
Citation: Fiorillo, C.; Mauro, M.;

Biswas, A.; Bonfitto, A.; Emadi, A.

Designing a Real-Time Implementable

Optimal Adaptive Cruise Control for

Improving Battery Health and Energy

Consumption in EVs through V2V

Communication. Energies 2024, 17,

1986. https://doi.org/10.3390/

en17091986

Academic Editors: Massimo Guarnieri

and Fangming Jiang

Received: 20 February 2024

Revised: 25 March 2024

Accepted: 17 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Designing a Real-Time Implementable Optimal Adaptive Cruise
Control for Improving Battery Health and Energy Consumption
in EVs through V2V Communication
Carlo Fiorillo 1, Mattia Mauro 1, Atriya Biswas 2,* , Angelo Bonfitto 1 and Ali Emadi 2

1 Department of Mechanical and Aerospace Engineering, Center for Automotive Research and Sustainable
Mobility (CARS), Politecnico di Torino, 10129 Torino, Italy; fiorillocarlo.99@gmail.com (C.F.);
s298497@studenti.polito.it (M.M.); angelo.bonfitto@polito.it (A.B.)

2 McMaster Automotive Resource Center, McMaster University, Hamilto, ON L8P0A6, Canada;
emadi@mcmaster.ca

* Correspondence: biswaa4@mcmaster.ca

Abstract: Battery electric vehicles (BEVs) face challenges like their limited all-electric range, the
discrepancy between promised and actual energy efficiency, and battery health degradation, despite
their environmental benefits. This article proposes an optimal adaptive cruise control (OACC)
framework by leveraging ideal vehicle-to-vehicle communication to address these challenges. In
a connected vehicle environment, where it is assumed that the Ego vehicle’s vehicle control unit
(VCU) accurately knows the speed and position of the Leading vehicle, the VCU can optimally
plan the acceleration trajectory for a short-term future time window through a model predictive
control (MPC) framework tailored to BEVs. The primary objective of the OACC is to reduce the
energy consumption and battery state-of-health degradation of a BEV. The Chevrolet Spark 2015 is
chosen as the BEV platform used to validate the effectiveness of the proposed OACC. Simulations
conducted under urban and highway driving conditions, as well as under communication delay and
infused noise, resulted in up to a 3.7% reduction in energy consumption and a 9.7% reduction in
battery state-of-health (SOH) degradation, demonstrating the effectiveness and robustness of the
proposed OACC.

Keywords: battery electric vehicles; battery state of health degradation; optimal speed trajectory
planning; eco-driving; energy consumption; V2V communication

1. Introduction

One of the biggest challenges, and simultaneously one of the biggest opportunities, in
this era is in the area of energy and sustainability, and the transportation sector is sitting at
the heart of it. Our current transportation sector is heavily dependent on fossil fuels. Nearly
88% of roughly 1.5 billion vehicles run on fossil fuels worldwide. The transport sector alone
contributes significantly to global greenhouse gas (GHG) emissions [1], accounting for 21.6%
of total anthropogenic emissions. Road transport is a significant contributor to this sector,
responsible for 77.9% of the total CO2 emissions associated with transportation. Supposing
we want to move towards achieving net-zero emissions, powertrain electrification must
be prioritized since electric vehicles (EVs) have been at the forefront of reducing GHG
emissions in the current decade. Even if EVs consume electricity from fossil fuels, they are
a better alternative to fossil fuel-fed vehicles because the carbon from power plant exhaust
is more accessible for capture than carbon from the tailpipe of vehicles.

While the automotive industry is navigating towards electrification, recent trends
suggest that EV sales have faced headwinds in some regions despite the enthusiasm for a
green future. It is not being said that EV sales are not growing, but rather they are growing
at a slower rate than expected, especially in the United States, as shown in Figure 1 [2,3].
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Figure 1 depicts the recent trend in EV adoption rate in the primary EV markets and across
the world.
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Figure 1. Comparison of EV sales across the world in the last two years with special attention given
to the USA, China, Europe, and rest of the world [2].

Recent trends suggest a slow adoption of EVs even though the battery costs and
average EV costs are declining [2,4] due to research and development on multiple fronts,
including but not limited to artificial intelligence (AI)- and machine learning (ML)-based
optimal battery material finding and battery design [5], AI- and ML-based optimal pow-
ertrain configuration design and sizing [6,7], and cost-effective and digitalized vehicle
development programs for EVs [8]. Three primary factors contribute to this slow adoption
rate and apathy towards EVs:

• Limited all-electric range and reduced energy efficiency of electric powertrains;
• Deterioration of battery SOH before promised years of operation;
• Lack of widespread and reliable charging infrastructure.

Several studies that have been conducted to identify the root cause of the first
two factors reveal that existing and prospective EV buyers find that their EV’s battery
reaches its end-of-life (EOL) long before what was promised to them. Similarly, EV users
find discrepancies between the promised and actual all-electric ranges in real-world driving.
It has been largely proven that many real-world factors, such as trip distance, ambient tem-
perature, charging level, and driving behavior, affect the energy efficiency of the powertrain,
resulting in discrepancies between the all-electric driving range promised by the original
equipment manufacturers (OEMs) and real-world driving range [9]. Similarly, deviations
between real-world battery EOL and promised EOL are inevitable due to many real-world
and user-related factors, such as driving patterns, temperature, types of charging, and
the energy management controller of the EV [10]. Typically, large-capacity EV batteries
reach their EOL when their maximum capacity in terms of Ampere-hours (Ah) falls below
80–70% of their initial capacity [11]. In contrast, smaller-capacity batteries reach their EOL
when their maximum available power falls below 80% of their initial maximum power [11].

Since there is an inevitable gap between EV testing conditions based on which the
OEMs obtain their sticker values and government certifications and real-world EV oper-
ating conditions, and since the repercussions due to such gaps in terms of deterioration
of energy efficiency and battery SOH cannot be alleviated with hardware-based improve-
ments, software-level interventions in the VCU, especially in the energy management
system (EMS), have been prioritized in both industry and academia. Unlike the EMSs for
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hybrid electric vehicles (HEVs) or fuel-cell electric vehicles (FCEVs), the EMSs for EVs do
not have the flexibility of delegating a portion of the tractive power requested to onboard
power sources other than the battery. Consequently, they must ask the battery for whatever
power the driver requests. Hence, the EMSs for EVs should be designed intelligently to
avoid using the battery abusively, improving energy efficiency and battery SOH.

Due to such constraints of the EMSs of EVs, a few indirect approaches are prescribed in
the literature. Among various possible avenues, one involves implementing an intelligent
battery management system (BMS) to oversee and regulate the SOH degradation of every
battery cell within the pack [12]. This approach maintains uniform capacity fading across
all cells and prevents abnormal increases in capacity loss within any specific cell. Other
strategies, such as charging and auxiliary power management, also allow for reduced
charging times and an extended battery life cycle [13]. However, these two approaches
need to take the aspect of real-world driving into account when designing an intelligent
EMS-based VCU. Therefore, the authors of this article have shifted their focus to lever-
aging vehicle-to-vehicle (V2V) communications during real-world driving to incorporate
an intelligent feature into the VCU through which the VCU can reduce the battery’s SOH
degradation and powertrain energy consumption. This feature is also quite well-known as
an eco-driving feature, where the vehicles’ speed trajectory is optimized given that there
are other constraints such as maintaining a safe distance between vehicles, adhering to
signals at intersections and speed limits of the road, and respecting the feasible limits of
the powertrain components [14]. Moreover, this approach aligns with the contemporary
automotive trend, emphasizing connected and autonomous vehicle technologies, specifi-
cally targeting enhanced energy efficiency and prolonged battery life. In recent years, the
potential of connected and autonomous vehicles has grown significantly due to current
technologies, enabling vehicle efficiency improvements [15,16] while maintaining high
safety standards [17]. Connectivity is pivotal in enhancing vehicles’ awareness of their
surroundings and robustness in predicting external actions [18]. These improvements are
crucial for improving vehicle performance in challenging conditions where sensors face
limitations [19].

Literature Review

A few research works are presented in the literature on potential methods to leverage
V2V communication in improving energy efficiency and reducing battery SOH degradation.
The authors in [20] corroborated that an EV’s energy consumption can be minimized at
signalized intersections in city driving conditions if their speed profiles can be optimally
controlled with an MPC framework, which exploits vehicle-to-infrastructure (V2I) com-
munication, in comparison to manual, uninformed driving. However, this work did not
exploit V2V communication and did not consider battery SOH degradation or maintain-
ing a safe distance from the leading vehicle. An adaptive cruise control framework is
presented in [21] to exploit V2V communication to maintain a constant distance between
the Ego and the Leading vehicle but overlooking the optimal energy consumption of the
Ego vehicle. The frameworks in the above-mentioned articles are designed for a fixed
driving scenario, making them non-adaptive to varying driving scenarios. The optimizer
governs the adaptability of the eco-driving feature, and neither dynamic programming
nor Pontryagin’s minimum principle-based optimizers can facilitate adaptability [22,23].
Reinforcement learning (RL)-based optimizers are widely accredited for their adaptabil-
ity [24] to different driving conditions, and authors in [14,25] presented adaptive cruise
control with eco-driving features for EVs to improve energy efficiency and ensure safe
following distance.

Nevertheless, RL-based methods have the intrinsic drawback of substantial training
and safety conformity [26]. Moreover, model-based RL approaches [14,25] need to learn the
model of the traffic dynamics before prescribing optimal eco-driving control. An alternative
solution, a data-driven predictive control, eliminates the need to learn a traffic dynamics
model by leveraging historical data to inform control decisions [27]. While similar to
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RL-based eco-driving control in its adaptability to varying driving scenarios, it necessitates
a significant volume of data for accurate predictions.

Both linear [28] and non-linear [29] MPC frameworks have been proven to be suitable
for real-time implementation of eco-driving-inspired adaptive cruise controls in NI real-
time hardware [28] and dSpace MicroAutobox 1401 [29], respectively, and validating their
battery life saving and energy saving capabilities, respectively. The efficacy of such eco-
driving features and adaptive cruise control critically hinges upon the latency of V2V
communication, which often hinders their real-world implementation. One approach to
counter this issue is preparing a robust MPC framework against stochastic communication
delays [30].

Looking at the strengths of V2V communication in designing an eco-driving feature
for the adaptive cruise control module of the EV’s VCU and identifying the drawbacks of
the existing literature, the authors are inspired to enhance the capabilities of OACC. The
proposed OACC will improve energy efficiency, reduce battery SOH degradation, and
maintain safe inter-vehicular distance by optimally controlling the acceleration trajectory
for a short-term future time window in the presence of stochastic delay within V2V com-
munication. As shown in Figure 2, the fundamental idea of this intelligent feature is to
consider the EV as an Ego vehicle and optimally control its acceleration trajectories for a
short-term future time window by exploiting the Leading vehicle’s position and speed
through a linear MPC.
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Figure 2. Concept of optimal speed trajectory planning with a linear MPC framework in connected
vehicle environments.

Compared to the existing literature, this research article has the following contributions:

• Formulating a less computationally expensive MPC framework for solving the OACC
problem;

• Fulfilling three objective simultaneously, i.e., energy efficiency, reducing battery SOH
degradation, and maintaining safe inter-vehicular distance;

• Making the MPC framework robust against external disturbances such as sensory
noise and communication delays.

The paper is organized as follows. The paper introduces the vehicle model in Section 2,
providing a foundational understanding of the research context. Following this, Section 3
formulates the problem of optimizing the speed profile, setting the groundwork for the
subsequent sections. Section 4 takes a closer look at the implementation of the MPC model,
providing insights into how speed optimization is carried out. In Section 5, the paper
presents simulation results and engages in detailed discussions related to these findings
Finally, the paper culminates in its concluding section, summarizing the work and drawing
insights based on the research and its outcomes.
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2. Forward Approach Electric Vehicle (EV) Modeling

This section will present the vehicle plant model, which serves as the foundational
basis for implementing the proposed OACC. The model is designed to describe the longitu-
dinal dynamics of a battery electric vehicle city car (2015 Chevy Spark) equipped with a
single electric motor (EM), one inverter, and a single-gear transmission at the wheel level,
as shown in Figure 3. Throughout this section, the BEV city car under consideration will
be referred to as the Ego vehicle. The vehicle following a predefined driving cycle will be
referred to as the Leading vehicle.
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Figure 3. The simulation framework for a battery electric vehicle in Simulink® environment.

2.1. Longitudinal Dynamics

In this subsection, we provide the equations that describe the forward model for the
longitudinal dynamics of the Ego vehicle. These equations are essential for understanding
the interactions between the vehicle’s speed, torque, and the various forces acting upon it.
Equation (1) describes the electric motor torque demand from the driver, Tm, determined
through a proportional–integral (PI) controller which commands it according to the error
between the desired speed νdem and the actual chassis speed νchas. Additionally, the
contribution due to resistance forces, such as aerodynamics, rolling, slope, and inertia, are
taken into account into Tloss as follows:

Tm = (νdem − νchas) ∗ Kp +
[ ∫ t

0
(νdem − νchas)dt

]
∗ Ki + Tloss (1)

Once the torque demand at the motor level is determined, the torque acting at wheel
level Tw can be evaluated. This calculation considers the final drive transmission efficiency
η f d and the final drive transmission ratio τf d and accounts for braking and accelerating.
Calculation of Tw is given in Equation (2), as follows:

Tw = Tm ∗ η
sign(Tw)
f d ∗ τf d (2)

Once the torque at wheel level is computed, it is possible to evaluate the chassis’s
acceleration, speed, and position through Equation (3), integrating the ẍ term once and
integrating it twice, respectively.

Meq ẍ =
Tw

R
− Fbrk − Fres, (3)

where the vehicle equivalent mass (Meq) considers the motor, final drive, and wheel inertias;
R is the wheel radius; Fbrk is the braking force; and Fres is the resistance force due to rolling,
aerodynamics, and slope, as described in Equation (4).

Fres =
1
2
· ρair · A f ront · Cx · v2

ch,actual + mvh · g · sin(α) + mvh · g · cos(α) · ( f0 + f1 · vch,actual), (4)

where v̇ch,actual =
C0 + C1·vch,actual+C2·v2

ch,actual
Meq

. The first component is the aerodynamic resis-
tance force, the second indicates the road-slope-induced resistance force, and the third
represents the rolling force. All the parameters used for mathematically modeling vehicle
dynamics are listed in Table 1.
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Table 1. Definition of the parameters of vehicle’s dynamics-related formulas.

Parameter Definition

Kp Proportional factor of the PI controller
Ki Integrator factor of the PI controller
η f d Final drive efficiency
τf d Final drive transmission ratio
Meq Equivalent mass
R Wheel radius

ρair Air density
A f ront Projected vehicle frontal area

Cx Longitudinal air resistance coefficient
α Road slope

f0& f1 Road load coefficients
C0, C1, C2 Cost-down coefficients

2.2. Battery Model

A battery model based on data from [31] has been implemented in the previously
presented BEV architecture to ensure reliable and consistent results. This model simplifies
the battery as a series and parallel connections of elementary cells. This representation
includes a voltage generator representing the cell’s open circuit voltage (OCV) in series
with a resistance representing the cell’s internal resistance. To match the energy storage
performance of the actual Chevy Spark BEV, the cells from the paper were configured in
121 series and 22 in parallel. These cells are A123 26650 LiFePO4 lithium-ion cylindrical
cells with a nominal voltage of 3.3 V and a rated capacity of 2.5 Ampere-hours (Ah). To
implement this model, some preliminary assumptions were made. First the elementary cell
has been included as a voltage generator in series with an internal resistance considered
adequate for assessing battery dynamics in this study. Then, it has been assumed that the
BMS can maintain the temperature of the pack constant at 25 ◦C regardless of external
temperature and load conditions. The internal resistance is also considered equally in both
charging and discharging conditions. Lastly, uniform cell discharge/charge levels across
the battery pack have been considered thanks to BMS working correctly.

2.3. State of Health Estimation Model

As outlined in [31], the attainable maximum capacity of a battery progressively dimin-
ishes as the it undergoes degradation. This, in turn, translates into a diminished range for
the battery’s operation. Furthermore, the OCV declines and internal resistance increases
due to the natural wear and aging of internal components (SOH decreases), as shown
in Figure 4a,b where experimental data from battery fading test illustrated in [31] are
considered.

(a) (b)

Figure 4. Characteristic contour plots of an A123 26650 LiFePO4 lithium-ion cylindrical battery cell:
(a) cell state-of-charge (SOC)–OCV relationship at different battery state of health (SOH) values;
(b) cell SOC–internal relationship at different battery capacities.
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Since directly measuring the SOH of a battery is not feasible, an analytical method
with empirical fitting has been developed using a mathematical model exploiting the
Arrhenius relation and a Coulomb counting method to estimate the current SOH of the
battery. Equation (5) allows us to evaluate the cell capacity loss as a percentage:

Ahbatt% = B(c) · exp− A f
T

· Ahz
tp, (5)

where Ahbatt% represents the cell capacity loss as a percentage and B is a pre-exponential
factor determined through the experimental fitting of real data in [31]. Its values vary with
the current C-rate, considering both calendar aging and wear due to battery usage. The
pre-exponential factor values are tabulated in Table 2 below.

Table 2. Explanation of the entries of the SOH model.

Parameter Unit of Measurement Definition

Aging factor, A f K 3814.7 − 44.6 · c
Power law factor, z − 0.55

Battery temperature, Tbat K 298.15
Empirical pre-exponential factor, B(c) − [21.681; 12.934; 15.512; 15.512]

C-rate, c 1/h [2; 6; 10; 20]

Here c is the current C-rate (the ratio of the current to the nominate cell capacity I
Cnominal

), A f is the aging factor
defined in this table, T represents the cell temperature (considered fixed at 25 ◦C), Ahtp(c, T) denotes the total
Ampere-hours throughput considered for a specific C-rate and cell temperature, and z is an exponential factor set
experimentally equal to 0.55.

To ascertain the battery’s cycle life, we assume the EOL occurs when 20% of battery
capacity is lost. By setting Ahbatt % to 20% and inverting equation (V), number of cycles the
battery can withstand up to EoL for a given C-rate and cell temperature can be calculated
through Equation (6):

N(c, Tbat) =
Ahtp(c, Tbat)

2 · Ahbatt
, (6)

where Ahbatt is the rated battery capacity evaluated in Ampere-hours, which for an A123
cell is 2.5 Ah. Once this variable has been evaluated, it is possible to evaluate the SOH(t)
at a specific instant ‘t’ integrating into the equation over time, as shown in Equations (7)
and (8), providing the output of the estimator block:

˙SOH(c, T) = 0.2 · c
3600 · N(c, Tbat)

(7)

SOH(t) = SOH0 −
∫ t

0
˙SOH · dτ (8)

In this case, the state of health for the initial condition (SOH0) is set to 1, indicating
a new battery cell. After this block outputs the current SOH, it influences the cell’s OCV
and internal resistance. Subsequently, it enters the SOC estimator, which evaluates the SOC
simply as the ratio between the cell’s actual and maximum capacity, adjusting the second
term to account for reduced energy storage capabilities due to degradation.

2.4. Simulation Setup

To establish a car-following simulation, which mathematically describes how vehicles
follow one another on the road, the behavior of the leading vehicle to be followed must
be selected. Two distinct driving cycles are employed to represent realistic scenarios: the
Worldwide Harmonized Light Vehicles Test Cycle (WLTC), used in Europe, and the EPA
cycle, utilized in the United States. This last cycle combines two sub-cycles: the Urban
Dynamometer Driving Schedule (UDDS), simulating city driving conditions for testing
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Light-Duty Vehicles (LDVs), and the Highway Fuel Economy Test (HWFET). These two
cycles aim to encompass diverse driving scenarios, ensuring comprehensive testing and
evaluation of the BEV model. Several realistic assumptions were made regarding the
environmental setup for the model:

• Only two vehicles are present in the environment;
• No vehicles enter or exit the lane;
• Only longitudinal dynamics are examined and controlled;
• All types of road conditions, from urban roads to highways, are considered without

accounting for traffic, focusing solely on the actions of the Leading vehicle;
• Information from the leading vehicle, including actual speed and position, is available

through V2V or V2I communication or sensors, giving the possibility for the Leading
and Ego vehicles to be either connected or not connected;

• Disturbances in the Leading vehicle’s information are considered white noise with a
specified maximum amplitude, accounting for sensor accuracy and communication delays.

In this scenario, the Ego vehicle’s initial conditions are SOC = 95%, SOH = 1, ν0 = 0
(initial vehicle speed), and x0 = 0 (initial position).

3. Formulating the Speed Profile Optimization Problem

In the following paragraph, we elaborate on the OACC problem, giving the basis for
the implemented MPC strategy.

Optimal ACC Problem Formulation

The MPC requirements are multifaceted, encompassing the regulation of the vehicle’s
acceleration command with the overarching goals of minimizing energy consumption
and positively impacting battery degradation. Simultaneously, the MPC aims to enhance
comfort, maintain consistent travel time, and operate within stringent safety constraints.
Achieving these objectives involves a strategic compromise in the relative distance and
speed between vehicles, ensuring a dynamically adjusted minimum safe distance in accor-
dance with the vehicle’s speed. These goals are actualized through the utilization of data
derived from vehicle-embedded sensors and facilitated by V2V and vehicle-to-everything
(V2X) communication.

The control mechanism outlined in Equation (1) defines the longitudinal dynamics of
the vehicle. In this formulation, the sole control input is the demanded vehicle speed, a
parameter derived through the integration of the commanded acceleration. The instanta-
neous control input, denoted as acommand, adheres to the constraints of Jerkmax, confined
within the following interval, as shown in Equation (9):

acommand(t)− Jerkmax · dτ < acommand(t + 1) < acommand(t) + Jerkmax · dτ (9)

This ensures a realistic and feasible range for the tested acceleration at each time step.
Furthermore, the control design imposes constraints on the position and speed of the Ego
vehicle concerning the Leading vehicle, as shown in Equation (10).

∆d_min < ∆distance < ∆d_max

∆ν_min < ∆speed < ∆ν_max

νego > 0

(10)

In the aforementioned formulation, ∆distance denotes the disparity between the actual
inter-vehicular distance and the desired distance. The desired distance is determined by
considering a fixed time gap (‘h’ego), and evaluating it based on the Ego vehicle’s speed.
These parameters are allowed to vary freely within a specified range, encompassing a
lower bound to ensure a minimum safe distance and an upper bound beyond which the
following is considered broken. The values of ∆d_min, ∆d_max, ∆ν_min, ∆ν_max, Jerkmax, and
hego are furnished in Table 3.
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Another constraint pertains to the speed factor, regulating the relative speed (∆speed)
between the two vehicles and ensuring it stays within two designated values. Regarding the
model’s ability to predict future actions, a crucial assumption is made regarding the state
of the Leading vehicle: The Leading vehicle’s speed, obtained from sensors or connectivity,
remains constant during the predictive horizons. This assumption is grounded in the
aggressive WLTC cycle, where the maximum variation in one time step for peak speed
values is merely 0.175 m/s, thereby validating its credibility.

Table 3. MPC controller parameter.

Parameters Unit of Measurement Values

∆d_min,∆d_max m 0, 20
∆ν_min,∆ν_max m/s −10, 10

Jerkmax m/s2 4
hego s 2.7

4. Solving the Speed Optimization Problem with Linear MPC

This section delves into each facet of the linear MPC architecture, elucidating the
steps in solving the acceleration optimization problem. Figure 5 visually depicts the
implementation of the concept in the Simulink® platform, encapsulating the Ego vehicle,
the Leading vehicle, and the MPC controller.

Leading Vehicle

 > 0

in acc_dem

for { ... }

[x0_ego_veh]

[0]

1-D T(u)

Driving Cycle

mot_spd

batt_soc_estimated
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Actual_ego_position

chas_lin_spd
Chas_spd

driver _outputs

Driver

shaft _speed

bat_soc

driver _cmd
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control_signals
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EMS
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Control
signal

Cell_actual_max_capacity

[Leading_speed]

[Ego_vehicle_speed]
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[0]

[0]

Search best acceleration
via Model Predictive Ccontrol

Figure 5. Implementation of the optimal speed trajectory planning in Simulink® platform.

4.1. Definition of Controller Inputs

The initial and pivotal step entails defining the inputs for the controller. Employing
the Simulink® 2022a for iteration block to account for iterations, careful consideration is given
to the inputs necessary for accurate future predictions. The variables incorporated into the
input blocks encompass all the essential states of both the Leading and Ego vehicles. These
states are critical for evaluating the cost function outlined in the subsequent section and are
indispensable for simulating the linearized vehicle model within the controller block.

4.2. Acceleration for Loop

Upon entering the MPC block, a nested structure of two “For” loop blocks is employed.
The external loop systematically tests various accelerations, while the internal loop assesses
the optimal acceleration based on cost considerations over multiple time steps. To balance
computational cost and result accuracy, the “For” loop employs a more complex architecture.
Recognizing the vehicle’s feasibility limits related to jerk and aiming to reduce the number
of iterations, a linear relation is utilized:

acctest = accmin +
(accmax − accmin) ∗ (iteractual − itermin)

itermax − itermin
(11)

Equation (11) ensures that only feasible accelerations within the current Ego vehicle’s
acceleration range are tested, thereby reducing the number of iterations, enforcing feasibility
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limits, and enhancing comfort by limiting jerk values. However, avoiding an excessively
narrow acceleration range is crucial to prevent impairment of the vehicle’s following
capability and divergence of the simulation.

4.3. Cost Function

In MPC, the cost function, denoted as J, is a mathematical function that assesses the
cumulative performance of control inputs and system states over a finite prediction horizon
N. It is formulated as the sum of individual cost terms, as shown below:

J = ΣN
k=1L(xk, uk) (12)

The state cost function L(xk, uk) quantifies how desirable or undesirable a particular
state (xk) and control input (uk) are at each time step k. For this application, key states
include Leading vehicle speed (ẋleading), Leading vehicle position (xleading), Ego vehicle speed
(ẋego) and vehicle position (xego), and Ego SOC (SOCego). The primary control action, uk, is
the commanded acceleration (acccommand). The central objective of the MPC is to determine
the optimal control input u∗ (in this case, acceleration) that minimizes the total cost J, while
satisfying system dynamics and input/output constraint u∗ = argmin(J). In tailoring the
cost function for our specific application, addressing requirements related to following
capability and energy management is paramount. The designed total cost function J is
formulated as follows:

J = ΣN
k=1

[
α
(∆distance

∆d_max

)2
+ β

( ∆speed

∆ν_max

)2
+ (1 − α − β)

( −∆SOC
∆SOC_max

)]
(13)

Within this comprehensive cost function, three primary contributions are discerned,
each focusing on specific control aspects: The component ∆distance is pivotal in maintaining
the vehicle within the desired distance range, considering distance errors at future time
steps. The parameter α provides a mechanism for adjusting the weight allocated to these
desired distance constraints. Additionally, ∆d_max signifies the maximum allowable dis-
tance, serving to normalize the distance term. The inclusion of the square term enables the
consideration of both positive and negative deviations as detrimental, contributing to a
comprehensive evaluation. The key variable in this factor is defined as

∆distance =
[
(xego − xleading)− (hego ẋego + sego_0)

]k+1 (14)

Breaking this down, the first difference represents the vehicle distance at the next step,
aligning it with the desired distance based on the vehicle’s speed shown by the second
term. Here, sego_0 signifies the desired distance when both vehicles are stationary, set at
5 m. ∆speed enables the Ego vehicle to conform, to a varying degree, to a predefined vehicle
speed profile. Similar to the ∆distance term, a normalization process is implemented to adapt
to the maximum speed variation prescribed between the two vehicles. The introduction of
the square term serves the same purpose as in the preceding case, allowing consideration
of both positive and negative variations as impactful. The parameter β assumes the role of
the weighting factor, influencing the overall impact of this contribution in the cost function.

∆speed =
[
ẋego − ẋleading

]k+1 (15)

where the ∆SOC =
(
SOCk+1 − SOCk) term encapsulates the difference between the Ego

vehicle’s state of charge (SOC) in the subsequent time step and its current state.
The weighting factor for this term is designated as (1 − α − β) to establish a hierarchy

in cost assignment compared to the other two components. This formulation ensures that
an increase in the weight of a factor results in a proportionate rise in cost, emphasizing its
impact on the overall cost function. Like the distance and speed terms, the term ∆SOC_max
acts as a normalization factor. In contrast to the squared terms applied to distance and
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speed, the SOC factor remains unsquared. This decision stems from acknowledging that
its negative effect should be considered exclusively when the SOC decreases, not in both
directions. Thus, a minus sign is introduced into the function to underscore higher costs
for actions causing substantial negative variations in SOC. The weight parameters were
strategically selected to prioritize energy consumption while assigning relatively lower
importance to speed and distance factors, while always ensuring safety constraints are met.
This balance permits more extensive variations in speed and distance from the nominal
values, promoting smoother velocity profiles while still providing adequate following
capability. Specifically, α was configured to a value of 0.15, and β was set to 0.05 for
these reasons.

4.4. Linearized Vehicle Model

The implemented strategy establishes a linear relationship between vehicle states and
the control variable, significantly reducing simulation costs. Assuming precise replication
of the imposed driving cycle by the Ego plant, the future Ego vehicle speed, position, and
acceleration can be linearly evaluated based on the command input. A different approach
has been required for the correlation between command input and Ego battery SOC.

In this case, a linear relation between command acceleration and the ratio cellcurrent
vehiclespeed has

been found through multiple simulations. The choice of this specific ratio has been dictated
by the dependence of the cell current on the acceleration and the current vehicle speed.
This approach has enabled a significant simplification of the vehicle model, facilitating
the estimation of all required vehicle states and allowing for the computation of the cost
function multiple times within the predictive horizon.

4.5. Linear MPC with Predictive Horizon = 10 and Control Horizon = 2

Having undertaken these activities to drastically reduce computational costs, the
final step involves finding the optimal balance between performance and computational
efficiency. Through multiple simulations, the optimal configuration was identified with
a predictive horizon (P.H.) of 10 and a control horizon (C.H.) of 2. In this scenario, the
prediction horizon is sufficiently large to ensure a smooth profile without an excessively
long horizon, which could lead to incorrect predictions. This is crucial, especially consider-
ing the assumption of a constant Leading vehicle speed, preventing overshoot in the Ego
vehicle’s actions during transitions from braking to accelerating and vice versa.

Adjusting the predictive horizon (P.H.) is achieved by increasing the number of iter-
ations for the internal loop, whereas controlling the control horizon (C.H.) is a different
process. The control horizon represents the time or states in the future for which the
controller actively computes and applies control inputs to the system. The solution imple-
mented here involves a control horizon (C.H.) greater than 1, specifically set to 2, operating
with constant acceleration during this period.

To predict values every two time steps and act on the plant accordingly in the sub-
sequent two time steps, a Simulink® 2022a ‘Rate Transmission’ block was incorporated.
This block adjusts the sampling frequency of its output, modifying the operational re-
sponse of the subsequent blocks. Placing this block before the MPC controller and setting
the output sampling frequency to half of the simulation frequency ensures results every
two simulation time steps.

Upon exiting the MPC controller block, the rest of the Simulink® model must revert to
working with the normal sampling frequency. Therefore, another ‘Rate Transmissio’ block
with an output frequency equal to the simulation frequency was introduced. Given that the
input to this block is generated every two simulation time-steps, the remaining time step is
kept constant, equal to the last output value. This architecture enables the prediction of
a single commanded acceleration while acting on two time-steps, significantly reducing
computational costs and spreading MPC predictions over two time-steps.
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5. Simulation Results and Discussion

This section presents the simulation results of the Ego vehicle in comparison to the
Leading vehicle following the WLTC and EPA driving cycles in Sections 5.1 and 5.2, respec-
tively. The effectiveness of the proposed OACC was evaluated in terms of energy efficiency,
battery durability, and driver’s comfort.

5.1. WLTC-Based Results

In this case, the Leading vehicle is following the WLTC cycle, and the Ego vehicle is
receiving continuous information about the Leading vehicle’s speed and position. The VCU
of the Ego vehicle, featuring the MPC, optimally plans its vehicle speed trajectory. The
speed trajectories of the two vehicles are compared in Figure 6.
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Figure 6. WLTC longitudinal speed plot LMPC PH = 10, CH = 2.

The acceleration command exhibits significantly less oscillation, with considerable
reductions in all peaks due to the application of OACC, as shown in Figure 7a. The
“continuous” and “dashed” lines represent the Ego and the Leading vehicles’ acceleration
profiles, respectively. During deceleration, a smoothing effect is possible due to the soft
constraint on distance, which allows for larger variations. This is possible thanks to the
distance constraint, which prevents the speed from rapidly reaching zero to approach the
desired distance when the vehicle is stationary. This allows for a gradual reduction in speed
until reaching a distance of 5 m.
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Figure 7. WLTC longitudinal acceleration (a) and jerk (b) plots LMPC PH = 10, CH = 2.
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This approach provides a substantial reduction in power requests. Furthermore, in
terms of comfort, jerk values are greatly reduced in all conditions, more than halved, as
shown in Figure 7b, indicating that the controller operates more effectively and smoothly.

Examining the speed profiles in Figure 6, it is evident that the initial objective set at
the beginning has been successfully achieved. The Ego vehicle, predicting future vehicle
behavior of the Leading vehicle, optimizes its trajectory, smooths its speed profile, and
avoids the oscillations present in the behavior of the Leading vehicle. All speed peaks
are diminished, and the vehicle approaches zero speed more smoothly, sometimes even
avoiding stops when the Leading vehicle comes to a halt for the previously mentioned
reason. In many instances, the Leading vehicle experiences rapid positive and negative speed
changes, but our Ego vehicle effectively smooths them out, exhibiting nearly linear behavior.
Moreover, the inter-vehicle distance is smartly managed by the Ego vehicle’s OACC, varying
as much as needed within the desired interval without ever falling below the safety distance
or exceeding the maximum limit, as shown in Figure 8. This figure shows how effectively
the OACC varies the inter-vehicular distance within the boundaries set between a safe
distance to the maximum distance to optimally regulate the vehicle’s acceleration.
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40

60

80

100
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Max Distance [m]

Time (seconds)

Vehicle's distance between Leading and Ego vehicles

Figure 8. Vehicle distance plot LMPC PH = 10, CH = 2.

The improvements achieved with this approach are more significant, with a 3.7%
reduction in energy consumption and a 9.7% reduction in battery SOH degradation, as
shown in Figure 9 and Figure 10, respectively. The respective battery SOC trajectories
indirectly measure the comparison between energy consumption for the Ego and Leading
vehicles, whereas the reduction in SOH degradation in the Ego vehicle is directly measured
by comparing the SOH trajectories for two vehicles in Figure 10.

These values are primarily due to the improvements obtained in Figure 7a with a 6.5%
reduction in maximum acceleration, indicating a decrease in power demand. Regarding
comfort, Figure 7b shows an 81% reduction in jerk peaks, ensuring a substantial improve-
ment for passengers. These improvements are achieved while keeping travel time almost
constant, with a difference of only 5 s for the same distance traveled.



Energies 2024, 17, 1986 14 of 18

0 200 400 600 800 1000 1200 1400 1600 1800
82

84

86

88

90

92

94

96

SOC
Leading

SOC
Ego

Time (seconds)

SOC comparison between Ego and Leading vehicles

Figure 9. Energy consumption reduction in EV due to optimal adaptive cruise control.
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Figure 10. Reduction in battery health degradation due to optimal adaptive cruise control.

5.2. EPA-Based Results

All these experiments were replicated for the EPA cycle, showcasing the ability to
improve energy efficiency and battery durability performances in a different driving sce-
nario. Figures 11 and 12 show the comparison between the vehicles regarding vehicular
acceleration and jerk, respectively. In this case, given the less aggressive nature of the cycle,
the improvements are naturally more minor but still substantial. Since these experimental
charts do not provide additional information beyond what has been explained, only two
figures illustrating speed smoothing are compared to the results following a Leading vehicle,
ensuring completeness. Even for this cycle, all the previously stated findings are reaffirmed,
with a significant 7.6% reduction in battery SOH degradation and a 2.8% reduction in
energy consumption.
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Table 4 comprehensively furnishes all metrics of improvements resulting from the
OACC for the Ego vehicle under WLTC and EPA cycles.

Table 4. Effectiveness of optimal speed trajectory planning enabled through V2V communication
for EVs.

Comparison Metrics WLTC Cycle EPA Cycle

Energy consumption reduction [%] 3.7 2.8
Reduction in battery SOH degradation [%] 9.7 7.6

Peak acceleration reduction [%] 6.5 4.8
Peak jerk reduction [%] 81 74.5

5.3. Robustness Analysis: Noise and Delay Influence

To enhance the realism of the simulation, we considered incorporating noise and data
delays in the Leading vehicle’s information. We incorporated two simple blocks into the
input for Leading vehicle speed and Leading vehicle position to introduce these external
disturbances: a delay block and band-limited white noise. Since our application is non-
safety-related, we used 5G cellular network technology for communication and a specific
radar, LLR4 [3], commonly used in vehicle applications.

Given a simulation time-step of 100 ms in Simulink®, the minimum delay we could
have implemented is at least that value. As outlined in [3], the delays associated with these
technologies are notably lower:

• The long-range radar has a cycle time of 60 ms, indicating how frequently the sensor
collects and processes data or updates its measurements.

• Average latency values, representing the delay or lag in data transmission between
a sender and receiver, for specific countries are 32 ms for the United States (US) and
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37 ms for Italy. While these values are averages and can vary by country, they provide
a helpful reference, especially since they are lower than the sensor-induced delay.

This presents a situation where the implemented delay exceeds the actual delay,
resulting in an overestimation of the disturbance.

Within one time step, assuming worst-case scenarios with maximum speeds in the
WLTC, the speed variation is approximately 0.175 m/s, and the distance travelled is around
3.6 m. Given these values, we expect practically negligible variations in the speed profile
and more significant changes in relative distance, as shown in Figure 13a. Particularly
with respect to distance values, the Ego vehicle’s controller consistently receives delayed
information, effectively acting as if it were one time step behind. This discrepancy causes
the actual accurate distance to be poorly managed, leading to unnecessary increases in
the gap from the Leading vehicle at each moment, resulting in the vehicle being out of the
upper bound limit. While this is almost imperceptible in speed, it is more noticeable in the
relative distance. The phenomenon is illustrated in Figure 13b for the WLTC cycle.
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Figure 13. Effect of communication delay in operation and optimal adaptive cruise control’s effective-
ness. Effect of communication delay on the (a) vehicle’s speed trajectory and (b) distance between
Ego and Leading vehicles.

This behavior has minimal influence on the results. The SOC and SOH remain practi-
cally the same because the MPC operates as precisely as before, and the effect on distance
goes unnoticed since the controller continuously considers the delayed information it re-
ceives. The simulation results on the EPA cycle with such disturbances and communication
delays demonstrate a similar pattern. The second aspect that requires consideration is
the presence of noise in the acquired information. Due to their nature, sensors inherently
possess some degree of error in their measurements, leading to variations from the nominal
values. This variation is precisely what sensor accuracy describes. For instance, ref. [3] indi-
cates that the speed and distance measuring error achievable with the described long-range
radar are approximately ±0.11 m/s and ±0.12 m, respectively.

Given this information, we introduced white noise with an amplitude within this spe-
cific range and a frequency equal to the simulation frequency (10 Hz) into our input signals.
The addition of this noise has a more significant impact compared to the introduction of
communication delays. This is because noise introduces oscillations in the commanded
acceleration, which, even if to a small extent, deteriorates performance. Consequently,
this effect results in a decrease in performance compared to improvements without noise,
amounting to −2.17% of 3.7% for SOC and −2.3% of 9.7% for SOH improvements. These
values are obtained when simulating a WLTC. However, the decrease is nearly the same for
the EPA, with −2.78% for SOC and −2.4% for SOH. This is because its detrimental impact
is independent of speed, unlike the delay.
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6. Conclusions

The presented OACC is a valid solution for reducing battery health degradation and
energy consumption in EVs by optimally and dynamically controlling vehicle acceleration
and reducing peak power requests. The OACC decreases the energy consumption of a
simulated passenger EV by as much as 3.7% and reduces battery health degradation by
as much as 9.7% while always maintaining a safe inter-vehicle distance. Simply acting at
the software level, the MPC can be easily integrated into any powertrain architecture with
an autonomous driving level equal to 1, enforcing its broad applicability in the current
automotive industry. Moreover, the proposed OACC’s performance is promising, consider-
ing it is designed to be as light as possible, especially in more aggressive driving scenarios
where its effect is more evident. As further analysis, the controller has been tested under
realistic disturbance and scenarios with delayed V2V communication, showing excellent
robustness and confirming its effectiveness and practicability. The real-time hardware-in-
the-loop validation of the proposed OACC is planned as a future work. In summary, the
OACC controller proposes an innovative architecture to address current critical automotive
challenges, with promising results, highlighting its potential for widespread adoption and
positive impact on the electric vehicle landscape. As the possibility of leveraging V2V
communication in reshaping the EMS and adaptive cruise control frameworks is increasing,
this research will motivate future scholars to investigate the effectiveness of OACC in traffic
situations with signalized intersections and different highway driving conditions.

Author Contributions: Conceptualization, C.F. and A.B. (Atriya Biswas); Methodology, C.F.; Formal
analysis, C.F.; Investigation, C.F.; Resources, M.M.; Data curation, C.F. and M.M.; Writing—original
draft, C.F.; Writing—review & editing, A.B. (Atriya Biswas) and M.M.; Supervision, A.B. (Atriya
Biswas), A.B. (Angelo Bonfitto) and A.E.; Project administration, A.B. (Atriya Biswas); Funding
acquisition, A.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported, in part, thanks to funding from the Natural Sciences and
Engineering Research Council of Canada (NSERC, grant number: 531565913); the NSERC Industrial
Research Chair in Electrified Powertrains, Canada; and the Canada Research Chair in Transportation
Electrification and Smart Mobility.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors would like to thank Hao Wang and Junran Chen (PhD students
at McMaster University) for their help in developing the electric vehicle modeling and battery
state-of-health degradation modeling.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. IEA. Global CO2 Emissions from Transport by Sub-Sector in the Net Zero Scenario, 2000–2030; IEA: Paris, France, 2023.
2. IEA. Global EV Outlook 2023: Catching Up with Climate Ambitions; IEA: Paris, France, 2023.
3. Chu, Y.; Cui, H. Annual Update on the Global Transition to Electric Vehicles: 2022; The International Council on Clean Transportation:

San Francisco, CA, USA, 2023.
4. IEA. Electric Car Sales, 2016–2023; IEA: Paris, France, 2023.
5. Chen, A.; Zhang, X.; Zhou, Z. Machine learning: Accelerating materials development for energy storage and conversion. InfoMat

2020, 2, 553–576. [CrossRef]
6. Anselma, P.G.; Biswas, A.; Belingardi, G.; Emadi, A. Rapid assessment of the fuel economy capability of parallel and series-parallel

hybrid electric vehicles. Appl. Energy 2020, 275, 115319. [CrossRef]
7. Anselma, P.G.; Biswas, A.; Bruck, L.; Amirfarhangi Bonab, S.; Lempert, A.; Roeleveld, J.; Madireddy, K.; Rane, O.; Wasacz,

B.; Belingardi, G.; et al. Accelerated Sizing of a Power Split Electrified Powertrain. SAE Int. J. Adv. Curr. Pract. Mobil.
2020, 2, 2701–2711. [CrossRef]

8. Louback, E.; Biswas, A.; Machado, F.; Emadi, A. A review of the design process of energy management systems for dual-motor
battery electric vehicles. Renew. Sustain. Energy Rev. 2024, 193, 114293. [CrossRef]

http://doi.org/10.1002/inf2.12094
http://dx.doi.org/10.1016/j.apenergy.2020.115319
http://dx.doi.org/10.4271/2020-01-0843
http://dx.doi.org/10.1016/j.rser.2024.114293


Energies 2024, 17, 1986 18 of 18

9. Taggart, J. Ambient temperature impacts on real-world electric vehicle efficiency & range. In Proceedings of the 2017 IEEE
Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017; pp. 186–190. [CrossRef]

10. Ou, S. Estimate long-term impact on battery degradation by considering electric vehicle real-world end-use factors. J. Power
Sources 2023, 573, 233133. [CrossRef]

11. Etxandi-Santolaya, M.; Canals Casals, L.; Corchero, C. Extending the electric vehicle battery first life: Performance beyond the
current end of life threshold. Heliyon 2024, 10, e26066. [CrossRef]

12. Karunathilake, D.; Vilathgamuwa, M.; Mishra, Y.; Farrell, T.W.; Choi, S.S. Capacity Loss Reduction using Smart-Battery
Management System for Li-ion Battery Energy Storage Systems. In Proceedings of the 2020 IEEE 29th International Symposium
on Industrial Electronics (ISIE), Delft, Netherlands, 17–19 June 2020; pp. 997–1002. [CrossRef]

13. Lin, Q.; Wang, J.; Xiong, R.; Shen, W.; He, H. Towards a smarter battery management system: A critical review on optimal
charging methods of lithium ion batteries. Energy 2019, 183, 220–234. [CrossRef]

14. Lee, H.; Kim, K.; Kim, N.; Cha, S.W. Energy efficient speed planning of electric vehicles for car-following scenario using
model-based reinforcement learning. Appl. Energy 2022, 313, 118460. [CrossRef]

15. Michel, P.; Karbowski, D.; Rousseau, A. Impact of Connectivity and Automation on Vehicle Energy Use. In Proceedings of the
SAE 2016 World Congress and Exhibition, Detroit, MI, USA, 12–14 April 2016. [CrossRef]

16. Othman, B.; De Nunzio, G.; Sciarretta, A.; Di Domenico, D.; Canudas-de Wit, C. Connectivity and Automation as Enablers for
Energy-Efficient Driving and Road Traffic Management. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M.,
Sajjadi, B., Chen, W.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 2337–2376. [CrossRef]

17. Abraham, A.; Nagavarapu, S.C.; Prasad, S.; Vyas, P.; Mathew, L.K. Recent Trends in Autonomous Vehicle Validation Ensuring
Road Safety with Emphasis on Learning Algorithms. In Proceedings of the 2022 17th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Singapore, 11–13 December 2022; pp. 397–404. [CrossRef]

18. Ersal, T.; Kolmanovsky, I.; Masoud, N.; Ozay, N.; Scruggs, J.; Vasudevan, R.; Orosz, G. Connected and automated road vehicles:
State of the art and future challenges. Veh. Syst. Dyn. 2020, 58, 672–704. [CrossRef]

19. Sinha, N. Emerging Technology Trends in Vehicle-to-Everything Connectivity. In Proceedings of the 2019 Wireless Telecommuni-
cations Symposium (WTS), New York, NY, USA, 9–12 April 2019; pp. 1–12. [CrossRef]

20. Qi, X.; Barth, M.J.; Wu, G.; Boriboonsomsin, K.; Wang, P. Energy Impact of Connected Eco-driving on Electric Vehicles. In Road
Vehicle Automation 4; Meyer, G., Beiker, S., Eds., Springer: Cham, Switzerland, 2018; pp. 97–111.

21. Hattori, M.; Fujimoto, H. Basic Idea of Quadrant Dynamic Programming for Adaptive Cruise Control to Create Energy Efficient
Velocity Trajectory of Electric Vehicle. In Proceedings of the 2020 IEEE 16th International Workshop on Advanced Motion Control
(AMC), Kristiansand, Norway, 14–16 September 2020; pp. 29–33. [CrossRef]

22. Ozatay, E.; Onori, S.; Wollaeger, J.; Ozguner, U.; Rizzoni, G.; Filev, D.; Michelini, J.; Di Cairano, S. Cloud-Based Velocity
Profile Optimization for Everyday Driving: A Dynamic-Programming-Based Solution. IEEE Trans. Intell. Transp. Syst. 2014,
15, 2491–2505. [CrossRef]

23. Abbas, H.; Kim, Y.; Siegel, J.B.; Rizzo, D.M. Synthesis of Pontryagin’s Maximum Principle Analysis for Speed Profile Optimization
of All-Electric Vehicles. J. Dyn. Syst. Meas. Control. 2019, 141, 071004, [CrossRef]

24. Biswas, A.; Anselma, P.G.; Emadi, A. Real-Time Optimal Energy Management of Multimode Hybrid Electric Powertrain With
Online Trainable Asynchronous Advantage Actor–Critic Algorithm. IEEE Trans. Transp. Electrif. 2022, 8, 2676–2694. [CrossRef]

25. Lee, H.; Kim, N.; Cha, S.W. Model-Based Reinforcement Learning for Eco-Driving Control of Electric Vehicles. IEEE Access
2020, 8, 202886–202896. [CrossRef]

26. Biswas, A.; Acquarone, M.; Wang, H.; Miretti, F.; Misul, D.A.; Emadi, A. Safe Reinforcement Learning for Energy Management of
Electrified Vehicle with Novel Physics-Informed Exploration Strategy. IEEE Trans. Transp. Electrif. 2024. [CrossRef]

27. Wang, J.; Zheng, Y.; Dong, J.; Chen, C.; Cai, M.; Li, K.; Xu, Q. Implementation and Experimental Validation of Data-Driven
Predictive Control for Dissipating Stop-and-Go Waves in Mixed Traffic. IEEE Internet Things J. 2024, 11, 4570–4585. [CrossRef]

28. Pan, C.; Zhang, C.; Wang, J.; Liu, Q. Adaptive Cruise Control Strategy for Electric Vehicles Considering Battery Degradation
Characteristics. Appl. Sci. 2023, 13, 4553. [CrossRef]

29. Bertoni, L.; Guanetti, J.; Basso, M.; Masoero, M.; Cetinkunt, S.; Borrelli, F. An adaptive cruise control for connected energy-saving
electric vehicles. IFAC-PapersOnLine 2017, 50, 2359–2364. [CrossRef]

30. Gao, Y.; Wang, Z.; Fang, C.; Luo, C.; You, S. Optimal Connected Cruise Control Design with Stochastic Communication
Delays. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Atlanta, GA, USA, 14–17 July 2019; pp. 756–760. [CrossRef]

31. Anselma, P.G.; Kollmeyer, P.; Lempert, J.; Zhao, Z.; Belingardi, G.; Emadi, A. Battery state-of-health sensitive energy management
of hybrid electric vehicles: Lifetime prediction and ageing experimental validation. Appl. Energy 2021, 285, 116440. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ITEC.2017.7993269
http://dx.doi.org/10.1016/j.jpowsour.2023.233133
http://dx.doi.org/10.1016/j.heliyon.2024.e26066
http://dx.doi.org/10.1109/ISIE45063.2020.9152385
http://dx.doi.org/10.1016/j.energy.2019.06.128
http://dx.doi.org/10.1016/j.apenergy.2021.118460
http://dx.doi.org/10.4271/2016-01-0152
http://dx.doi.org/10.1007/978-3-030-72579-2_128
http://dx.doi.org/10.1109/ICARCV57592.2022.10004304
http://dx.doi.org/10.1080/00423114.2020.1741652
http://dx.doi.org/10.1109/WTS.2019.8715535
http://dx.doi.org/10.1109/AMC44022.2020.9244328
http://dx.doi.org/10.1109/TITS.2014.2319812
http://dx.doi.org/10.1115/1.4043117
http://dx.doi.org/10.1109/TTE.2021.3138330
http://dx.doi.org/10.1109/ACCESS.2020.3036719
http://dx.doi.org/10.1109/TTE.2024.3361462
http://dx.doi.org/10.1109/JIOT.2023.3303039
http://dx.doi.org/10.3390/app13074553
http://dx.doi.org/10.1016/j.ifacol.2017.08.425
http://dx.doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00140
http://dx.doi.org/10.1016/j.apenergy.2021.116440

	Introduction
	Forward Approach Electric Vehicle (EV) Modeling 
	Longitudinal Dynamics
	Battery Model
	State of Health Estimation Model
	Simulation Setup

	Formulating the Speed Profile Optimization Problem 
	Solving the Speed Optimization Problem with Linear MPC 
	Definition of Controller Inputs
	Acceleration for Loop
	Cost Function
	Linearized Vehicle Model
	Linear MPC with Predictive Horizon = 10 and Control Horizon = 2

	Simulation Results and Discussion 
	WLTC-Based Results
	EPA-Based Results
	Robustness Analysis: Noise and Delay Influence

	Conclusions 
	References

