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Abstract: In this paper, the application of the method of affinely adjustable robust optimization
to a planning model of an energy system under uncertain parameters is presented, and the total
scheduling costs in comparison with the deterministic model are evaluated. First, the basics of
optimization under uncertain data are recapped, and it is described how these methods can be used
in different applications for energy systems. This is followed by the methodology of adjustable robust
optimization by defining the affinely adjustable robust counterpart. Finally, a numerical case study is
conducted to compare the adjustable robust method with a rolling deterministic scheduling method.
Both are implemented on a model of an energy system and compared with each other by simulation
using real-world data. By calculating the total operating costs for both methods, it can be concluded
that the adjustable robust optimization provides a significantly more cost-effective solution to the
scheduling problem.

Keywords: adjustable robust optimization; uncertainties; renewable energy; imbalance energy;
energy system operation; day-ahead planning

1. Introduction

The expansion of renewable energy production is an important step to reduce CO2
emissions and, thus, to slow down global warming. However, with a higher amount
of weather-dependent energy sources like solar and wind power production and with
uncertainty attached to the respective forecasts, it is more challenging to ensure a safe
power supply.

The operation of an energy system involves scheduling several components, including
devices to generate, store, and transform different types of energy, e.g., electrical and
thermal, and the purchase and sale of energy. Typically, the amount of power that each
of these components provides in a given time interval has to be determined in advance,
and a time-dependent and cost-optimized schedule for the purchase and sale of electrical
energy must be set; see, e.g., [1]. Now, if parts of the data in this optimization problem
are uncertain or unknown in advance, e.g., the power output of a photovoltaic module,
the decision maker has to use some nominal data, i.e., a forecast series, instead. In this case,
deterministic optimization based on nominal values is the state of the art. This method
is used to find the optimal sizing and configuration of hybrid power systems in [2–4].
Deterministic optimization as a suitable method for the short-term planning of energy
systems is described in [5,6] and in combination with a rolling horizon strategy in [7–9].
Furthermore, in [10], a deterministic peak shaving strategy is studied, and in [11], an energy
optimization scheduling strategy for an integrated energy system based on multi-time-scale
coordination is proposed. When the deviation of the realized data from the nominal one is
too high, it can happen that the inherent flexibility of the energy system is not sufficient to
keep the previously calculated schedule. For example, if power production does not meet
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demand, the energy system operator is forced to spontaneously purchase the so-called
imbalance energy from the grid, which usually entails enormous additional costs [12].

In contrast with this deterministic way of dealing with uncertain data, the methods
of robust and stochastic optimization provide an optimal solution that takes other possible
outcomes of the uncertainties into account and therefore avoid or lower the probability of
these high imbalance compensation costs. In [13], a brief review of optimization methods
under uncertainties for energy systems is given. Robust optimal planning is based on
the worst possible realization regarding the cost function, while stochastic programming
yields the optimal solution for the expected value of all scenarios. The advantage of ro-
bust optimization in comparison with the deterministic and stochastic methods is that the
solution is feasible for all deviations from the nominal data. This is sometimes too conser-
vative since the worst-case scenario is rarely realized and therefore related to unnecessarily
high planning costs. Robust optimization and its variants are often applied to risk-averse
scenarios. In energy economics, this could be island microgrids, since any imbalance
between demand and supply can only be compensated by using storage facilities with
limited capacity and power. To learn more about the application of robust optimization
in island microgrids, see [14]. The advantages and disadvantages of robust planning in
energy system optimization under uncertainties are discussed in several papers; see [15–19].
For less risk-averse use cases, stochastic optimization can be a better choice because only
highly probable and less expensive scenarios are taken into account [20]. For applications
of stochastic optimization in energy economics, the authors in [19] describe in which cases
it is suitable and how to implement it in the program instead of the robust method.

In this paper, an extension of the robust optimization method, the so-called adjustable
robust optimization, is briefly recapped, applied, and then evaluated. The underlying idea
of this method is to include the possibility of adapting specific parts of the solution after
some of the uncertain data have already become known in the planning phase. Now,
it is to distinguish between here-and-now and wait-and-see variables. The former have to
be determined in advance and therefore need to be robust against unknown deviations
from the nominal data, while the latter are dependent on the uncertain data and can be
adjusted accordingly after some or all of the realizations happen. Using this additional
information, a less conservative solution can be found, resulting in significant savings
in planning costs. Since the solution of an energy operation planning problem is a time-
dependent schedule and some of the decisions can be made during the process, the method
of adjustable robust optimization is well suited for this application. In [21], the idea of using
adjustable robust optimization to determine the provision of control reserve to a power
system is discussed, and in [22], the authors investigate an adjustable robust approach for
dispatching island microgrids.

The case study presented in this paper, however, shows an application for the day-
ahead planning of the cross-sectoral energy system of a living quarter based on real-world
data with the aim of ensuring a control policy for all possible disturbance realizations under
minimal balancing energy usage.

In Section 2, the basics of optimization under uncertain data are introduced, and it
is described how these methods are used in different applications for energy systems.
This is followed by the methodology of affinely adjustable robust optimization (AARO) in
Section 3. Finally, a numerical case study is carried out to compare the AARO method with
a rolling deterministic scheduling method. Both are implemented on a model representing
the cross-sectoral energy system of a residential quarter and compared with each other by
simulating historical realizations.

2. State of the Art
2.1. Deterministic Optimization

The common way of optimizing without any uncertain parameter is deterministic
optimization. Linear or mixed integer linear formulations are often chosen for problems
with a high number of variables, such as those used in the scheduling of energy systems.
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This has the advantage that high-performance solvers exist for this problem class, which
are guaranteed to find globally optimal solutions in a short time. Deterministic scheduling
models can be formulated as a linear program:

min
x∈Rn

c⊤x + d, s.t. Ax ≤ b. (1)

Here, x ∈ Rn is the vector of decision variables, c ∈ Rn and d ∈ R are the parameters
of the objective function, and A ∈ Rm×n forms together with b ∈ Rm the constraints.
The parameters A, b, c, and d are the data of the optimization problem. In reality, most of
the input data can never be determined exactly, and users of the method have to deal with
this problem in another way.

2.2. Stochastic Optimization

One approach to model uncertainty in the data (c, d, A, b) is in terms of random
variables, while the optimization is performed with respect to the expectation value or
other risk measures for uncertainty; see, e.g., [23]. To this end, knowledge of the distribution
of the uncertain data is required. We follow the idea in [24] of a two-stage stochastic linear
program with a decision variable x divided into x = (z, y), where z are the decisions to be
taken under incomplete information on the random variables and y are corrective actions
after the full information is unveiled. Then, the respective two-stage stochastic linear
program with fixed recourse is formulated as follows:

min
z∈Rn

c⊤0 z + d0 +Eξ [Q(z, ξ)], s.t. A0z ≤ b0 (2)

with c0 ∈ Rn, d0 ∈ R, A0 ∈ Rm×n, and b0 ∈ Rm being known data of the first-stage problem,
while the stochastic variable ξ models uncertainties. Provided an outcome ω, the quantity
Q(x, ξ(ω)) is given as the optimal value of the second-stage problem:

min
y∈Rr

c1(ω)⊤y + d1(ω), s.t. A1(ω)z + A2y ≤ b1(ω) (3)

with a fixed recourse matrix A2 ∈ Rp×r, and ξ = (c1, d1, A1, b1), where c1(ω) ∈ Rr,
d1(ω) ∈ R, A2(ω) ∈ Rp×n, and b1(ω) ∈ Rp. The approach is now to first calculate the
expectation value Eξ [Q(x, ξ(ω))] with respect to the random variable ξ and obtain the
so-called deterministic equivalent problem. Subsequently, the solution z ∈ Rn of the first-stage
problem (2) can be determined, and after the realization of the outcome ω, the second-stage
problem (3) can be solved for the variable y ∈ Rr.

For applications of stochastic optimization in energy economics, the authors in [19]
describe in which cases it is suitable and how to implement it in the program instead of
alternative approaches based on robust optimization as outlined in the following.

2.3. Robust Optimization

The method of robust optimization ensures the feasibility of the solution for all possible
realizations and is formulated by the worst-case method, which will now be introduced
as it is done by Ben-Tal et al. in [25] (p. 7). To model the uncertainties, a data matrix
D ∈ R(m+1)×(n+1), with the following:

D =

[
c⊤ d
A b

]
is introduced, where we identify the tuple (c, d, A, b) with D. Let D0 be the matrix of
known reference data and Dj, j ∈ {1, . . . , l} be potential maximal deviations from the
nominal values, which have to be known. The unknown parameter is now which entry
deviates to what extent. This can be described using the uncertain perturbation vector
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ζ ∈ Z . Assuming the perturbation set Z to be a parallelotope, which is the image of a unit
box under affine mapping, it can be normalized without loss of generality as follows:

Z =
l

∏
j=1

[−1, 1] ⊂ Rl . (4)

Therefore, Z is the set of all possible perturbations, and l is the number of entries that
deviate independently. The set of all uncertain data matrices:

U =

{
D = D0 +

l

∑
j=1

ζ jDj

∣∣∣∣∣ ζ ∈ Z
}

⊂ R(m+1)×(n+1),

called uncertainty set, gives rise to a family of linear programs of the form (1), which are
parameterized via (c, d, A, b) = D ∈ U . Such a family is referred to as uncertain linear
optimization problem [25].

Uncertainties in the data c and d only affect the objective value, while uncertainty in
A and b has an impact on the feasibility of the optimization problem. Therefore, it makes
sense to define the concepts of robust feasibility and robust optimal value. The following set:

X = {x ∈ Rn | Ax ≤ b ∀(c, d, A, b) ∈ U}

contains all robustly feasible solutions. For each robustly feasible solution x̂ ∈ X , the robust
value is the largest value of the objective c⊤ x̂ + d that is attained over U , i.e.,

sup
(c,d,A,b)∈U

c⊤ x̂ + d.

This definition corresponds to the idea of the worst-case method. It is to minimize the
robust value over all robustly feasible solutions, which leads to the following definition of
the robust counterpart (RC) of the uncertain linear problem:

min
x∈Rn

sup
(c,d,A,b)∈U

c⊤x + d

s.t. Ax ≤ b

∀(c, d, A, b) ∈ U .

(5)

One can show that the RC (5) can be represented as a linear program with the constraint
parameter A being the only uncertainty, while the right-hand side b and the parameters
c and d in the objective function are deterministic, cf. [26]. Further, it can be assumed
without loss of generality that the left-hand side of the constraints is affine functions in the
uncertainty ζ, and also the uncertainty set can be formulated constraint-wise; see [26]. Un-
der these assumptions, the semi-infinite robust counterpart can be solved and reformulated
as a computationally tractable linear program with a finite number of constraints. This
worst-case formulation is exemplarily carried out in [26] in a single constraint.

3. Adjustable Robust Optimization

Consider the following robust optimization problem:

min
x∈Rn , s∈R

s

s.t. c⊤x ≤ s

A(ζ)x ≤ b ∀ζ ∈ Z ,

with deterministic c and b, which is equivalent to the RC (5) after a suitable relabeling [26].
As before, the uncertainty is modeled as affinely linear, i.e., A(ζ) = A0 +∑l

j=1 ζ j Aj, over the
perturbation set Z ⊂ Rl given as in (4). The idea of adjustable robust optimization is
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to divide the variables xj into here-and-now and wait-and-see decisions and to substitute
the latter with functions, the so-called decision rules, yj(Pjζ), which are dependent on ζ.
The diagonal matrix Pj ∈ {0, 1}l×l represents the information base and determines for each
variable xj which entries of ζ are already known. The resulting adjustable robust counterpart
(ARC) is formulated as follows:

min
s∈R, y(·)

s

s.t. c⊤y(ζ) ≤ s

A(ζ)y(ζ) ≤ b ∀ζ ∈ Z ,

where y(ζ) = (y1(P1ζ), . . . , yn(Pnζ)) are the decision rules. The solutions’ dependency
on the uncertainty parameter allows the ARC more flexibility than the RC. Consequently,
the ARC leads to a larger robust feasible set, which may result in an improved opti-
mal value. The decision rules are often approximated with affine functions since, other-
wise, the program is generally not computationally tractable. Using affine decision rules
yj(Pjζ) = pj + q⊤j Pjζ with pj ∈ R and qj ∈ Rl , j ∈ {1, . . . , n}, the affinely adjustable robust
counterpart (AARC) can be defined as follows:

min
s,{pj ,qj}n

j=1

s

s.t.
n

∑
j=1

cj(pj + q⊤j Pjζ) ≤ s

n

∑
j=1

aij(ζ)(pj + q⊤j Pjζ) ≤ bi, ∀ i ∈ {1, . . . , m}, ∀ ζ ∈ Z .

The optimization variables of this problem are now t ∈ R and the coefficients pj and qj
of the decision rules. In the case of fixed recourse, i.e., when the coefficients aij are constant
in ζ j for Pj ̸= 0, AARC is as tractable as the RC of the problem. Otherwise, these coefficients
are quadratic in ζ, and the tractability of AARC cannot be guaranteed. For the case study
in this paper, affinely adjustable robust optimization will be applied.

Ben-Tal et al. prove in [25] (p. 368) that the ARC and RC of an uncertain linear
problem are equivalent with the same optimal value if the uncertainty is constraint-wise,
which means that the ARC only can yield better results than the RC if this assumption
does not hold; i.e., the vector ζ cannot be split into blocks ζ0, . . . , ζm such that the i-th
constraint depends solely on ζi. This result is essential for appropriate modeling in order
to obtain better optimal values using the adjustable robust method. On the other hand, it
means that if the uncertainties are not constraint-wise, the above-mentioned worst-case
formulation cannot be applied to reformulate the semi-infinite ARC as a computationally
tractable program. In this case, if the uncertainty set is computationally tractable, e.g., box
uncertainty, it is indeed possible to represent each semi-infinite constraint by a system of
linear inequalities, which is proven in [25] (p. 20). AARC problems are closely related
to affinely adjustable robust complementary problems, which are investigated in [27]
regarding the existence and uniqueness of robust solutions. Moreover, these kinds of
problems allow for a mixed-integer programming formulation that can be used to compute
solutions [27,28].

4. Numerical Case Study
4.1. Use Case

The subject of this case study is a cross-sectoral energy system that is part of the
research project “ODH@Bochum-Weitmar” of Open District Hub e.V. for the development
of sustainable concepts of energy supply for an existing living quarter in Bochum-Weitmar,
Germany; see [29,30] and Figure 1. The parameters for the components, which are solar
power production, a battery, hydrogen and heat storage, heat pumps, a fuel cell, a gas
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boiler, household load characteristics, and the power grid, are slightly modified values
from [30]. The electricity load is generated using the load profile generator [31] for an
average household in Germany, and the heat load is based on a building simulation in the
context of the project “ODH@Bochum-Weitmar”; see also [32–34]. The purchase prices
for electricity and gas are assumed to be realistic values at the beginning of the project,
and the feed-in compensation comes from the “Bundesnetzagentur” [35]. The considered
uncertainty in this energy system is the generation of the photovoltaic plant. The predicted
and realized photovoltaic infeed time series are taken from [35] for the control area 50Hertz
in Germany in the year 2021 and scaled to a maximal power of 183.4 kW, which corresponds
to a module with a nominal power of 200 kWp.

Figure 1. Model of the cross-sectoral energy system for a living quarter in Bochum-Weitmar.

4.2. Deterministic Model

In order to compute the most cost-efficient schedule for the energy system, a determin-
istic linear optimization model with a time period of 1 year and a granularity of 15 minutes
is first introduced. The objective is to minimize the total purchase costs for electricity and
gas and to maximize the feed-in compensation for the electricity surplus over the entire
time horizon, where the decision variables represent the power of each component in
kilowatts per 15 minutes. The constraints of the optimization problem include balance
equations for electricity, heat, hydrogen, and gas. Additionally, there are restrictions on the
components, like capacity, nominal power, efficiency, coefficient of performance, and limits
for purchasing and delivering power. The decision variable of the linear program consists
of the components listed in Table 1 and is given by the following:

x =
(

pel(t), pgas(t), del(t), BSOC(t), Bin(t), Bout(t) . . . , GSHPin(t), GSHPout(t)
)T

t=1
,

where t represents a discrete time instance and T is the considered horizon. The parameters
of the linear program are shown in Table 2.
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Table 1. Variables of the deterministic problem.

Component Symbol [Unit]

Power purchase pel [kW]
Gas purchase pgas [kW]
Power delivery del [kW]
Battery storage SOC 1/input/output BSOC [kWh]/Bin/Bout [kW]
H2-storage SOC/input/output HSOC [kWh]/Hin/Hout [kW]
Heat buffer SOC/input/output QSOC [kWh]/Qin/Qout [kW]
CHP 2 electric and thermal power input/output CHPel,in/CHPel,out, CHPth,in/CHPth,out [kW]
Gas boiler input/output Gin/Gout [kW]
Electrolyzer input/output Elyin/Elyout [kW]
Air-source heat pump input/output ASHPin/ASHPout [kW]
Ground-source heat pump input/output GSHPin/GSHPout [kW]

1 SOC: state of charge. 2 CHP: combined heat and power (cogeneration) plant.

Table 2. Parameters of the deterministic problem.

Component Symbol [Unit] Value

PV production pv [kW] time series
Electricity load loadel [kW] time series
Heat load loadQ [kW] time series
Electricity buy price kel [Euro/kWh] 0.34281
Max electricity purchase pel.max [kW] 1000
Gas price kgas [Euro/kWh] 0.066965
Max gas purchase egas.max [kW] 1000
Electricity sell price kd [Euro/kWh] 0.07
Max electricity delivery dmax [kW] 1000
Nominal power gas boiler PG [kW] 800
Efficiency gas boiler ηG [%] 90
Capacity battery storage CB [kWh] 250
Nominal power battery storage PB [kW] 55
Efficiency ηB [%] 97.9
Capacity H2-storage CH [kWh] 2.7
Nominal power H2-storage PH [kW] 1
Efficiency ηH [%] 100
Capacity heat buffer CQ [kWh] 20
Nominal power heat buffer PQ [kW] 5
Efficiency heat buffer ηQ [%] 95
Electric power CHP PCHP.el [kW] 24.7
Electrical efficiency CHP ηCHP.el [%] 26.1
Thermal power CHP PCHP.th [kW] 36
Thermal efficiency CHP ηCHP.th [%] 38.1
Nominal power electrolyzer PEly [kW] 9.6
Efficiency electrolyzer ηEly [%] 73.5
Nominal power air-source heat pump PASHP [kW] 2.5
COP 1 air-source heat pump ηASHP 4
Nominal power ground-source heat pump PGSHP [kW] 12.8
COP ground-source heat pump ηGSHP 4.38

1 COP: coefficient of performance.

In order to minimize the loss from purchasing electrical power and gas over time
{1, . . . , T}, while maximizing the revenue from delivering power, we consider the deter-
ministic linear program:

min
x

1
4

T

∑
t=1

(kel · pel(t) + kgas · pgas(t)− kd · del(t))
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with constraints formulated below. The factor 1/4 serves as normalization in order to
preserve units. One part of the constraints is covered by the balance equations for electricity:

pv(t) + pel(t) + Bout(t) + CHPel,out(t) = del(t) + loadel(t) + Elyin(t) + ASHPin(t)

+ GSHPin(t) + Bin(t)
(6)

and for heat:

Gout(t) + ASHPout(t) + GSHP,out(t) + CHPth,out(t) + Qout(t) = Qin(t) + loadQ(t) (7)

for all t ∈ {1, . . . , T}. All components that produce or output power are on the left, and con-
sumers or components that input power are on the right-hand side of Equations (6) and (7).
The H2-flow from the electrolyzer through a H2-storage into a fuel cell, which then gener-
ates heat and electric power simultaneously (cogeneration), is described by the following:

Elyout(t) = Hin(t),

Hout(t) = CHPel,in(t),

Hout(t) = CHPth,in(t), ∀t ∈ {1, . . . , T}.

The gas flow from purchase into the gas boiler is implemented by the following balance
equation:

pgas(t) = Gin(t), ∀t ∈ {1, . . . , T}.

The state evolution for the storage units can be described by the following:

SSOC(t) =
t

∑
j=1

1
4

(
Sin(j)− 100 · Sout(j)

ηS

)
, ∀t ∈ {1, . . . , T}, ∀S ∈ {B, H, Q}.

In this particular situation, the initial charge at time t = 0 is zero. Further, the state of charge
is bounded by the capacity, and the power in- and output are bounded by the nominal
power of the storage unit:

SSOC(t) ≤ CS

Sin(t), Sout(t) ≤ PS, ∀t ∈ {1, . . . , T}, ∀S ∈ {B, H, Q}.

The efficiency constraints of the CHP, the gas boiler, the electrolyzer, and the COP of the
heat pumps are modeled through the following:

uin(t) =
100 · uout(t)

ηu
, ∀t ∈ {1, . . . , T}, ∀u ∈ {CHPel , CHPth, G, Ely, ASHP, GSHP}.

The output of all generation units u is bounded by their nominal power:

uout(t) ≤ Pu, ∀t ∈ {1, . . . , T}, u ∈ {CHPel , CHPth, G, Ely, ASHP, GSHP}.

Similarly, the electricity and gas purchase and the power delivery are limited:

pel(t) ≤ pel,max

pgas(t) ≤ pgas,max

del(t) ≤ dmax, ∀t ∈ {1, . . . , T}.

(8)

Finally, we impose the non-negativity of the decision variables, i.e., x ≥ 0.
The solution for this deterministic problem can be found using common solvers for lin-

ear programs. The uncertain parameter pv is a forecast time series without any deviations.
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4.3. Adjustable Robust Model

The application context of the affinely adjustable robust method (ARO) is to consider
a time horizon of 72 h since the weather forecast for 3 days can be expected to be accurate
enough. After every 24 h, which corresponds to 96 15-minute time steps, the realized
power production and, therefore, the real state of charge of the battery storage are known,
and the decision maker is allowed to adjust the solution regarding the previously calculated
power purchase and sale schedule based on these known parameters. Consequently,
the information base It is modeled as follows:

It =


∅ for t ∈ {1, . . . , 96}
{1, . . . , 96} for t ∈ {97, . . . , 192}
{1, . . . , 192} for t ∈ {193, . . . , 288}.

In the mathematical context, the electricity purchase pel is chosen as the adjustable wait-
and-see variable and substituted with the affine function:

pel(t) = ϵ(t) + ∑
k∈It

Et(k) · pv(k), (9)

where ϵ and Et denote the new decision variables and pv the once uncertain but, at time
t ∈ {1, . . . , T} for the information base It, known photovoltaic infeed. The uncertainty in
solar power production is represented by a lower bound pv(t) and an upper bound pv(t)
of the real data, which has been generated from the forecast and realization time series;
see Figure 2a,b. It is ensured that the realization always lies in between those bounds
and that the deviation is not too large, as otherwise, there does not exist a robust solution.
The average deviation is 6.4% below and 3.9% above the forecast.

Forecast
Realization
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(b)
Figure 2. (a) Forecast and realization of the PV infeed. (b) Upper and lower bound of the PV infeed.

To pass from the deterministic to the robust formulation, it is necessary to eliminate
balance equations containing uncertain parameters. In the case the balance equation for
electricity (6), this is performed by substituting the power input of the battery in every
constraint with the following:

Bin(t) = pv(t) + (ϵ(t) + ∑
k∈It

Et(k) · pv(k)) + Bout(t) + CHPel,out(t)

−
(
del(t) + loadel(t) + Elyin(t) + ASHPin(t) + GSHPin(t)

)
for all t ∈ {1, . . . , T}. This substitution also ensures that the uncertainty does not only
appear constraint-wise; e.g., since the constraint of the battery state of charge is a state
inequality, the i-th restriction contains, apart from pv(i), also all previous pv(1), . . . , pv(i −
1). Furthermore, since Z represents box uncertainty (see (4)), each semi-infinite constraint
in the problem can be replaced by a system of linear inequalities, as demonstrated in [25]
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(p. 392). In this use case, it is carried out exemplarily for one simple constraint. By (8)
and (9), the maximal value of purchased electricity pel,max is subject to the restriction:

ϵ(t) + ∑
k∈It

Et(k) · pv(k) ≤ eel,max,

pv(t) ≤ pv(t),

pv(t) ≥ pv(t)

(10)

for all t ∈ {1, . . . , T}. Introducing the additional variable ht(i) with t, i ∈ {1, . . . , T},
the statement (10) is equivalent to the following:

ϵ(t) + ∑
k∈It

ht(k) ≤ eel,max,

Et(k) · pv(k) ≤ ht(k), k ∈ It,

Et(k) · pv(k) ≤ ht(k), k ∈ It.

This is carried out for all other constraints where the uncertain parameter pv occurs to
obtain a tractable robust counterpart, which can be solved by linear programming. In
this study, the open-source solver CLP was used, which always terminated in reasonable
time. In contrast with this, the deterministic rolling method is also allowed to compute
a new here-and-now solution after 24 h according to the real state of charge but without
considering any deviations from the forecast and also without the use of adjustable wait-
and-see variables. An overview of the used methods, including the benchmark method
of having the perfect foresight, is visualized in Figure 3. Here, D represents one 24 h time
horizon, and t0 is the beginning of every day, when the data about the realized PV-infeed of
the previous day t0 − 1 have become available. The outcome of the deterministic problem
using the real PV production time series is the so-called ideal costs. These are used as a
benchmark to compare and evaluate the results of the considered methods.

Figure 3. Methods and optimization strategies for the evaluation of ARO in cross-sectoral energy
system planning.

5. Results

For reasons of simplification, the results are demonstrated for one 72 h time period,
i.e., 22–25 May 2021. The deterministic schedule is calculated using the predicted solar
power input, while the adjustable robust model takes the generated upper and lower
bounds. After simulating both solutions with the realized data, the total costs, consisting
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of the planning costs and the imbalance energy costs, are calculated. The realized state of
charge of the battery storage is shown for both methods in Figure 4.
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Figure 4. The SOC of the battery storage after realization of the photovoltaic infeed for the adjustable
robust and deterministic day-ahead planning method, where the deterministic solution violates
the constraints.

As can be seen, the deterministic solution violates the constraints on the state of charge,
which is required to stay between zero and the storage capacity of 250 kW h. In case the
energy system is short on energy, it has to purchase more energy as scheduled, and if it
is long, it has to sell more. This imbalance energy has to be financially compensated by
the operator of the energy system, which results in imbalance costs and also profits; see
Table 3. In contrast, the adjustable solution is always able to keep the planned schedule
for purchasing and selling electrical energy to the grid, so no imbalance energy is needed,
and no extra costs are incurred. The imbalance energy price in this calculation is set to be the
the same as the prices from the planning model, i.e., EUR 0.34281/kW h for purchase and
EUR 0.07/kW h for feed-in compensation. The planning costs are the optimization value of
the respective method, meaning the costs and revenue of the scheduled energy purchase
and delivery. To obtain the total operational costs, the planning costs and the imbalance
costs are added up. These results are shown in Table 3, also including the computation
time and the deviation from the ideal costs. The ideal costs are used as a benchmark
and are the optimal value for the deterministic problem using the realized photovoltaic
generation instead of the forecast. In other words, this describes the operational costs if the
real production data were known in advance, which means having the perfect foresight.
For this use case, the calculation of the ideal costs yields EUR 160.06 with a computation
time of 1.66 s.

Table 3. Comparison of both methods for 72 h time period.

Method Deterministic ARO

Planning costs EUR 194.16 EUR 211.50
Imbalance energy 453.27 kW h shortage 0 kW h

140.40 kW h surplus 0 kW h
Imbalance costs EUR 155.39 loss EUR 0

EUR -9.83 profit EUR 0
Total operational costs EUR 339.72 EUR 211.50
Deviation from ideal costs 112.2% 32.1%
Performance 26 s 182 s

Table 3 shows that the planning costs of the deterministic method are lower by 8.2%
since it does not consider the worst case. However, when the imbalance costs are factored
in, the adjustable robust solution outperforms the deterministic solution by 37.7%. In reality,
even higher costs can be expected since the imbalance energy prices are usually much
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higher than the ones in the day-ahead auction. To compare the performances, the adjustable
robust model computes six times longer than the deterministic one.

Now, this approach is taken for the entire time period from 1 January until 31 Decem-
ber 2021, and all costs are added up. It turns out that, in only three cases, a robust solution
cannot be found due to too high deviations (up to 45%) of the uncertain data. The missing
results are therefore replaced by the deterministic planning, and include the imbalance costs for
the corresponding period. In total, the costs of the adjustable robust model are 26% lower than
those of the deterministic model, but its performance is five times longer. The deviation from
the ideal costs of the deterministic method is 45.2%, while that of the ARO is 7.4% for a time
period of 1 year.

6. Discussion

The results of this case study show that the adjustable robust planning method is well
suited to reduce operational costs for applications with uncertain parameters, especially
time-dependent scenarios. In contrast with the deterministic method, it is protected against
unpredictable parameter deviations and, additionally, is less conservative than static robust
optimization due to a larger robust feasible set. That is because the adjustable robust opti-
mization utilizes the known true values of the uncertain data that have been revealed by the
respective information base, which also leads to an improved optimal value of the problem.
Nevertheless, the adjustable robust method cannot yield a robust feasible solution for too
large uncertainty sets. To resolve this issue, the uncertainty set may be adapted. On the
one hand, the length of the optimization horizon may be reduced to reduce uncertainty.
This would also be beneficial for robust optimization, but may deteriorate the overall
performance. On the other hand, one may incorporate further dependencies to render the
resulting robust optimization problem more adjustable, e.g., by providing either additional
information or the same information earlier, which means updating the information basis
more frequently. Both options would increase the number and/or the impact of the ad-
justable variables and, thus, reduce conservatism by shrinking the uncertainty set. In the
considered case study, a reduction in the information delay from 24 to 12 h has a positive
impact on feasibility. To conclude, the applier must assess the increased conservatism
and longer computation time of the (affinely adjustable) robust method in comparison
with potentially higher compensation costs due to eventually infeasible solutions result-
ing from deterministic optimization; see, e.g., [36] or [37] and the references therein for
multiobjective optimization in general. According to the results presented in Section 5,
the adjustable robust method outperforms the deterministic method already for relatively
low balance energy prices such that the significantly improved performance easily justifies
the up-to-six-times-longer computation time if the latter is still acceptable from an appli-
cant’s point of view. Here, techniques from distributed control and optimization [38] may
be used in the future to counteract the increased computational effort. Prospectively, this
approach can be combined with data-driven predictive control schemes [39,40] including
stochastic uncertainty. The considered energy system in this paper has been modeled under
some simplifications, since the focus lies rather on the demonstration and evaluation of the
adjustable robust optimization method than on delivering realistic figures in the results.
To make it more accurate, one could, for instance, add factors like the cost of charging and
discharging the energy storage facilities or use a dynamic price time series.
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