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Abstract: The increasing penetration rate of distributed resources in the distribution network has
brought about significant volatility and uncertainty problems. Demand response (DR) can flexibly
change the energy consumption method of the user to balance supply and demand. This paper first
considers the spatial distribution characteristics of DR resources to schedule DR resources to construct
a distributed resource cloud-edge collaborative scheduling framework. Based on this, the distribution
network scheduling requirements are combined with the multi-time scale characteristics of DR. A
three-stage cloud-edge collaborative optimization scheduling strategy for distributed resources in
the distribution network is proposed, which allocates the multi-time scale scheduling tasks of DR
resources to the cloud and edge. Secondly, taking the cloud and edge as the optimization platform,
a three-stage optimization decision-making model of the distribution network is established. In
the day-ahead stage, the global optimization decision is made by combining cloud-centralized
optimization with edge-independent optimization. In the intraday stage, edge-rolling optimization
is carried out. In the real-time stage, the edge-distributed calculation is based on the consensus
algorithm. Finally, the effectiveness and economy of the proposed model and strategy are verified by
an example analysis.

Keywords: distribution area; DR resources; cloud-edge framework; multi-time scale; collaborative
scheduling

1. Introduction

China is expediting the development of a novel power system, emphasizing new
energy as its primary component. However, the randomness and volatility of the output
of a large number of connected distributed new energy sources and the uncertainty of
power consumption behavior on the demand side make the system power fluctuation
increase, and the source-load real-time balance is difficult. It is challenging to meet the
needs of power grid operation. It may bring higher operating costs only by adjusting the
controllable equipment on the power supply side to maintain the balance of supply and
demand of the power grid [1]. Therefore, finding a new schedulable approach to meet
the stability and economic requirements of new energy power grid operation is urgent.
As a scheduling method on the demand side of the power system, DR can respond to
power grid scheduling needs by changing user energy consumption behavior [2]. It has
substantial flexibility and adjustable power characteristics and has been widely applied
in refined power scheduling. However, the controllable resources on the demand side are
widely distributed, with varying characteristics and small single-individual capacities. A
critical issue that needs to be solved urgently is how to fully coordinate these resources to
be effectively used to participate in distribution network scheduling.
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In recent years, scholars have conducted comprehensive research on the participation
of Demand Response (DR) in scheduling. In Ref. [3], in order to reduce the operation
cost of renewable energy generation and load uncertainty, DR is introduced to transfer
the flexible load in the microgrid system, so as to realize the main system management.
Ref. [4] developed a day-ahead market optimization model considering DR, wherein
they modeled the reducible and transferable load based on capacity and electricity. The
control strategy of the microgrid interface is the key to ensuring the stable operation of
the microgrid. Ref. [5] established an optimal day-ahead microgrid scheduling model,
encompassing electrical storage (ES), DR, and distributed generation. Ref. [6] utilized
a piecewise linear function to depict the relationship between load reduction and cost
while also modeling the cost of DR resources based on the marginal cost of various energy
sources. However, the escalating penetration of new energy generation on the distribution
side has resulted in random fluctuations and uncertainties in output power. Consequently,
the scheduling plans formulated by distribution networks for the day-ahead stage often
lead to significant power deviations during actual operation. This increased uncertainty
necessitates further corrections [7].

With the continuous exploration of adjustable resources on the demand side of distri-
bution networks and the diversification of DR resources, it becomes apparent that different
types of resources exhibit variations in advance notification time, response time, and
speed [8], indicating pronounced multi-time scale characteristics. Therefore, DR is a crucial
tool for addressing distribution networks multi-time scale power scheduling and devia-
tion correction challenges. According to the different properties of thermal energy and
electric energy, Ref. [9] puts forward a time-coordinated optimal operation method of a
multi-energy microgrid considering different energy characteristics, which manages the
slowly changing heat load in a long time scale in the early stage and manages the rapidly
changing electric load in a short time scale in the early stage. Ref. [10] develops a Man-
tis Search Algorithm (MSA) for solving the economic dispatch problem of cogeneration,
taking into account the valve point effect, the feasible area constraints of the cogenera-
tion unit, and power losses. Ref. [11] proposes a two-stage optimal operation method for
community-integrated energy systems, considering DR classification based on different
advance notice times. Additionally, they establish a two-stage scheduling model that
considers multi-time scale DR. Ref. [12] analyzed the multi-time scale characteristics of DR
resources, modeled according to the response amount of DR resources, and formulated
a multi-time scale response strategy of park-level integrated energy system considering
DR. Ref. [13] introduced a multi-time scale coordinated scheduling model encompassing
the uncertainty associated with flexible load response and the inherent multi-time scale
characteristics of flexible loads. In Ref. [14], DR is classified according to the duration of
the response to power grid dispatching instructions, and modeled them based on their
response amount, with different scheduling cost coefficients set for different types of loads.
Ref. [15] proposed a multi-time scale optimal scheduling strategy for an active distribution
network by using the characteristics of the stored power of ES moving with time and
the multi-time scale characteristics of DR. From the above literature, it can be seen that
using distributed controllable resources to participate in multi-time scale scheduling of a
distribution network is an effective means to solve the operational uncertainty of a high
proportion of new energy distribution networks.

Centralizing scheduling across vast and decentralized distributed resources introduces
substantial communication and computing burdens on the scheduling system [16–18].
Addressing these challenges, cloud-edge collaboration technology provides a promising
avenue. To mitigate the computational pressure on the scheduling center and alleviate the
impact of communication delays, Ref. [19] proposed a real-time Demand Response (DR)
scheduling strategy for electric vehicles based on cloud-edge collaboration. This approach
efficiently schedules large-scale electric vehicles through cloud-edge collaboration. Ref. [20]
constructed a cloud-edge collaborative architecture, which lowered some of the computing
of load aggregation scheduling to the edge, thereby reducing the computing pressure
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and communication latency of the cloud and achieving optimal scheduling of elastic
loads. The above literature uses the resource advantages of the cloud and the geographical
advantages of edge to carry out cloud-edge collaboration, which realizes the coordinated
scheduling of multi-dimensional decentralized DR resources, thus reducing the amount of
calculation and providing solutions for large-scale scheduling of distributed resources in
the distribution networks.

Fully exploring and utilizing the response characteristics of large-scale distributed
resources to participate in scheduling at different time scales is an effective means to solve
the operational uncertainty of high permeability new energy distribution networks. The
existing literature only proposes relevant strategies or methods from multi-time scale
scheduling. However, in the face of large-scale distributed resource groups, the question
of how to combine cloud-edge collaborative framework to decompose tasks for different
time-scale scheduling strategies of distribution networks and thus construct a complete
distributed resource multi-time scale cloud-edge collaborative scheduling scheme for distri-
bution networks is the key to solving the problem of large-scale scheduling of distributed
sources in distribution networks.

The main contributions of this paper are as follows:
(1) A cloud-side collaborative scheduling framework for distribution networks is

constructed to schedule DR resources on a large scale. On this basis, a multi-time scale
cloud-edge coordinated scheduling scheme for the distribution network is proposed to
reasonably allocate the multi-time scale scheduling tasks of DR resources at the cloud
and edge.

(2) A three-stage optimization decision-making model for the distribution network is
established. In the day-ahead stage, global optimization decisions are made by combining
the cloud primary optimization with the edge secondary optimization. In the intraday
stage, based on the results of the day-ahead optimization, rolling correction is carried out
on the edge to correct the deviation of the day-ahead prediction. The real-time stage is
based on the results of intraday optimization, and distributed calculations are carried out
on the side based on consensus algorithms to eliminate intraday prediction bias.

(3) In the real-time stage, the distributed calculation is carried out based on the
consensus algorithm on the edge. The centralized-distributed scheduling method of Leader-
Follower is adopted for the scheduling units inside the distribution area. The Leader obtains
the total power deviation from the cloud and allocates scheduling instructions through
information exchange with adjacent scheduling units, thereby achieving real-time data
analysis and disturbance power processing on the edge.

This paper is organized as follows. Section 2 constructs the cloud-edge collaborative
scheduling framework of distributed resources; Section 3 proposes a three-stage power
scheduling and deviation correction strategy; Section 4 establishes a three-stage collabo-
rative scheduling optimization model for the distribution network; Section 5 verifies the
effectiveness of the proposed strategy through case analysis and scenario comparison;
Section 6 draws the conclusions.

2. Distributed Resource Cloud-Edge Collaborative Scheduling Framework

Given the limited schedulable power of individual Demand Response (DR) resources,
the direct scheduling of a single DR resource has a relatively low impact on the power
system. Additionally, the state of a single DR resource is variable and characterized by
significant uncertainty. To fully leverage the schedulable potential of DR, this paper em-
ploys a large-scale distributed scheduling strategy for these distributed resources. Building
upon the cloud-edge collaborative scheduling framework, we propose a distributed re-
source cloud-edge collaborative scheduling framework for distribution networks. This
addresses the challenge of substantial communication computation arising from large-scale
scheduling.
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The cloud-edge collaborative scheduling framework for distributed resources in the
distribution network is shown in Figure 1, which specifically includes the following:

(1) The cloud is the scheduling center of the distribution network. It is responsible
for the global scheduling of distribution areas and serves as the link for information trans-
mission between distribution areas and the power grid. The main functions of the cloud
include collecting and processing the information, performing global dynamic optimization,
and then distributing the optimization results to the edge.

(2) Edge is the distribution area, the main gathering area of distributed resources in
the distribution network. It can intelligently perceive and aggregate the data uploaded
from the end and upload the aggregation results to the cloud. It can also optimize the
scheduling instructions issued by the cloud and allocate them to the end. At the same
time, information sharing and power exchange can be carried out between edges, thereby
achieving efficient and orderly operation of distribution areas.

(3) End is the equipment unit in the distribution area, including distributed new
energy, ES devices, and DR resources. It can upload the device’s status information to the
edge in real-time and perform the scheduling tasks issued by the edge.

Energies 2024, 17, x FOR PEER REVIEW 4 of 29 
 

 

This addresses the challenge of substantial communication computation arising from 
large-scale scheduling. 

The cloud-edge collaborative scheduling framework for distributed resources in the 
distribution network is shown in Figure 1, which specifically includes the following: 

(1) The cloud is the scheduling center of the distribution network. It is responsible for 
the global scheduling of distribution areas and serves as the link for information trans-
mission between distribution areas and the power grid. The main functions of the cloud 
include collecting and processing the information, performing global dynamic optimiza-
tion, and then distributing the optimization results to the edge. 

(2) Edge is the distribution area, the main gathering area of distributed resources in 
the distribution network. It can intelligently perceive and aggregate the data uploaded 
from the end and upload the aggregation results to the cloud. It can also optimize the 
scheduling instructions issued by the cloud and allocate them to the end. At the same time, 
information sharing and power exchange can be carried out between edges, thereby 
achieving efficient and orderly operation of distribution areas. 

(3) End is the equipment unit in the distribution area, including distributed new en-
ergy, ES devices, and DR resources. It can upload the device’s status information to the 
edge in real-time and perform the scheduling tasks issued by the edge. 

 
Figure 1. Cloud-edge collaborative scheduling framework for distributed resources in distribution 
network. 

The cloud-edge collaborative scheduling framework of distributed resources in the 
distribution network constructed in this paper, on the one hand, takes advantage of the 
resources of the cloud to control the distributed resources in the distribution network 
globally. On the other hand, taking advantage of the geographical advantage that the edge 
is close to the data center, the equipment units upload the data information at the end in 
real-time, analyze it, and process it. At the same time, information transmission is carried 
out through cloud and edge collaborative interaction, realizing cloud global optimization, 
cloud-edge collaborative interaction, and edge-end rapid response. 

Based on the established collaborative regulation framework of distributed resource 
cloud edge of distribution network, the equipment units deployed at the end upload the 
collected equipment state information (including active output, controllable quantity, and 
cost parameters) and the response information of demand response resources to the edge 
intelligent distribution terminal of the station area for analysis and processing. The intel-
ligent distribution terminal in the edge area takes real-time data and historical data as 
inputs, carries out load and photovoltaic data prediction and demand response resource 
cluster analysis, and then uploads the predicted data and the data after edge aggregation 

Figure 1. Cloud-edge collaborative scheduling framework for distributed resources in distribu-
tion network.

The cloud-edge collaborative scheduling framework of distributed resources in the
distribution network constructed in this paper, on the one hand, takes advantage of the
resources of the cloud to control the distributed resources in the distribution network
globally. On the other hand, taking advantage of the geographical advantage that the edge
is close to the data center, the equipment units upload the data information at the end in
real-time, analyze it, and process it. At the same time, information transmission is carried
out through cloud and edge collaborative interaction, realizing cloud global optimization,
cloud-edge collaborative interaction, and edge-end rapid response.

Based on the established collaborative regulation framework of distributed resource
cloud edge of distribution network, the equipment units deployed at the end upload
the collected equipment state information (including active output, controllable quantity,
and cost parameters) and the response information of demand response resources to the
edge intelligent distribution terminal of the station area for analysis and processing. The
intelligent distribution terminal in the edge area takes real-time data and historical data as
inputs, carries out load and photovoltaic data prediction and demand response resource
cluster analysis, and then uploads the predicted data and the data after edge aggregation
processing to the cloud, and the cloud carries out global data analysis and formulates
edge transaction prices, thus realizing bottom-up cloud-edge collaboration. According
to the information uploaded by each edge side, the cloud carries out global optimization,
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formulates the regulation plan of each edge platform area and sends it to the edge, and then
formulates the regulation plan of this platform area and sends it to the end-side equipment
unit, thus realizing the top-down cloud edge-to-end collaboration.

Under the framework of cloud-side collaborative regulation of distributed resources,
the regulation mechanisms of different time scales are as follows:

(1) Day-ahead stage

In the day-ahead stage, the distributed resources in the distribution network are
controlled globally. Therefore, with the help of the resource advantages of the cloud, the
cloud is taken as the main computing center to carry out global calculation and all DR
resources in the distribution network are dynamically optimized globally, and then the task
is decomposed to the edge twice. The calculation task of the side is slightly less than that
of the cloud, and the calculation task allocated by the cloud is optimized again, and the
specific regulation plan is allocated to the end-side DR resources. At this time, only the
regulation instructions of the day-ahead DR are issued, and the regulation instructions of
the intraday DR and the real-time DR are not issued for the time being, being only used as
a reference for the intraday and real-time stages.

(2) Intraday stage

Compared with the day-ahead stage, the intraday stage has a slightly shorter time
scale. Because all data are uploaded to the cloud center for processing, it will have a great
communication delay, so this stage weakens the computing task of the cloud and moves
down to the edge. The cloud only collects global data, and sends the task of optimization
calculation to the edge, and each edge only carries out independent rolling optimization of
intraday DR.

(3) Real-time stage

Because the cloud-side collaboration technology uploads the data information on the
edge side to the cloud for processing, it will cause serious communication delay and bring
great computational pressure to the cloud, prolonging the response time of distributed
resources and making it difficult to meet the real-time requirements in the real-time stage.
Therefore, compared with the day-ahead and intraday stages, in the real-time stage, this
paper moves the computing pressure of the cloud center down, reducing the computing
tasks of the cloud, and the cloud only plays the role of auxiliary computing. Instead, it
communicates directly with the cloud by means of the end inside the edge, and the cloud
sends the decision-making task directly to the end inside each edge. By taking advantage of
the proximity of edge computing to the data center, the edge is regarded as an independent
optimization area and the information is directly transmitted from end to end, and only the
real-time DR is uniformly distributed optimized.

3. Power Scheduling and Deviation Correction Strategy of Three Stages

In this paper, the power deviation problem of distribution network scheduling in
different time scales [21,22] is solved by gradually refining the time scale, and the power
deviation of the distribution network is corrected from three stages: day-ahead, intraday,
and real-time. In order to make full use of the response characteristics of distributed
resources and make them participate in the multi-time scales scheduling of the distribution
network, the response characteristics of DR resources are divided in the time domain, as
shown in Table 1.

According to the division results in Table 1, the clustering method is used to reduce the
dimensionality of distributed resources, and distributed resources with similar response
characteristics are clustered into one category. The resource feature extraction and cluster-
ing process are detailed in Appendix A. A three-stage optimization scheduling strategy
of distributed resources is proposed based on the distributed resource cloud-edge collab-
orative scheduling framework. This strategy has formulated corresponding scheduling
goals and targets for the scheduling needs of the distribution network at different stages
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and formulated tasks for cloud and edge under different scheduling stages based on the
cloud-edge scheduling framework.

Table 1. Division of DR resource response characteristics.

Type of DR Day-Ahead Intraday Real-Time

Type of load Reducible
Transferable Reducible The power can be increased or decreased

Type of scheduling Responsive Responsive Directly controlled
Time of advance notice One day 15 min Scheduled at any time without prior notice

The duration of the response >1 h 5~15 min <5 min

3.1. Day-Ahead Global Optimization Scheduling Strategy

In the day-ahead stage, in order to optimize the overall economic performance of the
system, this paper adopts the strategy of all resources participating in the optimization,
including day-ahead-type DR, intraday-type DR, real-time-type DR, and ES. At the same
time, the power interaction between the distribution areas and between the area and the
power grid is also considered. Then, the global dynamic optimization is carried out for
each period of the next day. The participation of all resources in the optimization will lead
to a large amount of computation. Therefore, based on global optimization, the amount
of computation will be allocated to the cloud and edge, and the cloud and edge will
undertake different calculation tasks, respectively. The day-ahead stage is divided into the
cloud primary and edge secondary optimization. Cloud primary optimization scheduling
strategy is shown in Figure 2.
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The initial optimization stage of the cloud is the global optimization stage, and the
scheduling object is the distribution area. Firstly, the edge uploads the PV and load
prediction values of the day-ahead stage, the declaration information of day-ahead-type DR,
the prediction value of intraday and real-time-type DR, and the status information of each
device to the cloud. Secondly, each distribution area is regarded as a scheduling unit, and
the initial optimization with the cloud is aimed at minimizing the comprehensive operation
cost of the distribution network. Formulate the scheduling plans of each distribution area
and the power interaction plans between the areas on the next day and release them to
the edge. Among them, the price of inter-area power interaction is uniformly set by the
cloud, making the distribution area prioritize the inter-area power interaction. When the
inter-area power interaction cannot meet the scheduling demand, it will interact with the
external power grid, thus promoting collaborative interaction and power support of the
distribution areas on the edge.

The second optimization stage is the independent optimization stage, and the schedul-
ing object is the equipment unit in the area. Based on the initial optimization results of
the cloud, the second optimization is carried out to minimize the independent scheduling
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cost of the area, and the optimization results are released to all equipment units in the
distribution area. In the secondary optimization, according to the response time charac-
teristics of the intraday-type DR and real-time-type DR, they can participate in day-ahead
optimization and intraday and real-time stages optimization, respectively. In order to make
full use of the multi-time scale response characteristics of DR resources, only scheduling
instructions for the day-ahead-type DR, ES, and interaction with the power grid are issued.
The scheduling instructions for intraday- and real-time-type DR are not released and are
only for intraday and real-time decision-making.

3.2. Intraday Rolling Optimization Scheduling Strategy

In the intraday stage, based on the global optimization of the day-ahead, power
adjustment is carried out for the distributed new energy and load fluctuations, that is, the
intraday DR resources and ES scheduling amount, as well as the power interaction amount
between the distribution area and the grid, are corrected. Considering the randomness and
real-time nature of the intraday DR, to avoid the influence of unplanned power fluctuations
on the operation of the distribution area in a short time, a rolling optimization method is
adopted in the intraday optimization stage. The distribution area on each edge combines
short-term rolling prediction information of PV and load. It makes independent rolling
optimization decisions to minimize the cost of correcting the day-ahead deviation. Every
15 min, rolling optimization is conducted to make the scheduling plan for the next 1 h.
However, the user is only informed of the scheduling plan for the first 15 min, and the
above process is repeated in the next scheduling cycle. The intraday rolling optimization
scheduling strategy is shown in Figure 3.
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3.3. Real-Time Consistency Distributed Optimization Scheduling Strategy

In the real-time optimization stage, the prediction accuracy of PV and load is improved
further than that in the day-ahead and intraday stages. The real-time stage emphasizes that
the distribution network can adjust for unplanned power fluctuations in the ultra-short
time scale, so the real-time stage pays more attention to the real-time scheduling ability.
In order to reduce the communication delay caused by information transmission, power
interaction is no longer carried out between distribution areas. Instead, real-time data
on-site analysis and disturbance power nearby processing are carried out in the distribution
area near the edge of the data center.

To meet the real-time requirements, this paper uses the fast response speed of real-time-
type DR and the fast charging and discharging characteristics of ES equipment to schedule
only real-time-type DR and ES in the distribution area [23]. The real-time consistency
distributed optimization scheduling strategy is shown in Figure 4.

In the real-time stage, according to the latest predicted values of PV and load, ES and
real-time-type DR are used as the scheduling units, and the distributed calculation is carried
out based on the consensus algorithm to minimize the cost of correcting intraday deviation.
When performing consistently distributed computing, only information interaction between
adjacent scheduling units within the distribution area is required, so the information
transmission amount is small and the optimization convergence speed is fast, which meets
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the scheduling requirements in the real-time stage [24]. At the same time, to ensure the
global nature of information and the distribution of calculations, a centralized-distributed
scheduling method of Leader-Follower is adopted within the distribution area. The Leader
obtains the scheduling information of the distribution area from the cloud in real-time and
interacts with the neighboring Followers. At the same time, information is transmitted in
both directions between neighboring Followers. The schedulable ability determines the
selection principle of the Leader [25]. The real-time DR clusters in the distribution area
participate in scheduling for different periods: ES can participate in scheduling all day;
therefore, ES is used as the Leader, while the real-time DR cluster is used as the Follower.
According to the optimization results of the intraday stage and the latest predicted values of
load and PV in the real-time stage uploaded from the edge, the cloud obtains the deviation.
It sends it to the Leader of each distribution area. Taking the micro-growth cost rate
as the consistency variable, the consistency iteration is carried out for the Leader and
Follower of each distribution region. When the micro-increase rate of cost tends to be
consistent, the total power command is allocated to each scheduling unit optimally [26,27].
In this iteration process, each scheduling unit only needs to exchange information with
neighboring units, and the amount of information exchange is small, which can reduce
the influence of communication delay. The scheduling instructions in the real-time stage
are sent directly to each scheduling unit without going through the user, improving the
scheduling efficiency in the real-time stage.
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4. Three-Stage Collaborative Optimization Model

This paper builds a three-stage collaborative scheduling optimization model of distri-
bution networks based on the proposed multi-time scale cloud-edge collaborative schedul-
ing strategy, including the day-ahead global optimization scheduling model, intraday
rolling optimization scheduling model, and real-time consistency distributed optimal
scheduling model.

4.1. Day-Ahead Optimization Scheduling Model
4.1.1. Objective Function

(1) Day-ahead initial optimization model

The 24 h scheduling plan for the next day is formulated one day in advance in
the day-ahead optimization stage, and the time scale is 1 h. The cloud conducts initial
optimization to minimize the comprehensive operation cost of the distribution network.
The comprehensive operation cost comprises two parts: the independent scheduling cost
of the distribution area and the power interaction cost of the distribution area interval. The
objective function can be expressed as Equation (1):

F11 = min
n

∑
i

T

∑
t=1

(Ci,t + CTA
i,t ) (1)
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where F11 is the total scheduling cost of the distribution network in the day-ahead initial
optimization; Ci,t is the independent scheduling cost of distribution area i in t period; CTA

i,t
is the cost of power interaction between distribution area i and other distribution areas; T
is the number of periods divided by the day-ahead stage.

The cost of power interaction between distribution areas is shown in Equation (2):

CTA
i,t = βp,tPTA

i,t,p − βs,tPTA
i,t,s (2)

where βp,t and βs,t are the power purchase price and the power sale price of the distribution
area interval in the t period, the method for formulating inter distribution area power
interaction prices is shown in Appendix B; PTA

i,t,s is the power sold by distribution area
i to other distribution areas in the t period (kW); PTA

i,t,p is the power purchased by the
distribution area i from other distribution areas in the t period (kW).

(2) Day-ahead secondary optimization model

Based on the initial optimization results, secondary optimization is carried out on the
edge to minimize the independent scheduling cost of the distribution area. The objective
function is expressed as Equation (3):

F12 = min
T

∑
t=1

[Cgrid
i,t,DA + CESS

i,t,DA +
Ki

1

∑
ki

1=1

C1
i,t,ki

1
+

Ki
2

∑
ki

2=1

C2
i,t,ki

2
+

Ki
3

∑
ki

3=1

C3
i,t,ki

3
+

Ki
4

∑
ki

4=1

C4
i,t,ki

4
] (3)

where F12 is the total scheduling cost of distribution area i in the day-ahead secondary
optimization stage; Cgrid

i,t,DA is cost of power interaction between the distribution area i and
the power grid in the day-ahead stage; CESS

i,t,DA is the operating cost of ES in the day-ahead

stage; Cj
i,t,ki

j
, (j = 1, 2, 3, 4) is the scheduling cost of the ki

j th cluster of the jth load in the

distribution area i in the t period; Ki
j, (j = 1, 2, 3, 4) is the total number of clusters of the jth

load in distribution area i.
The cost of power interaction between the distribution area and the power grid is

shown in Equation (4):
Cgrid

i,t = αp,tP
grid
i,t,p − αs,tP

grid
i,t,s (4)

where Pgrid
i,t,s and Pgrid

i,t,p are the power sold and purchased by the distribution station area i
from the power grid during t period (kW);

The operating cost of ES is shown in Equation (5):

CES
i,t = aes

i (PES
i,t )

2
(5)

where aes
i is the cost coefficient of ES; PES

i,t is the charging and discharging power of ES (kW),
where PES

i,t > 0 indicates that the ES is charging, conversely, PES
i,t < 0.

The time series power compensation cost model of the DR established in this paper
is shown in Equation (6), which considers the influence of response power and response
time on decision-making. This model not only provides economic incentives for users
in response power but also meets the expected response time requirements of users as
much as possible. Users with more response power will get higher economic compensation.
When the actual response time of users deviates from the expected response time, they will
also be given higher economic compensation.
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Cj
t,kj

= Cj
t,kj ,P

+ Cj
t,kj ,T

Cj
t,kj ,P

= Ωj
kj
[Aj(

Pj
t,kj

Ωj
kj

)2 + Bj

Pj
t,kj

Ωj
kj

]

Cj
kj ,T

(t) = Pj
t,kj

·Ωj
kj[

cj
t

2tj
kj ,0

(tj
kj
)

2
− cj

tt
j
kj
+

cj
t

2 tj
kj ,0

]

(6)

where Cj
t,kj

, Cj
t,kj ,P

, and Cj
t,kj ,T

respectively represent the time series power compensation
cost, power compensation cost, and time compensation cost of the k jth cluster in the jth
load in the t period; j represents the load category, with j = 1, 2, 3, 4 representing day-ahead-
type reducible load, day-ahead-type transferable load, intraday-type reducible load, and
real-time directly controlled load; k j is the k jth cluster of the jth load; Pj

t,kj
is the scheduling

power of the k jth cluster of the jth load (kW); Aj and Bj are the power compensation cost

coefficients for the jth type of load; cj
t is the unit time compensation cost coefficient of the

jth load; tj
kj

and tj
kj ,0

are the actual response time and expected response time of the k jth
cluster of the jth load, respectively.

4.1.2. Constraints

(1) Power balance constraint

PPV
i,t + Pi,t +

N

∑
k=1,k ̸=i

(PTA
i,t,k,p − PTA

i,t,k,s) = Pload
i,t (7)

PPV
i,t + PESS

i,t + Pgrid
i,t,p − Pgrid

i,t,s = Pload
i,t +

4

∑
j=1

Ki
1

∑
ki

j=1

Cj
i,t,ki

j
(8)

(2) Power interaction constraints in distribution area interval


0 ≤ PTA

i,t,k,p ≤ ηi,t,k,pPTAmax
i,k

−ηi,t,k,sPTAmax
i,k ≤ PTA

i,t,k,s ≤ 0

ηi,t,k,p + ηi,t,k,s ≤ 1, ∀k ̸= i

(9)

where ηi,t,k,p and ηi,t,k,s are 0–1 variables, ηi,t,k,p = 1 means that distribution area i purchases
power from distribution area k, otherwise ηi,t,k,p = 0; ηi,t,k,s = 1 means that distribution
area i sells power to distribution area k, otherwise ηi,t,k,s = 0.

(3) Power interaction constraints between the distribution area and the power grid


0 ≤ Pgrid

i,t,p ≤ ηi,t,pPgridmax
i

ηi,t,sPgridmax
i ≤ Pgrid

i,t,s ≤ 0

ηi,t,p + ηi,t,s ≤ 1, ∀k ̸= i

(10)

where ηi,t,p and ηi,t,s are 0–1 variables, where ηi,t,p = 1 means the distribution area i
purchases power from the power grid, otherwise ηi,t,p = 0; ηi,t,s = 1 means that the
distribution area i sells power to the power grid, otherwise ηi,t,s = 0.
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(4) Charging and discharging constraints of ES



0 ≤ PESS
i,t,c ≤ σESS

i,t,c PESSmax
i,c

0 ≤ PESS
i,t,d ≤ σESS

i,t,d PESSmax
i,d

σESS
i,t,c + σESS

i,t,d ≤ 1

SOCmin
i ≤ SOCi,t ≤ SOCmax

i

SOCi,t = SOCi,t−1 + ηESS
c PESS

i,t,c − PESS
i,t,d

ηESS
d

SOCi(0) = SOCi(T)

(11)

where PESSmax
i,c and PESSmax

i,d are the maximum charge and maximum discharge of ES in
distribution area i (kW); σESS

i,t,c and σESS
i,t,d are 0–1 variables, where σESS

i,t,c = 1 indicates that the
ES is in the state of charge, otherwise σESS

i,t,c = 0; σESS
i,t,d = 1 indicates that the ES is in the

state of discharge, otherwise σESS
i,t,d = 0; SOCi,t and SOCi,t−1 are respectively the state of

charge of the ES in the distribution area i in the t period and in the t − 1 period; SOCmax
i

and SOCmin
i are the upper and lower limits of the state of charge of ES (%); ηESS

c and ηESS
d

are the charging and discharging efficiency of ES; SOCi(0) and SOCi(T) are the initial and
final state of charge of ES in a scheduling cycle (%).

(5) The constraint of DR

0 < Pj
t,kj

< Ωj
kj

∆Pj
kj ,max, t

kj
1 ≤ t ≤ t

kj
2 (12)

where ∆Pj
kj ,max is the maximum schedulable power reflected by the centroid of the k jth

cluster in the jth load (kW).

4.2. Intraday Optimization Scheduling Model
4.2.1. Constraints

Based on the day-ahead optimization results, the intraday optimization adjusts the day-
ahead scheduling plan by rolling optimization based on the latest predicted intraday PV
and load values. Intraday optimization takes 1 h as a rolling cycle, and the 1 h scheduling
plan is formulated 15 min in advance. However, only the first 15 min of scheduling results
are performed, and the next 15 min repeat the above process. The goal is to minimize the
cost of correcting the day-ahead deviation in the distribution area, and its objective function
can be expressed as (13):

F2 = min
t0+M∆T

∑
t=t0

(CESS
i,t,DI + Cgrid

i,t,DI +
Ki

3

∑
ki

3=1

C3
i,t,ki

3
) (13)

where F2 is the scheduling cost of distribution area i in a scheduling period of intraday
stage; Cgrid

i,t,DI is the cost of power interaction between the distribution area i and the power
grid in the intraday stage; CESS

i,t,DI is the operating cost of ES in the intraday stage; ∆T is the
scheduling time-scale of intraday stage; M is the number of scheduling periods included in
an intraday scheduling stage.

4.2.2. Constraints

(1) Power balance constraint

N

∑
k=1,k ̸=i

(∆Pgrid
i,t,p − ∆Pgrid

i,t,s ) + ∆PESS
i,t + ∆PPV

i,t = ∆Pload
i,t +

Ki
3

∑
ki

3

P3
i,t,ki

3
(14)
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(2) The power interaction constraints between the distribution area and the power grid,
the charging and discharging constraints of ES, and the constraint of DR are similar to
the day-ahead stage, which is no longer described here.

4.3. Real-Time Optimization Scheduling Model

The goal of the real-time stage is to minimize the cost of correcting intraday deviation
in the distribution area, and its objective function can be expressed as Equation (15):

F3 =
Ki

4

∑
ki

4=1

C4
i,t,ki

4
+ CESS

i,t,RT (15)

where F3 is the scheduling cost of distribution area i in the real-time stage; C4
i,t,ki

4
is the

scheduling cost of the ki
4th cluster of real-time-type DR in the distribution area t; CESS

i,t,RT is
the scheduling cost of ES in distribution area i.

According to the criterion of equal micro-increase rate of cost, when the micro-increase
rate of cost of all scheduling units tends to be consistent, the total scheduling cost of the
distribution area is the smallest, so as to realize the optimal distribution of the scheduling
power among the scheduling units. Therefore, in the real-time stage, the time scale is
5 min. Of course, it is also applicable to take a shorter time in practical application. The
micro-increase rate of the scheduling cost of each scheduling unit in the real-time stage is
used as the consistency variable, and the distributed calculation is carried out based on the
consistency algorithm.

In the process of optimizing calculations using consensus algorithms, each scheduling
unit is regarded as a node. For node α, yα(x) represents the consistency status information
of node α after x iterations, where α = 1, 2, . . . n. The consistency variables of each node
are updated according to the consistency variables of its adjacent nodes. With the gradual
increase in the number of iterations, the consistency variables yα(x), yβ(x) of any adjacent
nodes tend to be consistent. When yα(x) = yβ(x) is satisfied, all nodes in the system
are considered to converge to the common value. We define matrix A = [aαβ] as the
adjacency matrix, whose diagonal element is 0, and the non-diagonal element aαβ is the
number of edges from node α to node β. D(x) is the state transition matrix; if the matrix
D(x) is a non-negative row random matrix and all eigenvalues are not greater than 1, all
scheduling units in the distribution area will converge to the same value after enough
iterative operations. L = D − A = [lαβ] is the Laplace matrix, which reflects the topological
structure of the scheduling units in the distribution area and satisfies the relationship
shown in Equation (16):

lαβ =

 ∑
β∈n

aαβ, (α = β)

−aαβ , (α ̸= β
) (16)

where dαβ is the element of row α and column β of D(x) which is determined by the
communication network topology and can be expressed as Equation (17):

dαβ =
zαβ(x)

∣∣lαβ(x)
∣∣

n
∑

α=1
zαβ(x)

∣∣lαβ(x)
∣∣ (17)

where zαβ is the gain weight from node α to node β; lαβ is the element in row α and column
β of L.
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The micro-increase rate of cost is defined as the derivative of the scheduling cost to
the scheduling power, so the micro-increase rate of cost of ES and real-time-type DR can be
expressed as Equation (18):

λα
i,t =


∂C4

i,t,ki
4

∂P4
i,t,ki

4

∂CESS
i,t,RT

∂PESS
i,t,RT

(18)

where λα
i,t is the micro-increase rate of cost of the scheduling unit α in the distribution area

i in the t period.
In this paper, ES is selected as the Leader, and the cluster of real-time-type DR is

selected as the Follower. The micro-increase rate of cost of x + 1 iterations of Leader can be
expressed as Equation (19):

λα
i,t+1(x + 1) =


M
∑

α=1
dαβ,tλ

β
i,t + µ∆Pd,t ∆Pi,t > 0

M
∑

α=1
dαβ,tλ

β
i,t − µ∆Pd,t ∆Pi,t < 0

(19)

∆Pd,t = ∆Pi,t −
M

∑
h=1

∆Pα
i,t (20)

where µ is the power scheduling coefficient; ∆Pi,t is the total power deviation of distribution
area i in the t period; ∆Pd,t is the residual deviation after scheduling.

The micro-increase rate of cost of x + 1 iterations of Follower can be expressed as
Equation (21):

λα
i,t+1(x + 1) =

M

∑
α=1

dαβ,tλ
β
i,t (21)

According to Equations (5), (6) and (18), the scheduling power of x + 1 iterations in
the t period can be obtained. The scheduling power of Leader can be expressed as shown
in Equation (22).

Pα
i,t(x + 1) =


Pi,α,min ,

λα
i,t(x+1)

2aESS
i

≤ 0
λα

i,t(x+1)

2aESS
i

, 0 ≤ λα
i,t(x+1)

2aESS
i

≤ Pi,αmax

Pi,α,max ,
λα

i,t(x+1)

2aESS
i

≥ Pi,αmax

(22)

The scheduling power of Follower can be expressed as follows:

Pα
i,t(x + 1) =


Pi,α,min ,

Ωj
α(λ

α
i,t(x+1)−Dj)

2Aj
≤ 0

Ωj
α(λ

α
i,t(x+1)−Dj)

2Aj
, 0 ≤ Ωj

α(λ
α
i,t(x+1)−Dj)

2Aj
≤ Pi,αmax

Pi,α,max ,
Ωj

α(λ
α
i,t(x+1)−Dj)

2Aj
≥ Pi,αmax

(23)

Dj = Bj + Ωj
α[

cj
t

2tj
α,0

(tj
α)

2
− cj

tt
j
α +

cj
t

2
tj
α,0] (24)

where Pα
i,t(x + 1) is the scheduling power of the scheduling unit α in distribution area i

after x + 1 iterations in the t period (kW), and Pi,α,min and Pi,α,max are the upper and lower
limits of the scheduling power of the scheduling unit α (kW).

In the iterative calculation process of the consensus algorithm, the residual deviation
∆Pd,t is used as the convergence condition. When

∣∣∆Pd,t
∣∣ < ε, the consistency calculation
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reaches convergence, and ε is the convergence error. Iteratively update λα
i,t, until all λα

i,t
tends to the same value λα∗

i,t , at which point the system reaches a consistent convergence,
that is, the micro-increase rate of cost of all scheduling units in the distribution area
is consistent.

∂C4
i,t,ki

4

∂P4
i,t,ki

4

= · · · =
∂C4

i,t,ki
4

∂P4
i,t,ki

4

=
∂CESS

i,t

∂PESS
i,t

(25)

The optimal values of the scheduling power of the ES and the real-time-type DR
cluster are shown in Equations (26) and (27), respectively:

Pα∗
i,t =

λα∗
i,t

2aESS
i

(26)

Pα∗
i,t =

Ωj
α(λ

α∗
i,t − Dj)

2Aj
(27)

4.4. Solution Method

The multi-time scale cloud edge optimization and regulation model of distribution
network belongs to a nonlinear programming problem, so MATLAB combined with yalmip
plug-in is used to call gurobi solver to solve it in the days before and during the day. In
the real-time stage, in order to ensure its real-time control ability, MATLAB is used for
distributed calculation based on consistency algorithm. The specific algorithm flow is
shown in the following Figure 5.

Energies 2024, 17, x FOR PEER REVIEW 15 of 29 
 

 

Step 1, the edge side platform area uploads the load, the day-ahead forecast infor-
mation of photovoltaic, and the parameter information of each control unit to the cloud; 

Step 2, the cloud carries out global initial optimization a few days ago with the goal 
of minimizing the comprehensive operation cost of the distribution network, and sends 
the optimization result to the edge platform area; 

Step 3, each edge platform area carries out the second optimization decision day-
ahead with the minimum cost of independent regulation and control of the platform area 
as the goal and sends the optimization result to the regulation and control unit in the 
previous stage; 

Step 4, the edge updates the intra-day forecast information of load and photovoltaic; 
Step 5, the edge platform area carries out intra-day rolling optimization with the goal 

of minimizing the deviation cost before the correction day and sends the optimization 
result to the intra-day stage adjustable unit; 

Step 6, the real-time forecasting information of load and photovoltaic is updated in 
the platform area on the edge; 

Step 7, the Leader of each area obtains the power deviation to be corrected in the 
station area and calculates the slight increase rate of the cost of each control unit; 

Step 8, a Laplacian matrix and a state transition matrix are formed according to the 
topological structure inside each station area; 

Step 9, the consistency variables of Leader and Follower and the regulating power 
are updated according to Formulas (22) and (23), respectively; 

Step 10, judging whether the current iteration result meets the convergence condi-
tion, and if not, performing the next iteration; if the conditions are met, the final optimi-
zation result is output. 

 
Figure 5. Solution process of multi-time scale cloud-edge collaborative regulation of distributed re-
sources in distribution network. 
Figure 5. Solution process of multi-time scale cloud-edge collaborative regulation of distributed
resources in distribution network.



Energies 2024, 17, 1933 15 of 28

The specific solution steps are as follows:
Step 1, the edge side platform area uploads the load, the day-ahead forecast informa-

tion of photovoltaic, and the parameter information of each control unit to the cloud;
Step 2, the cloud carries out global initial optimization a few days ago with the goal of

minimizing the comprehensive operation cost of the distribution network, and sends the
optimization result to the edge platform area;

Step 3, each edge platform area carries out the second optimization decision day-
ahead with the minimum cost of independent regulation and control of the platform area
as the goal and sends the optimization result to the regulation and control unit in the
previous stage;

Step 4, the edge updates the intra-day forecast information of load and photovoltaic;
Step 5, the edge platform area carries out intra-day rolling optimization with the goal

of minimizing the deviation cost before the correction day and sends the optimization
result to the intra-day stage adjustable unit;

Step 6, the real-time forecasting information of load and photovoltaic is updated in
the platform area on the edge;

Step 7, the Leader of each area obtains the power deviation to be corrected in the
station area and calculates the slight increase rate of the cost of each control unit;

Step 8, a Laplacian matrix and a state transition matrix are formed according to the
topological structure inside each station area;

Step 9, the consistency variables of Leader and Follower and the regulating power are
updated according to Formulas (22) and (23), respectively;

Step 10, judging whether the current iteration result meets the convergence condition,
and if not, performing the next iteration; if the conditions are met, the final optimization
result is output.

5. Example Analysis

The effectiveness of the strategy proposed in this paper is verified by taking a regional
distribution network as an example. Multi-time scale cloud-edge collaborative distribu-
tion network optimization is a nonlinear programming problem. Based on the results of
the above solution, the time-of-use power price of the power grid refers to Table A1 in
Appendix C; the parameters of ES refer to Table A2 in Appendix C; the parameters of DR
resources are shown in Table A3 in Appendix C. In addition, the load and PV forecast
curves are shown in Figures A1 and A2 in Appendix C.

5.1. Analysis of Clustering Results

According to the response information of the DR declared by users, the improved
K-means clustering analysis method is used to aggregate the day-ahead-type reducible
loads, day-ahead-type transferable loads, intraday-type reducible loads, and real-time-type
directly controlled loads into a certain number of resource clusters. The internal resources
of each cluster have similar characteristics of power consumption. Among them, the
schedulable duration of declaration of day-ahead-type reducible loads and day-ahead-type
transferable loads is U(6, 12); the schedulable duration of intraday-type reducible loads is
U(3, 6); the schedulable duration of real-time-type directly controlled loads is U(0, 3); the
number of controllable resources declared by the four loads is 100; where U(x, y) represents
uniform distribution between x and y.

The optimal number of clusters for DR is shown in Table S1, and the clustering results
are shown in Tables S2. The centroid in each cluster represents the power consumption
behavior characteristics of the users in the corresponding cluster, the time to enter the
distribution network, the time to leave the distribution network, the expected response
time, and the maximum reducible power of each cluster body is reflected by the centroid.
The centroid feature represents the response characteristics of all resources within the
cluster, which can be used to uniformly schedule the resources within the cluster according
to the centroid feature.
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5.2. Analysis of Optimization Results

In order to verify the effectiveness of the strategy proposed in this paper, we analyze
the optimization results of the distribution network cloud-edge framework in three stages:
day-ahead, intraday, and real-time.

5.2.1. Analysis of Day-Ahead Optimization Results

In order to facilitate the analysis of the day-ahead optimization results, the day-
ahead initial optimization results and the day-ahead secondary optimization results of the
distribution area are shown in the exact figure, as shown in Figure 6. Figure 6a–c shows
the optimization results in the day-ahead stage of three distribution areas. In addition, the
optimized scheduling results for each DR cluster are shown in Figures S1–S4.

Energies 2024, 17, x FOR PEER REVIEW 17 of 29 
 

 

supply to Distribution Area 1 and Distribution Area 3 with power shortage to realize the 
local utilization of resources. In addition, the remaining power is sold to the grid. 

For DR resources, the day-ahead-type transferable loads can transfer the loads at the 
peak price to the period of low price, which has a good economy. The day-ahead-type 
reducible loads scheduling period users declare is mainly during the daytime. Since the 
price of power purchased from the power grid is high in the daytime, it is more econom-
ical to maintain the power balance by reducing the load. For intraday-type DR and real-
time-type DR, due to their fast response speed and relatively high compensation price, 
the distribution area preferentially schedules the day-ahead-type DR. It formulates the 
scheduling plan of intraday-type DR and real-time-type DR as a reference for the intraday 
and real-time scheduling stage, but does not release them. 

Through the optimization results of the clusters shown in Figures S1–S4, it can be 
seen that all clusters consider the constraints of response time and response quantity when 
participating in scheduling, thus ensuring that the scheduling instructions respond within 
the constraint range in the day-ahead stage. 

 

 
Figure 6. Cont.



Energies 2024, 17, 1933 17 of 28
Energies 2024, 17, x FOR PEER REVIEW 18 of 29 
 

 

 
Figure 6. Day-ahead optimization results of distribution areas. (a) Distribution area 1. (b) Distribu-
tion area 2. (c) Distribution area 3. 

5.2.2. Analysis of Intraday Optimization Results 
The intraday stage scheduling plan takes the day-ahead scheduling results as the 

baseline for rolling optimization. It adjusts the power interaction between the distribution 
area and the power grid, the charging and discharging capacity of ES, and the scheduling 
of intraday-type DR. As shown in Figure S1, the power deviation needs to be corrected in 
the distribution area during the intraday. The difference between load and PV deviations 
is the total deviation to be corrected. The deviation is positive if the PV and load predicted 
values of the intraday stage are greater than those of the previous day stage. If predicted 
values of PV and load in the intraday stage are smaller than those in the previous day, 
then the deviation is negative.  

Deviation correction is carried out in the intraday stage, and the optimization results 
are shown in Figure 7. The scheduling results of each cluster of intraday-type reducible 
load are shown in Figure S5. 

According to Figure 7, when the total power deviation is greater than 0, the power 
balance can be achieved by discharging ES, scheduling intraday-type DR, and purchasing 
power from the power grid. When the total power deviation is less than 0, the power bal-
ance can be met by charging ES and selling power to the power grid. Moreover, the intra-
day scheduling plan makes power adjustments based on the day-ahead plan, which en-
sures a compelling connection between the day-ahead global optimization and the intra-
day rolling optimization.  

It can be seen from the scheduling results of intraday-type reducible loads in Figure 
S5 that each cluster responds to the scheduling instructions in the intraday stage within 
the range of meeting the response time constraints and response amount constraints. 
Moreover, the scheduling power of each cluster also effectively refers to the scheduling 
instructions optimized in the day-ahead stage. 

Figure 6. Day-ahead optimization results of distribution areas. (a) Distribution area 1. (b) Distribution
area 2. (c) Distribution area 3.

As shown in Figure 6, it can be seen that all distribution areas have similarities in
scheduling plans for DR and ES and power interaction plans of distribution area intervals.
There is no PV in all distribution areas at 0:00~5:00 and 19:00~24:00, so the load demand
is mainly met by purchasing a large amount of power from the power grid. At the same
time, the power purchase price from the power grid at this period is low, so the ES will be
charged to facilitate the discharge during the peak period of power price. At 19:00~22:00,
the load demand of all areas is high, and there is no PV. Therefore, the load demand is
met by purchasing power from the power grid, scheduling DR, and discharging the ES. At
11:00~15:00, the PV output is greater than the load demand in Distribution Area 2, while
the PV output cannot meet the load demand during this period in Distribution Area 1 and
Distribution Area 3. Distribution Area 2 will prioritize the sale of excess renewable energy
supply to Distribution Area 1 and Distribution Area 3 with power shortage to realize the
local utilization of resources. In addition, the remaining power is sold to the grid.

For DR resources, the day-ahead-type transferable loads can transfer the loads at the
peak price to the period of low price, which has a good economy. The day-ahead-type
reducible loads scheduling period users declare is mainly during the daytime. Since the
price of power purchased from the power grid is high in the daytime, it is more economical
to maintain the power balance by reducing the load. For intraday-type DR and real-
time-type DR, due to their fast response speed and relatively high compensation price,
the distribution area preferentially schedules the day-ahead-type DR. It formulates the
scheduling plan of intraday-type DR and real-time-type DR as a reference for the intraday
and real-time scheduling stage, but does not release them.

Through the optimization results of the clusters shown in Figures S1–S4, it can be
seen that all clusters consider the constraints of response time and response quantity when
participating in scheduling, thus ensuring that the scheduling instructions respond within
the constraint range in the day-ahead stage.

5.2.2. Analysis of Intraday Optimization Results

The intraday stage scheduling plan takes the day-ahead scheduling results as the
baseline for rolling optimization. It adjusts the power interaction between the distribution
area and the power grid, the charging and discharging capacity of ES, and the scheduling
of intraday-type DR. As shown in Figure S1, the power deviation needs to be corrected in
the distribution area during the intraday. The difference between load and PV deviations is
the total deviation to be corrected. The deviation is positive if the PV and load predicted



Energies 2024, 17, 1933 18 of 28

values of the intraday stage are greater than those of the previous day stage. If predicted
values of PV and load in the intraday stage are smaller than those in the previous day, then
the deviation is negative.

Deviation correction is carried out in the intraday stage, and the optimization results
are shown in Figure 7. The scheduling results of each cluster of intraday-type reducible
load are shown in Figure S5.
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According to Figure 7, when the total power deviation is greater than 0, the power
balance can be achieved by discharging ES, scheduling intraday-type DR, and purchasing
power from the power grid. When the total power deviation is less than 0, the power
balance can be met by charging ES and selling power to the power grid. Moreover, the
intraday scheduling plan makes power adjustments based on the day-ahead plan, which
ensures a compelling connection between the day-ahead global optimization and the
intra-day rolling optimization.

It can be seen from the scheduling results of intraday-type reducible loads in Figure
S5 that each cluster responds to the scheduling instructions in the intraday stage within the
range of meeting the response time constraints and response amount constraints. Moreover,
the scheduling power of each cluster also effectively refers to the scheduling instructions
optimized in the day-ahead stage.

5.2.3. Analysis of Real-Time Optimization Results

In real-time stage, based on the results of intraday scheduling, the real-time power
scheduling simulation analysis of the distribution area is carried out on the time-scale
of 5 min. The power adjustment coefficient of the consensus algorithm is µ = 0.02, and
the convergence error is ε = 0.7. As show in Figure S2, the power deviation needs to be
corrected in the real-time stage.

Shown in Figure 8 is the communication topology diagram of the real-time scheduling
units in the distribution area 1. Taking the power deviation ∆P1 = 30.63 kW that needs to
be corrected at 7:05 as an example, the real-time stage simulation is carried out. According
to the response information of each real-time-type DR cluster, it can be seen that a total of
six clusters (cluster 4, 6, 9, 10, 14, 15) and ES participate in the scheduling of distribution
area 1.
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Shown in Figure 9 is the consistent convergence process of the micro-increase rate of
cost of scheduling units in the real-time stage; Figure 10 shows the convergence process of
the scheduling power of scheduling units in the real-time stage.



Energies 2024, 17, 1933 20 of 28

Energies 2024, 17, x FOR PEER REVIEW 20 of 29 
 

 

convergence error is 0.7ε = . As show in Figure S2, the power deviation needs to be cor-
rected in the real-time stage. 

Shown in Figure 8 is the communication topology diagram of the real-time schedul-
ing units in the distribution area 1. Taking the power deviation 1 30.63kWPΔ =  that needs 
to be corrected at 7:05 as an example, the real-time stage simulation is carried out. Accord-
ing to the response information of each real-time-type DR cluster, it can be seen that a total 
of six clusters (cluster 4, 6, 9, 10, 14, 15) and ES participate in the scheduling of distribution 
area 1. 

 
Figure 8. Communication topology diagram of real-time regulate unit in distribution area 1. 

Shown in Figure 9 is the consistent convergence process of the micro-increase rate of 
cost of scheduling units in the real-time stage; Figure 10 shows the convergence process 
of the scheduling power of scheduling units in the real-time stage. 

 
Figure 9. The consistent convergence process of the micro-increase rate of cost of scheduling units. Figure 9. The consistent convergence process of the micro-increase rate of cost of scheduling units.

Energies 2024, 17, x FOR PEER REVIEW 21 of 29 
 

 

 
Figure 10. Convergence process of scheduled power of scheduling units. 

The analysis of Figure 9 shows that the micro-increased cost rate of the scheduling 
unit is different at the initial time. The micro-increase rates of cost of ES and cluster 4 
increase first and then decrease, and finally tend to be unchanged. The micro-increase cost 
rates of clusters 6, 9, 10, 14, and 15 gradually increase and eventually tends to remain 
unchanged. The cost micro-increase rate of all scheduling units reached a consistent con-
vergence when iterating 35 times, which is 0.2618 CNY/kWh. 

When the micro-increase rate of cost tends to be consistent, the optimal scheduling 
power values of all scheduling units are 4kP   = 4.400kW  , 6kP   = 2.566kW  , 9kP   = 
3.300kW , 10kP  = 2.820kW , 14kP 2.600kW= , 15kP 8.250kW= , and ESSP 6.670kW= , as shown 
in Figure 10, and the scheduling results of all scheduling units are within the operating 
constraints. 

5.3. Comparative Analysis of Different Scenarios 
5.3.1. Comparative Analysis of Three Stages 

To verify the effectiveness and economy of the scheduling strategy proposed in the 
three stages of day-ahead, intraday, and real-time in this paper, the following four exam-
ple scenarios are set up for comparative analysis. 

Scenario 1: Each distribution area operates independently. The traditional centralized 
optimization is used to formulate the scheduling plan, and DR is not considered in the 
three stages. 

Scenario 2: Based on the distributed resource cloud-side collaborative framework 
proposed in this paper, the scheduling is carried out, but DR is not considered in the three 
stages. 

Scenario 3: Each distribution area operates independently. In the three stages, the 
traditional centralized optimization is used to formulate the control plan, and the multi-
time scale characteristics of DR are considered to participate in the scheduling.  

Scenario 4: The three-stage cloud-edge collaborative scheduling strategy of distrib-
uted resources proposed in this paper is used to optimize. 

According to the above scenarios, the scheduling costs in four scenarios are obtained 
through optimization calculation, as shown in Table 2. 

Table 2. The scheduling cost in different scenarios. 

Category 
Regulation Cost of 
Day-Ahead Stage 

(CNY) 

Regulation Cost of In-
traday Stage (CNY) 

Regulation Cost of 
Real Time Stage 

(CNY) 

Total Regulation Cost 
(CNY) 

Scenario 1 16,630.23 213.65 1482.66 18,326.54 
Scenario 2 16,154.74 157.93 1352.31 17,664.98 
Scenario 3 14,880.92 152.16 1015.26 16,048.34 
Scenario 4 14,077.72 65.99 814.02 14,957.73 

Figure 10. Convergence process of scheduled power of scheduling units.

The analysis of Figure 9 shows that the micro-increased cost rate of the scheduling unit
is different at the initial time. The micro-increase rates of cost of ES and cluster 4 increase
first and then decrease, and finally tend to be unchanged. The micro-increase cost rates of
clusters 6, 9, 10, 14, and 15 gradually increase and eventually tends to remain unchanged.
The cost micro-increase rate of all scheduling units reached a consistent convergence when
iterating 35 times, which is 0.2618 CNY/kWh.

When the micro-increase rate of cost tends to be consistent, the optimal scheduling
power values of all scheduling units are Pk4 = 4.400 kW, Pk6 = 2.566 kW, Pk9 = 3.300 kW,
Pk10 = 2.820 kW, Pk14= 2.600 kW, Pk15= 8.250 kW, and PESS= 6.670 kW, as shown in Figure 10,
and the scheduling results of all scheduling units are within the operating constraints.

5.3. Comparative Analysis of Different Scenarios
5.3.1. Comparative Analysis of Three Stages

To verify the effectiveness and economy of the scheduling strategy proposed in the
three stages of day-ahead, intraday, and real-time in this paper, the following four example
scenarios are set up for comparative analysis.

Scenario 1: Each distribution area operates independently. The traditional centralized
optimization is used to formulate the scheduling plan, and DR is not considered in the
three stages.

Scenario 2: Based on the distributed resource cloud-side collaborative framework
proposed in this paper, the scheduling is carried out, but DR is not considered in the
three stages.

Scenario 3: Each distribution area operates independently. In the three stages, the
traditional centralized optimization is used to formulate the control plan, and the multi-time
scale characteristics of DR are considered to participate in the scheduling.

Scenario 4: The three-stage cloud-edge collaborative scheduling strategy of distributed
resources proposed in this paper is used to optimize.
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According to the above scenarios, the scheduling costs in four scenarios are obtained
through optimization calculation, as shown in Table 2.

Table 2. The scheduling cost in different scenarios.

Category Regulation Cost of
Day-Ahead Stage (CNY)

Regulation Cost of
Intraday Stage (CNY)

Regulation Cost of
Real Time Stage (CNY)

Total Regulation Cost
(CNY)

Scenario 1 16,630.23 213.65 1482.66 18,326.54
Scenario 2 16,154.74 157.93 1352.31 17,664.98
Scenario 3 14,880.92 152.16 1015.26 16,048.34
Scenario 4 14,077.72 65.99 814.02 14,957.73

As shown in Table 2, the scheduling cost under scenario 2 is lower than in scenario 1
by 3.61%. Scenario 1 and scenario 2 do not consider DR. The difference is that scenario 1
adopts the traditional centralized optimization scheduling method, and all distribution
areas operate independently. When the resources in the distribution area cannot meet
the power balance, they can only buy and sell power from the power grid. In scenario 2,
the multi-time scale scheduling strategy under the cloud-side collaborative framework
is applied, the scheduling power is reasonably distributed on the cloud and edge, and
the power interaction between distribution areas is considered. When the power supply
in the distribution area is insufficient, the priority should be given to purchasing power
from the distribution area with surplus power instead of directly purchasing power from
the power grid to reduce the cost of purchasing power. When the power supply in the
distribution area is surplus, it is preferentially sold to the area with a power shortage
and then selected to be sold to the power grid, thus improving the power sales revenue.
Compared with scenario 3, the scheduling cost of scenario 4 is reduced by 6.80%. In
addition, scenario 3 and scenario 4 consider the response time characteristics of DR so that
DR resources can participate in multi-time scale scheduling according to their different
response time characteristics. However, the scheduling cost of scenario 4 is lower than
that of scenario 3, because scenario 4 adopts a multi-time scale cloud-edge cooperative
scheduling strategy. In contrast, scenario 3 adopts a traditional centralized optimization
control method, similar to scenarios 1 and 2 above. Cloud-edge collaborative optimization
control can improve the economy of the overall operation of the system.

Compared with scenario 1, the scheduling cost of scenario 3 is reduced by 12.43%; both
scenarios adopt the traditional centralized optimization scheduling method. The difference
is that scenario 3 considers DR resources with different response time characteristics,
while scenario 1 does not consider this. Compared with scenario 2, the scheduling cost
of scenario 4 is reduced by 15.33%; both scenarios adopt the multi-time scale scheduling
strategy of cloud-edge coordination, but scenario 4 also considers the multi-time scale
characteristics of DR resources and makes them participate in scheduling. It can be seen
that DR participates in the scheduling to improve the flexibility of distribution network
operation. Under the premise of the optimal economy of the distribution network, the
purchasing of power is reduced through the scheduling of DR resources, and the sales
of power are increased to obtain more benefits. The analysis shows that the economy of
distribution network operation can be improved by adding DR.

Through the analysis of the scheduling costs of the four scenarios, it can be seen
that the economic efficiency of distribution network operation can be improved whether
considering the cloud-edge collaborative optimization scheduling or considering the multi-
time scale characteristics of DR, thus verifying that the scheduling strategy proposed in
this paper has good economic benefits. However, due to the small number of distribution
areas considered in this paper, the effect on improving the economy is limited. For the
distribution network with more distribution areas, under the cloud-edge framework, the
power interaction and DR resources of the edge areas will play an important role in the
scheduling. They will have a significant effect in improving the operation economy of the
distribution network. Therefore, the research results of this paper provide an essential
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reference for the scheduling of distribution networks composed of multiple distribution
areas in the future.

5.3.2. Comparative Analysis of Real-Time Stage

In order to verify the effectiveness of the proposed scheduling method in the real-time
stage, the following two scenarios are set for comparative analysis.

Scenario1: Centralized computing is performed by the cloud center, and then the
scheduling tasks are released to the scheduling units.

Scenario 2: The centralized-distributed calculation based on the consensus algorithm
is adopted, and the adjacent scheduling units perform information interaction.

It can be seen from Table 3 that the convergence time of centralized scheduling is signif-
icantly larger than that of centralized-distributed scheduling because the data information
of all scheduling units of centralized control must be uploaded to the cloud center for uni-
fied calculation, thus increasing the time of data transmission and processing. In scenario 2,
centralized-distributed computing based on a consensus algorithm only requires informa-
tion interaction between adjacent scheduling units, significantly reducing the amount of
calculation. Therefore, scenario 2 has a faster optimization speed than scenario 1. With the
increase in the scale of the distribution area, the advantages of distributed optimization
calculation will be more prominent, which is more in line with the real-time scheduling
requirements in the real-time stage.

Table 3. The convergence time calculated in different scenarios.

Category Convergence Time (s)

Scenario 1 0.431
Scenario 2 0.183

6. Conclusions

This paper considers the spatial and temporal characteristics of DR resources and pro-
poses a three-stage cloud-edge collaborative optimization control strategy for distributed
resources. Through example analysis, the following conclusions can be drawn:

(1) In the day-ahead stage, the power interaction and sharing between the distribution
areas on the edge have been considered, fully leveraging the advantages of collaborative
scheduling on the edge. Through the power interaction between areas, the local consump-
tion of resources has been achieved, and the overall economic operation of the distribution
network has also been improved.

(2) It adapts to the change of PV and load forecasting accuracy through the coordinated
scheduling of three-time scales of day-ahead, intraday, and real-time in the cloud and
edge. Considering the response time characteristics of DR, participating in the optimal
scheduling of the distribution network fully taps the scheduling potential of DR, improves
the flexibility of power flow between distribution areas, and significantly improves the
economy of distribution network operation.

(3) In the real-time stage, the centralized-distributed calculation is carried out based on
the consensus algorithm, and the micro-increased cost rate of the scheduling unit is selected
as the consistency variable. When the micro-increase rate of cost tends to be consistent, the
optimal allocation of the scheduling power of each scheduling unit in the distribution area
can be realized. Compared with centralized calculation, it can reduce the calculation time
and improve the optimization speed.

The regulation strategy proposed in this paper is suitable for small-scale distribution
systems. For large-scale power systems, with the increase in the type and quantity of DR
resources on the load side and the complexity of user uncertainties, it will be more difficult
to coordinate and optimize the regulation strategy between the power grid and users.
Therefore, in future research, it will be necessary to consider more complex and larger
power grid environments and study multi-objective optimization regulation strategies.
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Appendix A

In this paper, the clustering features are extracted from the classified DR resources, as
shown in (A1).

X =


.
xIL,DA.
xTL,DA.
xIL,DI.
xDCL,RT

 =


t1, t2, t0, PIL,DA,max
t1, t2, t0, ∆t, PTL,DA,max
t1, t2, t0, PIL,DI,max
t1, t2, t0, PDCL,RT,max

 (A1)

where X is the clustering feature matrix of DR resources; from top to bottom,
.
x is the

clustering feature vector of day-ahead-type reducible load, day-ahead-type transferable
load, intraday-type reducible load, and real-time-type directly controlled load. t1, t2,
and t0 are the time of entering the network, the time of leaving the network, and the
expected response time, respectively. ∆t is the initial on-grid period; Pmax is the maximum
schedulable power.

The improved K-means algorithm is used to perform cluster analysis based on the
cluster feature data set of DR resources extracted above. The specific clustering steps are
as follows:

(1) It is preliminarily assumed that the number of clusters of each DR resource is K.
(2) Calculate the Euclidean distance of two samples in each DR resource.
Set the number of samples as n and the data set formed as D = {x1, x2, . . . xn} and

xi = (xi1,xi2, . . . xim), then the Euclidean distance between two samples is defined as follows:

d(xi, xj) =
√
(xi1 − xj1)

2 + (xi2 − xj2)
2 + · · · (xim − xjm)

2 (A2)

(3) Determine the average distance of all samples in the DR data set.

_
D =

2
n(n − 1)∑ d(xi, xj) (A3)

https://www.mdpi.com/article/10.3390/en17081933/s1
https://www.mdpi.com/article/10.3390/en17081933/s1
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(4) Calculate the sample density.

ρ(xi) =
n

∑
j=1

δ[
_
D − d(xi, xj)] (A4)

when
_
D − d(xi, xj) ≥ 0, δ = 1, otherwise δ = 0. The density set L can be expressed as

L = {ρ(x1), ρ(x2), . . . , ρ(xn)}.
(5) Select the sample with the largest density as the centroid of the first cluster, and

the sample with the second largest density as the centroid of the second cluster, and so on,
until the target cluster number is met.

(6) The average distance between data objects is taken as the dispersion degree of data
objects, expressed by li.

(7) Reset the value of K, repeat steps (A2)–(A5), and select the K with the lowest value
of the following formula as the best number of clusters.

ξ =
1
K

K

∑
j=1,i ̸=j

max

{
li + lj

d(xi, xj)

}
(A5)

Appendix B

The cloud center formulates the price of power interaction between distribution areas
according to the power grid price and the total supply and demand of the distribution
network. The relationship between power supply and demand is defined as the ratio of
power supply to power demand. In this paper, the supply of power is the total PV, and the
demand of power is the total load in the distribution network.

qt =

N
∑

i=1
Pi,t

N
∑

i=1
Ri,t

(A6)

where qt is the supply–demand ratio of power in the distribution network during t period;
N
∑

i=1
Pi,t and

N
∑

i=1
Ri,t are the total supply and total demand of power in the distribution

network during t period.
When qt = 1, it means that the supply of power is the same as the demand of

power; when qt = 0, indicates that there is no power supply inside the distribution
network; when 0 < qt < 1, the price of power interaction follows the pricing principle
of Formulas (A7) and (A8); when qt > 1, in addition to supplying the internal loads, the
remaining power in the distribution network is sold to the external network at the selling
price of the external network.

The power purchase price and power sale price in the distribution areas interval in
the distribution network is expressed as Formulas (A7) and (A8).

βp,t =

{ αs,tαp,t
(αp,t−αs,t)qt+αs,t

, 0 ≤ qt ≤ 1

αs,t, qt > 1
(A7)

βs,t =

{
βp,tq(t) + αp,t(1 − qt), 0 ≤ qt ≤ 1
αs,t, qt > 1

(A8)

where αp,t and αs,t are as the power purchase price and the power sale price of the power
grid in the t period, respectively.
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Appendix C

Table A1. Time-of-use electricity price of external power grid.

Time Power Purchase Price (CNY/kW·h) Power Sale Price (CNY/kW·h)

1:00–6:00
23:00–24:00 0.37 0.28

7:00–10:00
14:00–17:00 0.82 0.4

11:00–13:00
18:00–22:00 1.36 0.4

Table A2. Parameters of ES.

Number of the Distribution Area aes Pes,min (kW) Pes,max (kW) Rated Capacity (kW·h)

1 0.0026 −80 80 200
2 0.002 −100 100 300
3 0.003 −100 100 200

Table A3. Parameters of DR resources.

Categories of Demand
Response Resources

Day-Ahead-Type
Reducible Loads

Day-Ahead-Type
Transferable Loads

Intraday-Type
Reducible Loads

Real-Time-Type
Directly Controlled Loads

A 0.0025 0.0011 0.0030 0.0052
B 0.35 0.26 0.45 0.63
C 0.01 0.01 0.02 0.04
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The forecasting methods of photovoltaic and load are as follows:
Because the original historical data of photovoltaic and load has the characteristics

of high dimension, abundant information, and complexity, this paper uses a CNN-LSTM
hybrid model to predict photovoltaic and load. The model mainly obtains features through
the CNN network to reduce the complexity of the model. The dimension-reduced data
through the CNN are input into an LSTM network, and the long-term dependence in time
series is continuously mined, so as to realize the accurate prediction of photovoltaic and
load power.

Among them, the basic units of the LSTM network include the forgetting gate, input
gate, and output gate. The input xt in the forgetting gate, the state memory unit St−1, and
the intermediate output ht−1 jointly determine the forgetting part of the state memory unit.
The xt in the input gate is changed by sigmoid and tanh functions, respectively, which
together determine the reserved vector in the state memory unit. The intermediate output
ht is determined by the updated St and the output ot, and the calculation formulas are
as follows:

ft = σ(Wfxxt + Wfhht−1 + b f ) (A9)

it = σ(Wixxt + Wihht−1 + bi) (A10)

gt = φ(Wgxxt + Wghht−1 + bg) (A11)

ot = σ(Woxxt + Wohht−1 + bo) (A12)

St = gt ⊙ it + St−1 ⊙ ft (A13)

ht = φ(St)⊙ ot (A14)

In the formula, ft, it, gt, ot, ht and St are the states of forgetting gate, input gate, input node, out-
put gate, intermediate output, and state unit, respectively. Wfx,Wfh, Wix, Wgx, Wgh, Wox, Woh
are the matrix weights of the corresponding gate multiplied by the input xt and the in-
termediate output ht−1, respectively; bf, bi, bg, bo are the bias terms of the corresponding
gates, respectively. σ indicates that the sigmoid function changes; φ indicates that the tanh
function changes;

The mixed model structure of the CNN-LSTM network used in this paper is shown in
Figure A3. The CNN is mainly responsible for photovoltaic and load feature extraction,
while the LSTM network is mainly responsible for photovoltaic and load prediction. CNN
consists of four convolution layers (Conv2D), and the number of convolution kernels
is set to 32, 64, 128, and 256 in turn. In this paper, the load and photovoltaic data of a
regional distribution network in the last five years are used as data sets and input into
the model shown in the figure below. In order to make full use of the existing photo-
voltaic and load data, the convolution kernel size is set to 3 × 3 in MaxPooling2D. The
feature mapping in the convolution layer uses maximum pooling to reduce the output
dimension size. After four consecutive convolution and maximum pooling operations,
a 2 × 2 × 256 three-dimensional vector array is obtained, in which 256 is the number of
channels. Then, the Flatten layer operation is performed, and the three-dimensional vector
array is compressed into a one-dimensional vector array with a length of 1024 as the global
feature extraction.

In the LSTM network part, increasing the depth of the model by adding the LSTM
network is helpful in improving the prediction ability of the model, so the final model of
this paper includes four LSTM network layers, and the number of neurons in each layer is
4, 8, 16, and 32, respectively. The random inactivation method is used between each LSTM
network layer to prevent the model from over-fitting. Finally, the vectors in the specified
format, i.e., photovoltaic and load forecast values, are output through the full connection
layer (Dense).
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