. They identified Q-learning as the most commonly used RL method
but also a trend towards DRL algorithms. Due to the trial-and-error nature of learning
RL agents, direct application to control a real building energy system would result in
unacceptable high initial energy costs and occupant discomfort. Therefore, the authors
recommend pre-training the RL agent in simulation.

Wang and Hong [14] provide very detailed statistics on 77 publications that investigate
RL for building control. A total of 35.5% of the listed publications have HVAC systems as
the subject of control, while only 7.3% focus on thermal energy storage (TES). The former
were mostly published between 2015 and 2019, while there is no trend for the latter. Most
of the RL methods used are value-based (79.3%); only 12.2% use actor–critic algorithms.
None of the reviewed papers consider TES in combination with actor–critic algorithms,
which are recommended by Fu et al. [15] for continuous action-space problems. They give
an overview of (D)RL methods and their ability to solve specific problems in the field of
building control, e.g., with small/large discrete or continuous action spaces, and show
statistics on the algorithms used in the reviewed literature. However, Wang and Hong [14]
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conclude that cross-study comparisons are difficult if not impossible due to different
environmental settings and benchmarks used in different investigations. Standardized
control problems and integrated software tools that combine machine-learning capabilities
and building simulation are proposed to overcome this drawback but are lacking.

Perera and Kamalaruban [16] categorized publications based on seven areas of appli-
cation of RL approaches, including building energy-management systems. They conclude,
among other things, that the lack of use of deep-learning techniques and state-of-the-art
actor–critic methods hinders performance improvements.

Yu et al. [11] also provide a comprehensive review of publications on deep reinforce-
ment learning (DRL) for smart building energy management (SBEM), distinguishing be-
tween studies on single building energy subsystems, multi-energy subsystems in buildings,
and microgrids. Only three publications on single building energy subsystems examine
electric water heaters, and another three examine HVAC systems with the primary goal
of reducing energy costs or consumption. The rest do not examine residential buildings.
Only one of the publications on multi-energy subsystems in buildings [18] examines a
system similar to the one used in this paper (Section 2.1). The difference with the system
investigated here is the use of an additional backup system of a gas boiler and energy costs
as the objective.

Shaqour and Hagishima [12] analyzed a database of 470 publications on DRL-based
building energy-management systems (BEMS) for different building types and reviewed
recent advances, research directions, and knowledge gaps. Their selection resulted in
31 publications focused on residential buildings, of which only three used thermal energy
storage and investigated RL approaches on a single-family home or district level. Zsem-
binszki et al. [19] investigate a very complex building energy system for a single-family
house using two water storage tanks, a phase change material storage tank, and a battery
storage to provide flexibility to the energy system. Glatt et al. [20] developed an energy-
management system for controlling energy storages of individual buildings in a microgrid
using a decentralized actor–critic reinforcement learning algorithm and a centralized critic.
Kathirgamanathan et al. [21] designed and tuned an RL algorithm to flatten and smooth the
aggregated electricity demand curve of a building district. The latter two used CityLearn
as a simulation environment.

Only two publications [5,22] were found that investigate a system configuration iden-
tical to the one used in this paper. Ludolfinger et al. [22] developed a novel recurrent soft
actor–critic (RSAC) algorithm for energy cost optimized heat pump control and compared
it with four RL-based and one simple rule-based approach. However, their studies refer
to a single-family house, and the training and simulation of the RL agent were performed
only for a winter period of two and one week, respectively. The models were developed in
Modelica, and the RL agent was developed in Python. Langer and Volling [5] transformed
a mixed-integer linear program (MILP) into a DRL implementation and compared the self-
sufficiency achieved by a deep deterministic policy gradient (DDPG) algorithm, a model
predictive controller (MPC) under full information (theoretical optimum), and a rule-based
approach. However, due to their small system dimensions, the buildings considered in Ye
et al. [18] and Langer and Volling [5] are also very energy efficient single-family houses.
Their investigations are based on simplified linear models developed in previous MILP
investigations with time-step sizes of one hour, where mass flows and temperatures in
hydraulic circuits and thermal storages are not considered in detail.

Most of the publications analyzed in the literature review focus on energy-efficient,
single-family buildings and are often based on simplified linearized models originally
developed for MILP approaches with hourly time resolution. There are no studies on new
or renovated multi-family buildings with an energy system including an air source heat
pump, thermal storage, and a PV system.

The novelty of this work is, therefore, the investigation of a DRL-based approach
(i) to control the energy system of a multi-family building (ii) using a physical model that
takes into account mass flows and temperatures in hydraulic circuits and thermal storages
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in detail, requiring a variable time-step solver due to the complexity of the model. This
approach differs from published work using constant time steps, usually one hour, which
is too coarse for real heat pump control. For the first time, the MATLAB software environ-
ment [23] is used with the three toolboxes: Simulink [24] as development environment;
CARNOT [25] for building energy-system modeling; and Reinforcement Learning [26] to
design, train, and simulate a (D)RL-based controller for a PV-optimized control of an air
source heat pump. The purpose of this paper is to show how four selected DRL algorithms
perform in this context by evaluating two objectives and comparing them with rule-based
controllers. The first objective is to maintain only the required temperatures in the thermal
storage. The second objective is to additionally improve the PV self-consumption and
self-sufficiency by shifting heat pump operation to times of PV-surplus.

This paper is structured as follows. In Section 2, the methodology of designing the sim-
ulation environment and the controllers is described. The applied building energy system
model is introduced, two rule-based control strategies used as a reference are described,
and the development of two RL agents, one without and one with PV-optimization, is
shown. The training and selection of an RL-based controller as well as the results of annual
simulations using (i) the reference rule-based controllers and (ii) the developed RL-based
controllers are presented and discussed in Section 3. Section 4 concludes the paper and
gives an outlook.

2. Methodology

The methodology used for this work is shown in Figure 1.
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To set up the simulation environment, data and parameters for the building and
energy-system model were collected, including load and occupancy profiles and weather
data. Based on this data, the sub-models for the building, the thermal storage, the heat
pump, and the PV system were created and parameterized (Section 2.1). Due to the modeled
mass flows and temperatures in the hydraulic circuits and thermal storage, the complexity
of the model and the dynamics, especially for system control, increased compared to
simplified linearized models. To solve such problems, very short time steps are required.
Therefore, a variable time-step solver was used to reduce the computational effort.

Two rule-based controllers were defined for reference (Section 2.2). The development
of the two RL-based controllers (Section 2.3) was an iterative process. First, suitable RL
methods were selected, followed by the selection of the observations, the definition of
the reward function, and the setting of the hyperparameters and the training parameters.
The next step was the training of the RL agents and the analysis of the training results.
Based on the success of the training, adjustments of the observations, reward function,
hyperparameters, and training parameters were made iteratively until the training results
were satisfactory. Finally, the two rule-based and two RL-based controllers were used in an
annual simulation. The two PV-optimized controllers were compared to each other by the
performance indicators PV self-consumption and self-sufficiency (Section 3).

2.1. Building Energy-System Model

Multi-family buildings account for approximately 41% of the living space in Ger-
many [27] and, therefore, have a large potential for energy savings and flexibility in energy
supply. With 19% (225 million m2) of the total living space of multi-family buildings in
Germany (1168 million m2), the building age category E of the IWU building typology of
Germany [27] is the largest category for multi-family buildings.

A study on multi-family buildings [2] investigated low-energy concepts for energy
renovations of multi-family buildings and developed, analyzed, and demonstrated solu-
tions for the efficient use of heat pumps, heat transfer systems, and ventilation systems.
They show that heat-supply temperatures can be reduced to 60 ◦C or less by replacing only
a few radiators in critical rooms (e.g., 2–7% of the existing radiators in the cases studied),
which makes heat pumps a suitable heat-supply solution in this case. Additionally, the
energy consumption of such buildings can be reduced by using electricity from an on-site
PV system. According to these results, the conventionally renovated version of the building
age category E was selected for the investigations.

MATLAB [23] and the toolboxes Simulink [24] and CARNOT [25] were used to model
the investigated building with its heat and electricity demand and the energy system
consisting of an air source heat pump (hp), a thermal storage, and a PV system as shown in
Figure 2.

The parameters (geometry, U-values, etc.) of the multi-family building with a heated
living space of approximately 2850 m2 divided into 32 apartments were defined according
to the data of Loga et al. [27]. To ensure hygienic air exchange, a ventilation system with
a constant ventilation rate of 0.4 1/h is included in the building model. According to the
user behavior, additional ventilation is used to prevent an overheating of the building
in summer. The internal heat gains were defined according to the occupancy profile for
residential buildings given in the SIA guideline 2024 [28] and scaled to 60 occupants.
As input for the simulations as well as for the load profile generation, the test reference
year (TRY) of Ingolstadt provided by the German Weather Service [29] was used. For the
generation of the hourly household electricity consumption profile (also used for internal
heat gains of electrical appliances) and the domestic hot water (DHW) consumption profile,
the method described in the VDI guideline 4655 [30] was used. The annual household
electricity consumption was set at 96,000 kWh/a, and the annual DHW consumption was
set at 61,500 kWh/a. A stratified thermal storage tank (total volume 8.5 m3) is modeled as a
hydraulic separator between the heat pump hydraulic circuit and the consumer hydraulic
circuit. It decouples the thermal energy consumption from the heat production, thus



Energies 2024, 17, 1908 6 of 16

providing some flexibility in the operation of the heat pump. A south-facing PV system
of 65 kWp is modeled to partially cover the electricity demand of the households and the
heat pump. Even in the ideal case of 100% PV self-consumption, 2/3 of the electricity
consumed must come from the grid [31]. The dimension of the PV system was derived
from an existing building. The building energy-system parameters are summarized in
Table 1.
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Table 1. Parameters of building energy system.

Parameter/Description Value

Household’s annual electricity consumption 96,000 kWh/a
ca. 3000 kWh/a per household [30]

Annual domestic hot water consumption 61,500 kWh/a
ca. 2000 kWh/a per household [27]

Volume of thermal storage tank 8.5 m3

50 L/kW of heat pump’s thermal capacity
Thermal capacity of heat pump 170 kW
Capacity of PV system 65 kWp
Annual electricity production of PV system ca. 65,000 kWh/a

2.2. Reference Control Strategies

Two reference rule-based control strategies were defined and used as a reference for
the comparison with the RL-based control strategy.

When PV electricity generation is not available or being considered, heat pumps in
combination with a thermal storage were often operated in an on/off mode, depending on
the temperatures in the thermal storage (basic controller) in former days. In the case shown
here, the heat pump is turned on when the top storage temperature drops below 55 ◦C and
runs until the bottom storage temperature reaches that temperature.

There are several rule-based approaches to better match the heat pump electricity
consumption and PV generation, often taking advantage of the modulation of the heat
pump. The controller used here (PV-optimized controller) is designed to use most of the
PV electricity that is not directly used in the households (PV surplus). If there is no PV
surplus, the controller only runs the heat pump to keep the top storage temperature at
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55 ◦C to ensure the heat supply. If the PV surplus exceeds the limit defined by the electricity
consumption of the heat pump at the lowest modulation level (27 kWel at 30%), the heat
pump is switched on and modulated to consume exactly the PV surplus as long as the
bottom storage temperature is lower than or equal to 55 ◦C. This approach is shown in
Figure 3.
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2.3. Development of Reinforcement Learning-Based Heat Pump Controller

According to the RL Toolbox User’s Guide [32], the workflow for setting up an RL-
based controller involves six steps, as shown in Figure 4.
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First, the problem to be solved by the RL agent must be defined (step 1). Two objectives
are considered in this study. For the first objective, the RL agent controls the heat pump to
ensure temperatures of at least 55 ◦C in the top of the thermal storage to supply heat to the
consumers and to avoid temperatures higher than 55 ◦C, due to the operating limits of the
heat pump, and lower than 45 ◦C in the bottom of the thermal storage. The action of the RL
agent is the control signal to the modulating heat pump in a continuous range between 0
and 1, while values lower than 0.3 switch off the heat pump. The actions are based on the
observation of the top (Ttop) and bottom storage temperature (Tbottom), the thermal load for
space heating and domestic hot water preparation, and the absolute electricity exchange
with the grid (Psum). The second objective is extended to a PV optimization. The storage
temperatures should be kept within the previously defined range, while the heat pump
should run at times when the PV electricity exceeds the household electricity consumption.
Therefore, the observations are extended with information such as PV surplus (PPV,surp),
PV generation including historical data and forecasts, and time of day and day of the year
to allow for the RL agent to learn diurnal and seasonal correlations.

The building energy-system model described in Section 2.1 defines the environment
(step 2) with which the agent interacts by giving actions and receiving observations and
the reward shown next.

The following two reward functions were defined (step 3) for the two objectives
mentioned. Equations (1)–(3) were designed only for keeping the storage temperatures
within the defined range:

rtop = −4 if Ttop < 55 ◦C
rtop = 0 if 55 ◦C ≤ Ttop < 58 ◦C else 3

(1)
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rbottom = −16 if Tbottom ≥ 57 ◦C
rbottom = −6 if 55 ◦C < Tbottom < 57 ◦C
rbottom = 2 if 50 ◦C ≤ Tbottom ≤ 55 ◦C
rbottom = 0 if 45 ◦C ≤ Tbottom < 50 ◦C else − 5

(2)

rt = rtop + rbottom (3)

If the temperatures at the top and bottom of the thermal storage become too low and
the temperatures at the bottom become too high, a negative reward is given to avoid such
conditions.

Equations (4)–(7) were designed to additionally optimize the heat pump operation
to times of PV surplus (PPV,surp). The reward rt for keeping the storage temperatures in
the defined range has been slightly adjusted compared to Equations (1)–(3) due to better
learning experienced during training.

ri = 18 if Ttop ≥ 58 ◦C and 40 ◦C ≤ Tbottom ≤ 57 ◦C
else 0

(4)

rel1 = 5 if Psum = 0 KW
rel1 = 3 if 0 < Psum ≤ 10 KW else 0

(5)

rel2 = −100a if PPV,surp = 0 kW else 10a (6)

rtotal = rt + rel1 + rel2 (7)

In Equation (6), a is the action value (control signal for heat pump) chosen by the
RL agent. In the ideal case, there is no electricity consumption from or feed-in into the
grid, which results in a positive reward of 5. If there is no PV surplus, the action value
a is multiplied by a negative reward of −100 to prevent the agent from choosing high
action values that switch on the heat pump charging the thermal storage. In this way, the
state of charge of the thermal storage should be kept low until it can be charged by using
the PV surplus, which reduces the grid feed-in. This should reduce the amount of power
exchanged with the grid, which also increases the PV self-consumption rate.

After the problem is defined, the RL agent can be created (step 4). The RL agent
requires a fixed time-step size, which was set to 5 min. Four algorithms were used to train
an RL agent:

• Soft Actor–Critic (SAC);
• Twin-Delayed Deep Deterministic (TD3);
• Proximal Policy Optimization (PPO);
• Trust Region Policy Optimization (TRPO).

Based on the results (shown in Section 3.2.1), the algorithm used for validation in an
annual simulation (step 6, Section 3.2) was selected for both objectives.

Due to the high computational effort of training an agent (step 5) for an entire year,
it was decided to train the agent only for an episode length of one day, randomly chosen
from a predefined set of days distributed throughout the year, to avoid overfitting but
still represent the characteristics of an entire year. Based on experiences from previous
studies [31], a backup controller was implemented in the model. It intervenes and overrides
the control signal given by the RL agent when the storage temperatures violate the defined
temperature range. This ensures that the agent can explore actions that lead to unintended
temperature conditions and learn to avoid them because of the negative reward received.
Thus, the backup controller switches the heat pump on if the top temperature falls below
55 ◦C or switches the heat pump off if the bottom temperature exceeds 57 ◦C. In both cases,
a negative or zero reward is given to the RL agent to make it learn to avoid such conditions.

3. Results and Discussion

This section presents the evaluation of the RL-based controllers and the comparison
with the rule-based controllers. First, the results of the annual simulations of the two
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described rule-based controllers used as a reference are presented, followed by the train-
ing results of four RL algorithms and the final selection of an algorithm for the annual
simulations. Finally, the results of the annual simulation of the RL-based controllers are
discussed.

3.1. Simulation Results of Reference Control Strategies

In the reference case of the temperature-based on/off heat pump controller (basic
controller), the households and the heat pump directly consume 48.1% of the PV-generated
electricity. Due to the high electricity demand, which is approximately three times higher
than the PV electricity generation, the self-sufficiency is only 16.7%, which is very low
compared to a net-zero energy single-family building with 37% [33]. But in comparison
to single-family buildings with the same ratio of annual electricity consumption and PV-
generation of 1/3 and a self-consumption rate of approximately 57% [34], it is very similar.
With the rule-based PV optimization of the heat pump operation, both the self-consumption
rate and the self-sufficiency can be increased by approximately 15%, as shown in Table 2.

Table 2. Simulation results of rule-based heat pump control strategies.

Performance Indicator Basic Controller (on/off hp) PV-Optimized Controller
(modulating hp)

Self-consumption rate in % 48.1 55.2
Self-sufficiency in % 16.7 19.2

The monthly analysis (Figure 5) shows a maximum self-consumption rate of 84% in
January and a minimum self-consumption rate of 28% in July for the basic controller.
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When PV optimization is used, only in transition periods and during the summer,
the self-consumption can be significantly increased by up to 29% in May, but there is no
improvement in winter. The reason for this is that, in winter, the PV surplus does not reach
the minimum electricity consumption of the heat pump of 27 kW as shown in Figure 6, so
the heat pump is not switched on to use it. Only approximately 5250 kWh/a of the total
34,900 kWh/a of PV surplus can be used by the heat pump. Thus, there is still potential for
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a battery storage to better match electricity demand and generation, e.g., by shifting PV
electricity from day to night.

Energies 2024, 17, x FOR PEER REVIEW 10 of 17 
 

 

potential for a battery storage to better match electricity demand and generation, e.g., by 
shifting PV electricity from day to night. 

 
Figure 5. Comparison of monthly self-consumption rates of basic controller, rule-based PV-opti-
mized controller, and RL-based PV-optimized controller. 

 
Figure 6. PV surplus (PV generation minus household electricity consumption) and minimum elec-
tricity consumption of the heat pump (red line). 

3.2. Simulation of Reinforcement Learning-Based Heat Pump Controller 
As previously described, an RL-based approach was tested using the integrated soft-

ware of MATLAB, and two controllers were developed for operating the heat pump: one 
to only keep the thermal storage temperatures within the defined range and the other to 
additionally optimize the heat pump operation to times with PV surplus. 

  

Figure 6. PV surplus (PV generation minus household electricity consumption) and minimum
electricity consumption of the heat pump (red line).

3.2. Simulation of Reinforcement Learning-Based Heat Pump Controller

As previously described, an RL-based approach was tested using the integrated
software of MATLAB, and two controllers were developed for operating the heat pump:
one to only keep the thermal storage temperatures within the defined range and the other
to additionally optimize the heat pump operation to times with PV surplus.

3.2.1. Design, Training, and Selection of RL Agent

To find a suitable RL approach for both objectives, four agents were designed using
different RL algorithms with identical hyperparameters (Table 3).

Table 3. Hyperparameters for RL agent trainings.

Hyperparameter Value

Discount Factor 0.99
Actor/Critic Learn Rate 0.001
Actor/Critic Gradient Threshold 1
Optimizer adam

For each agent, training was performed, and the reward obtained, averaged over
five episodes, as well as the fluctuation of the episode rewards shown in Figures 7 and 8
were analyzed to determine if the learning process converges. Tables 4 and 5 compare the
average rewards over the last five training episodes between the algorithms used and give
an assessment of convergence.

Table 4. Training results of RL agents without PV optimization.

RL Algorithm Average Reward of Last Five Episodes Convergence

SAC 753 yes
TD3 −804 no
PPO −1979 no
TRPO −697 no
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Table 5. Training results of RL agents with PV optimization.

RL Algorithm Average Reward of Last Five Episodes Convergence

SAC 5081 yes
TD3 2728 no
PPO −3014 no
TRPO 5800 yes
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Convergence was observed for only three trainings. These cases also show the highest
average episode rewards. For the agents without PV optimization, the soft actor–critic
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(SAC) method achieved the best results. For the agents with PV optimization, two methods
achieved very good results: the SAC and the trust region policy optimization (TRPO) agent.
According to these results, three annual simulations were performed (Section 3.2.2).

However, due to the high sensitivity of the learning process and its computation time
to the hyperparameters and the reward function, it may also be possible to achieve better
results with the other RL methods when both are adapted.

3.2.2. Simulation Results

In the simulation without PV optimization, the heat pump is controlled in a way
that the thermal storage can always provide the required supply temperature greater than
55 ◦C using the learned policy. This can be observed in Figure 9, showing a top storage
temperature of a constant 60 ◦C.
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Although the training included only six defined days of the year, one of which was
randomly selected for each episode, the backup controller does not have to intervene on
any day of the simulated year. Thus, the backup controller was only needed for proper
training of the RL agent’s policy. Based on this result, the objective was extended to the
PV-optimized heat pump operation.

Despite successful training using the TRPO agent for PV optimization, the self-
consumption rate of 47.6% and the self-sufficiency of 16.6% are worse than for the basic
controller. However, the simulation of the SAC agent shows an annual averaged improve-
ment of almost 5% for both (see Table 6), which is less than the rule-based PV-optimized
controller could achieve.

Table 6. Simulation results of RL-based heat pump control strategies.

Performance Indicator TRPO SAC

Self-consumption rate in % 46.6 50.3
Self-sufficiency in % 16.6 17.6

However, looking at the monthly self-consumption rates in Figure 5, in the winter
months of November to January, the self-consumption rates are slightly higher than in the
two reference cases with a maximum of 85.0% in January. They are lower for the rest of
the year.
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Further analysis showed that the backup controller intervened a total of 1415 h per
year. As shown in Figure 10, intervention happened more often (bigger gradient) in
winter to switch on the heat pump when the top storage temperature became too low
than in summer (smaller gradient) to switch the heat pump off when the bottom storage
temperature became too high.
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Looking at the actions chosen by the RL agent shown in Figure 11, there are too few
actions in winter to switch on the heat pump, so the backup controller has to intervene.
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Figure 11. Actions chosen by PV-optimized SAC RL agent.

Finding an optimal way to teach the RL agent to handle two sometimes conflicting
objectives in parallel seems to be difficult because, when there is no PV surplus, the actions
should be low to avoid electricity consumption from the grid, but at the same time (mostly
during the heating period), some action may be required to keep the storage temperatures
in the required range. Thus, regarding the reward function (Equations (4)–(7)), it is difficult
to define a trade-off in the weighting of the rewards for the storage temperatures and the
electricity consumption from the grid. Another reason may be that training on only six
randomly selected days of the year does not cover all situations that the agent needs to
learn for a good policy.

Finally, it has to be mentioned that the developed RL-based controllers and the shown
results only consider the weather of the location of Ingolstadt and a specific building type
and dimension of the building energy system (e.g., heat pump and thermal storage). For
the use of these controllers in other locations and for buildings with different load and
generation profiles, a further training of the RL agent considering these different parameters
is necessary.
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4. Conclusions and Outlook

The detailed literature review conducted in this paper revealed a lack of investigation
of RL-based controllers for multi-family building energy systems, including an air source
heat pump, thermal storage, and a PV system. This gap is filled by this paper, which
presents a novel investigation of RL-based controllers using a physical model that takes
into account mass flows and temperatures in hydraulic circuits and thermal storages in
detail. The model introduced for the development and simulation of RL-based controllers
requires a variable time-step solver due to the complexity of the model. This is also a
novelty compared to the related work using simplified models with constant time steps.

To evaluate the performance of RL-based controllers in this context, two rule-based
controllers were defined and simulated for reference. One considers only the required
temperatures in the thermal storage, and the other also optimizes the operation of the
heat pump by shifting it to times of PV surplus to increase the self-consumption and
self-sufficiency.

Four RL algorithms were investigated for each of the two RL-based controllers with
the same two objectives as the reference controllers. For a successful training of the RL
agents, a backup controller had to be implemented in the model to ensure the required
storage temperatures. This also made it possible for the agent to explore bad choices
resulting in negative rewards. Finally, the soft actor–critic method was selected for the
annual simulations due to the highest rewards and a convergent training. It was shown that
training a policy on only six defined days of the year results in an RL agent that successfully
controls the heat pump to maintain the required storage temperatures for an entire year
without intervention of the backup controller. The annual simulations of the RL-based
PV optimization of the heat pump operation could only achieve a lower self-consumption
rate of 50.3% and self-sufficiency of 17.6% than the rule-based PV-optimized controller
(55.2%, 19.2%), while the backup controller had to intervene for 1.415 h per year. Thus, the
trade-off between keeping the storage temperatures in the required range and shifting the
heat pump operation to times of PV surplus seems to be challenging.

Due to the seasonality of the PV electricity generation (maximum in summer), which
is opposite to the seasonality of the heat energy demand of the building (maximum in
winter), it is suggested to extend the episode length for training to at least several days
or a few weeks per season (winter, transition time, and summer) to cover longer time
periods with larger variations in the ratios between heat load and PV electricity generation
than only six days have. For this purpose, long short-term memory (LSTM) layers should
be implemented in the policy to learn decisions that are based on both short-term and
long-term experience. Future work to optimize this RL agent should also include a redesign
of the reward function and further investigation of the hyperparameters.

Guidelines or suggestions for the correct choice of hyperparameter values for the
different RL algorithms and their application to specific problems to be solved are missing
in the literature. It would be very beneficial for future developments and a wider application
of (D)RL approaches to collect and analyze hyperparameter settings in order to provide
guidelines for developers.
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Nomenclature
a action value
Tbottom bottom storage temperature
Tsup supply water temperature
Ttop top storage temperature
PPV,surp power of photovoltaic system surplus
Psum sum of electric power exchanged with the electricity grid
Abbreviations
AI artificial intelligence
BEM building energy management
BMS building management system
DDPG deep deterministic policy gradient
DHW domestic hot water
DR demand response
DRL deep reinforcement learning
HMS home management systems
HVAC heating, ventilation, and air conditioning
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
PV photovoltaic
RL reinforcement learning
RSAC recurrent soft actor critic
SAC soft actor–critic
SBEM smart building energy management
TES thermal energy storage
TRY test reference year
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