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Abstract: To address the challenge of inaccurate fault location of variational mode decomposition
(VMD) in practical engineering, due to poor choice of mode decomposition number K and quadratic
penalty factor α, a traveling wave fault location method using Northern Goshawk optimization
algorithm (NGO) to optimize VMD was proposed. First, the NGO algorithm is used to optimize
VMD, and the optimal K and α are obtained. Secondly, the optimal parameters are inputted into VMD
for fault signal decomposition, and the eigenmode components are obtained. Due to the difficulty
of identification of the traveling wave head in the process of traveling wave propagation, Hilbert
transform is used to determine the time of initial arrival of the traveling wave head at both ends
of the line, and the fault location is precisely calculated by using the two-ended traveling wave
fault detection formula. Finally, simulation experiments are carried out to verify the accuracy of the
proposed location method, which shows that the proposed location method can locate the fault more
accurately and has good engineering application value.

Keywords: fault location; double-ended traveling wave; variational modal decomposition; Northern
Goshawk optimization algorithm; Hilbert transform

1. Introduction

As key building blocks of the power transmission system, transmission lines carry out
the critical task of power transmission. They are also susceptible to geomorphologic and
weather conditions; once the failure occurs, this poses a significant threat to the security
and stability of the power grid. It is imperative to pinpoint faults swiftly and precisely,
in order to take timely measures to repair and restore the power supply [1,2]. Therefore,
investigating fault localization using traveling waves in transmission lines is crucial for
enhancing the dependability and robustness of the power system.

A significant number of researchers have dedicated their efforts to advancing transmis-
sion line fault localization technologies. Concomitant with the swift progress in microelec-
tronics, this area of study has garnered increasing interest from the scientific community.
Nowadays, there are three main categories of commonly used fault localization methods:
the impedance method, traveling wave method, and artificial intelligence method.

The principle of the impedance method is that when a fault occurs in a power system,
the circuit impedance change near the fault point can be calculated by measuring the
voltage and current, and the fault point impedance is directly proportional to the distance,
so the fault location can be deduced based on the impedance value [3]. The principle of the
impedance method is relatively simple and, compared with some advanced fault location
techniques, impedance ranging does not require expensive specialized equipment and
complex software, so the cost is low. However, impedance ranging is usually unable to
detect and locate transient faults, and the accuracy of impedance ranging is affected by
power system parameters (e.g., line length, load conditions, transformer errors, etc.) [4,5].

The traveling wave method is widely used in transmission line fault location, by
sending electromagnetic pulse signals into the measured conductor or cable and using the
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reflection characteristics of the signal to determine the length of the conductor or cable
and the potential fault location [6,7]. Depending on the number of measurement points
employed, traveling wave fault location techniques can be categorized into single-ended
and double-ended traveling wave methods. When only the electrical quantity data at one
end of the fault point is utilized for measurement, it is called a single-end measurement
method; relatively, if the electrical quantity data at both ends are used, it is called a double-
end measurement method. Literature [8] proposed an innovative spatio-temporal full-
dimensional single-ended traveling wave ranging technique, which effectively reduces the
error of the traditional single-ended traveling wave localization technique. One study [9]
improved the double-ended traveling wave ranging method by deploying high-frequency
sensors for accurate wave head sampling and introducing the concept of correction wave.
Another study [10] deployed multiple traveling wave detection devices at key locations
of overhead lines and ground cable lines to solve the ranging errors caused by transient
traveling wave signal attenuation.

The artificial intelligence method of fault location builds a feature volume database
by collecting actual fault data, studies the correlation between fault transient fluctuation
and distance, and trains the data using artificial intelligence techniques to build a fault
location model. Once a fault occurs, the fault location can be calculated by simply inputting
the detected fault information into this model. One study [11] proposed an improved
algorithm for AFSA-PSO by combining particle swarm optimization (PSO) techniques with
the Artificial Fish Swarm algorithm (AFSA) and applied the algorithm to the fault location
model of distribution network. Another study [12] proposed a whale optimization algo-
rithm enhanced by multiple strategies, and another [13] merged the simulated annealing
algorithm with a refined Newtonian optimization approach.

In contrast to the impedance method, the traveling wave ranging technique offers
higher accuracy and is less affected by the characteristics of the transmission line. At the
same time, the artificial intelligence method can optimize the traditional algorithms and has
strong computational ability, so this study employs a combination of artificial intelligence
techniques and the double-ended traveling wave ranging method to analyze fault-induced
traveling wave signals, thereby enhancing the precision of fault localization.

In the realm of fault localization utilizing the double-ended traveling wave method,
two principal challenges emerge:

(1) Detection of faulty traveling wave signals

The precise identification of the mutation point within the fault traveling wave signal
is crucial for enhancing the accuracy of fault localization in transmission lines. When a fault
occurs in a transmission line, the traveling wave undergoes refraction and reflection at the
fault point during propagation. Moreover, the collected fault current signals may be cor-
rupted by noise, making the detection of the fault traveling wave signals challenging [14].

(2) Inconsistent traveling wave velocity

The velocity of the traveling wave plays a pivotal role in the fault location for trans-
mission lines, the choice of wave velocity is directly related to the accuracy of location. In
actual power systems, the structure and parameters of transmission lines are not uniform,
leading to variations in wave velocity within the lines. Additionally, environmental factors
can also cause changes in wave velocity.

In response to the difficult problem of faulty traveling wave signal detection, this
paper introduces an innovative method for detecting fault signals. This method begins by
employing the Northern Goshawk optimization algorithm (NGO) to refine the optimization
of the two critical parameters in the variational mode decomposition (VMD) method,
namely, the number of modal decomposition layers, K, and the penalty factor, α, then
the optimized VMD decomposes the line mode component of the fault current traveling
wave after phase mode transformation into a number of intrinsic modal function (IMF)
components; finally, performing the Hilbert transform on the IMF1 component generates
its instantaneous spectrogram. The initial frequency variation point on this spectrogram
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coincides with the moment of the traveling wave’s initial arrival. To address the difficult
problem of inconsistent travelling wave speed, this paper introduces an enhanced double-
ended traveling wave ranging method that leverages relative time differences to obviate
the challenges associated with wave speed variability and clock synchronization. The
method requires only the knowledge of the transmission line’s horizontal distance, the
initial fault occurrence time, and the arrival time data of the traveling wave at both ends of
the line, for ranging purposes. Section 2 of this paper introduces the fundamental principles
of the fault location algorithm. Section 3 introduces the fault location scheme based on
the NGO-VMD-HHT algorithm. Section 4 simulates the proposed ranging scheme and
analyzes its performance under various fault conditions.

2. Basic Theory
2.1. Fundamentals of the Hilbert–Huang Transformation

The Hilbert–Huang Transform (HHT) is an adaptive time-frequency analysis method
designed specifically for non-linear and non-smooth signals. It consists of two main
components: empirical mode decomposition (EMD) and Hilbert transform (HT). Empirical
mode decomposition is responsible for decomposing the signal into a set of intrinsic mode
functions (IMFs) [15,16]. After IMF generation, the HHT analyzes each IMF using the
Hilbert transform.

For any continuous time signal x(t), its Hilbert transform Y(t) can be obtained:

Y(t) =
1
π

+∞∫
−∞

X(t)
t− τ

dτ (1)

The inverse transformation of Equation (1) is:

X(t) =
1
π

+∞∫
−∞

Y(t)
t− τ

dτ (2)

The analytical signal is obtained from Equation (2) as:

Z(t) = X(t) + jY(t) = A(t)ejθ(t) (3)

In Equation (3), A(t) represents the instantaneous frequency of the signal and θ(t)
represents the frequency phase of the signal.

This one:
A(t) =

√
X2(t) + Y2(t) (4)

θ(t) = arctan(
Y(t)
X(t)

) (5)

Another instantaneous parameter θ(t) can be derived through:

f (t) =
1

2π

dθ(t)
dt

(6)

From Equation (5), it can be obtained that the three instantaneous time parameters,
instantaneous amplitude, instantaneous phase and instantaneous frequency of the time
signal can be solved by Hilbert–Huang transform.

In general, since high frequency signals contain multiple frequencies, it is difficult to
decompose all the frequencies of the signal using only the HHT, so it is necessary to divide
the data into IMF first, and to define the instantaneous frequency, the signal function needs
to satisfy the following three conditions:

(1) The function is symmetric throughout the interval of definition of the signaling
function;
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(2) The signal function exhibits an identical count of zero-crossings and extremum points;
(3) The signal function has a local mean of zero.

The IMF needs to have the following conditions:

(1) In the original signal, the number of zeros is equal to or differs from the number of
extreme points by one, i.e., the requirement of Equation (7) is satisfied:

(Qz − 1) ≤ Qe ≤ (Qz + 1) (7)

(2) At any given point in time, the signal’s upper and lower envelopes, as determined by
its local maximum and minimum points, exhibit a mean value of zero, i.e., Equation
(8) is satisfied:

[ fmax(ti) + fmin(ti)]

2
= 0 (8)

In Equation (8), ti represents any time of the signal, and which is in the domain of
definition of the signal time, fmax(ti) represents the value of the upper envelope, fmin(ti)
represents the value of the lower envelope.

2.2. Variational Modal Decomposition

Variational modal decomposition (VMD) is a decomposition method based on signal
filtering that decomposes a non-linear, non-smooth signal into a set of vibrational modes
of intrinsic frequency and amplitude [17,18]. The VMD algorithm determines the finite
bandwidth and optimal center frequency of the intrinsic modal component (IMF) by
iterative search, assuming that the signal is divided into K intrinsic modal components,
and the bandwidths of the components need to be estimated to satisfy the summation of
the minimum, which is constrained by the variational modeling equation:

min
µk ,ωk

{
∑
k

∣∣∣∣∣∣∂(t)[(φ(t) + j
πt

)
∗ µk(t)

]
e−jωkt

∣∣∣∣∣∣∣∣ 2
2

}
s.t.∑

k
µk = f

(9)

In Equation (9): {µk} is the set of intrinsic modal components; ωk is the center fre-
quency of each modal component, f is the input signal, δ(t) is the impulse function.

Invoking the Lagrange multiplier operator λ can transform the constrained variational
problem into an unconstrained variational problem, while the introduction of a quadratic
penalty factor α can reduce the interference of Gaussian noise, and the optimal number of
intrinsic modal components and the corresponding center frequency can be obtained by
searching for the saddle points of the augmented Lagrangian function. The augmented
Lagrangian expression is:

L({µk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
µk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−∑
k

µk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
µk(t)

〉 (10)

The expressions for the modal components and center frequency after alternating
iterative optimization are:

µ̂n+1
k (ω) =

(
f̂ (ω)−∑

i ̸=k
µ̂i(ω) +

λ̂(ω)

2

)
1

1 + 2α(ω−ωk)
2 (11)

ω̂n+1
k (ω) =

∫ ∞
0 ω|µ̂k(ω)|2dω∫ ∞

0 |µ̂k(ω)|2dω
(12)
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λ̂n+1(ω)← λ̂n(ω) + γ

[
f̂ (ω)−∑

k
µ̂n+1

k (ω)

]
(13)

where γ is the noise tolerance, µ̂n+1
k (ω), ω̂n+1

k (ω), λ̂n+1(ω) is the frequency domain expression.
The steps of the VMD algorithm are as follows:

(1) Initialize the signals to be decomposed
{

µ̂1
k
}

,
{

ω̂1
k
}

,
{

λ̂1}, such that n = 0;
(2) n = n + 1, execute the loop;
(3) Updated µk, ωk using Equation (11) with Equation (12);
(4) k = k + 1, whether the preset value of K is reached. If k is equal to K, the loop is

terminated; otherwise, return to step (3) to continue execution;
(5) According to Equation (13), λ is updated;

(6) Check if the conditions are met: ∑
k

∥∥∥µ̂n+1
k − µ̂n

k

∥∥∥2

2
/
∥∥µ̂n

k

∥∥2
2 < ε. If it is satisfied, the

iteration is terminated and the values of µk and ωk are output; if it is not satisfied, the
execution of steps (2) to (5) continues.

2.3. Northern Goshawk Optimization Algorithm

The Northern Goshawk optimization algorithm (NGO) is a natural heuristic algorithm
inspired by the hunting behavior of the northern goshawk. The algorithm simulates the
way the northern goshawk searches for the best prey during the hunting process, and is
able to perform better in various optimization problems [19]. The NGO algorithm is mainly
divided into two phases of behavior:

(1) Prey identification and attack phase

In this phase, the individual randomly selects a target in the search space, uses its
position as the target of the attack, and moves the current position towards the target. This
stage involves global search to determine the optimal region. Equations (14)–(16) are the
mathematical modeling formulas for this phase:

Pi = Xk, i = 1, 2, · · · , N, k = 1, 2, · · · , i− 1, i + 1, · · · , N (14)

xnew,P1
i,j =

{
xi,j + r

(
pi,j − Ixi,j

)
, FPi ≥ Fi

xi,j + r
(
xi,j − pi,j

)
, FPi < Fi

(15)

Xi =

{
Xnew,P1

i , Fnew,P1
i < Fi

Xi, Fnew,P1
i < Fi

(16)

where Pi denotes the location of the ith northern pallid prey; k is a random integer in the
range [1, n], Xnew,P1

i is the new state of the ith northern goshawk, xnew,P1
i,j is then its new

state in the jth dimension, Fnew,P1
i is the objective function for that stage. r is a random

number of [1, 2], the value of I is either 1 or 2, both of which are random numbers in the
middle of the search and iteration.

(2) Prey chase and escape phase

Once the northern goshawk launches an assault on its quarry, the prey will make an
effort to escape, prompting the hawk to give chase, the stage is a localized search, to pinpoint
the most optimal solution, assuming that the hunting range of the northern goshawk is R,
the mathematical model equations of this stage can be expressed by Equations (17)–(19):

xnew,P2
i,j = xi,j + R(2r− 1)xi,j (17)

R = 0.02
(

1− t
T

)
(18)

Xi =

{
Xnew,P2

i , Fnew,P2
i ≤ Fi

Xi, Fnew,P2
i ≥ Fi

(19)
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where Xnew,P2
i is the new position of the ith northern goshawk in that phase; xnew,P2

i,j is the
new position of the ith northern goshawk in the jth dimension in that phase, t is the current
number of iterations, T is the maximum number of iterations, and Fnew,P2

i is the objective
function for the stage.

The steps of the NGO algorithm are as follows: initialize the population, complete the
iterative process of the algorithm, determine the parameters of the population, the objective
function and the optimal solution, repeat the process from (14) to (19) until the completion
of the last iteration, and find the optimal solution of the whole process, i.e., the solution of
the given optimization.

3. Ranging Scheme Based on NGO-VMD Algorithm
3.1. Phase-Mode Conversion

The actual power system transmission lines are three-phase transmission lines between
the phase and phase, and phase and ground electromagnetic coupling phenomenon, which
will affect the extraction and analysis of the relevant signals [20]. In order to eliminate
the phenomenon of electromagnetic coupling, the use of travelling wave ranging method
is commonly used, before the use of the phase-mode transform method of decoupling,
and then analyzes the independent modulus after decoupling. The equivalent network of
electromagnetic coupling for a three-phase system is shown in Figure 1 below.

Energies 2024, 17, x FOR PEER REVIEW 7 of 26 
 

 

11 12 13

21 22 23

31 32 33

a a a
S a a a

a a a

 
 =  
    

(20)

22 33 23 32 13 32 12 33 12 23 13 22
1

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

1
| |

a a a a a a a a a a a a
S a a a a a a a a a a a a

S
a a a a a a a a a a a a

−

− − − 
 = − − − 
 − − −   

(21)

Ls

Ls

Ls

Cm

Cm

Cm

C0 C0 C0

A

B

C

ML ML

ML

 
Figure 1. Equivalent network for electromagnetic coupling of three-phase systems. 

From Equations (20) and (21), in order to ensure that both the α and β moduli of the 
voltage and current traveling waveforms reflect the characteristics of the various fault 
types, it is necessary to make both the second- and third-line elements in 

1S−
 non-zero, 

i.e.: 

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

0, 0, 0
0, 0, 0

a a a a a a a a a a a a
a a a a a a a a a a a a

− ≠ − ≠ − ≠
 − ≠ − ≠ − ≠  (22)

The voltage and current fluctuation equations in the mode space are: 
2 2

1
2 2

2 2
1

2 2

m m

m m

u u
S LCS

x t
i i

S LCS
x t

−

−

∂ ∂
= ∂ ∂


∂ ∂ = ∂ ∂  

(23)

For uniformly transposed transmission lines, the coefficient matrix has a diagonal 
array Λ  when: 

1 1S LCS S CLS− −= = Λ  (24)

The eigenvalues of matrix LC are: 

1

2 3

2
3 3

s s s s

s s s m m m m s

L C LC
LC LC L C L C

λ
λ λ

= +
 = = + − −

 (25)

where 1λ , 2λ , 3λ  are the eigenvalues corresponding to the mode transformation ma-
trix S. 

According to the relationship between eigenvectors and eigenvalues, and joint Equa-
tions (24) and (25) to obtain the relationship between the elements in the phase mode 
transformation matrix: 

Figure 1. Equivalent network for electromagnetic coupling of three-phase systems.

Currently, the commonly used phase mode transformation matrices are Clarke and
Karenbauer transforms, but since these two transformation matrices cannot reflect the
characteristics of various fault types through a single modulus, this paper introduces
an improved phase-to-mode conversion matrix, designed to address the limitations of
conventional phase-mode transformation.

Let the improved phase-mode transformation matrix and its inverse matrix be, respectively.

S =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (20)

S−1 =
1
|S|

a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22
a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23
a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

 (21)

From Equations (20) and (21), in order to ensure that both the α and β moduli of the
voltage and current traveling waveforms reflect the characteristics of the various fault
types, it is necessary to make both the second- and third-line elements in S−1 non-zero, i.e.:{

a23a31 − a21a33 ̸= 0, a11a33 − a13a31 ̸= 0, a13a21 − a11a23 ̸= 0
a21a32 − a22a31 ̸= 0, a12a31 − a11a32 ̸= 0, a11a22 − a12a21 ̸= 0

(22)
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The voltage and current fluctuation equations in the mode space are:{
∂2um
∂x2 = S−1LCS ∂2um

∂t2

∂2im
∂x2 = S−1LCS ∂2im

∂t2

(23)

For uniformly transposed transmission lines, the coefficient matrix has a diagonal
array Λ when:

S−1LCS = S−1CLS = Λ (24)

The eigenvalues of matrix LC are:{
λ1 = LsCs + 2LsCs
λ2 = λ3 = LsCs + 3LsCm − 3LmCm − LmCs

(25)

where λ1, λ2, λ3 are the eigenvalues corresponding to the mode transformation matrix S.
According to the relationship between eigenvectors and eigenvalues, and joint

Equations (24) and (25) to obtain the relationship between the elements in the phase mode
transformation matrix: 

a11 = a21 = a31
a12 + a22 + a32 = 0
a13 + a23 + a33 = 0

(26)

Through the analysis, it can be seen that the phase mode transformation matrices that
satisfy the constraints of Equations (22) and (26) can all characterize various types of faults,
i.e., more than one improved phase mode transformation matrix can be constructed, and
the improved phase mode transformation matrices and their inverse matrices used in this
paper are:

S =
1
9

3 3 3
3 −1 −2
3 −2 −1

, S−1 =

1 1 1
1 4 −5
1 −5 4

 (27)

According to the inverse matrix of Equation (27) and Equation iαβ0 = S−1iabc, the
values of the α and β mode components and the zero-mode component of the current
traveling wave for various fault types can be obtained as shown in Table 1.

Table 1. Electropop decoupling results of improved phase-mode transform.

Fault Type Boundary
Conditions

α-Mode
Component

β-Mode
Component

Zero-Mode
Component

AG ib = ic = 0 ia ia ia
BG ia = ic = 0 4ib −5ib ib
CG ia = ib = 0 −5ic 4ic ic

ABG ic = 0 ia+4ib ia − 5ib ia + ib
BCG ia = 0 4ib − 5ic −5ib+4ic ib + ic
ACG ib = 0 ia − 5ic ia+4ic ia + ic
AB ic = 0, ia = −ib −3ia 6ia 0
BC ia = 0, ib = −ic 9ib 9ib 0
AC ib = 0, ia = −ic 6ia −3ia 0

ABC ia + ib + ic = 0 ia+4ib − 5ic ia − 5ib+4ic 0

As can be seen from Table 1, the fault type can be identified by separate α and β

moduli, and it can be seen that only when a ground fault occurs, the zero-mode component
is not zero. Therefore, this paper selects the line mode component of the current traveling
wave to carry out fault location research, and at the same time in the various faults in the
power system, the probability of occurrence of single-phase grounding faults is the highest,
so this paper focuses on single-phase grounding faults to analyze and study.
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3.2. Comparison of VMD and EMD Decomposition Effects

In order to compare the decomposition effect of VMD and EMD, as well as to illustrate
the noise robustness of VMD, a noise-containing fault signal is decomposed using VMD
and EMD, by giving a noise-containing fault signal in which the number of modes in
the parameters of VMD is K = 4, α = 2000, and the sampling frequency is 1000 Hz. The
decomposition diagrams of the EMD in the time and frequency domains are shown in
Figure 2, and those of VMD in the time and frequency domains are shown in Figure 3.
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Figure 3. VMD time-domain and frequency-domain decomposition diagram. (a) VMD time-domain
decomposition diagram. (b) VMD frequency-domain decomposition diagram.

From Figures 2 and 3:

(1) The low-frequency component of the VMD decomposition can better express the
overall trend of the original signal waveform than the EMD decomposition;

(2) The number of nine IMF components of EMD decomposition in Figure 2 cannot be
set artificially, while VMD decomposition can be set according to one’s needs;

(3) In the figure, the spectrum of EMD’s spectrogram spectrum is more blended, there is
the phenomenon of mode aliasing, and the decomposition effect is poor, while the
spectrum of VMD’s spectrogram spectrum is more clear, and there is the endpoint
effect in the EMD’s IMF waveform diagram;

(4) The VMD decomposition has good noise robustness and better representation of
spectral features in spectrograms.

From the above analysis, it can be seen that the decomposition effect of VMD algorithm
is better than EMD algorithm. So, in this paper, we choose the combination of VMD and
HHT algorithms to process the fault traveling wave signals of transmission lines.
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3.3. NGO Optimization VMD

VMD has the advantages of high accuracy, wide applicability, and strong anti-interference
in fault location, but the decomposition effect of VMD is mainly related to the number of
modal decomposition layers K and the penalty factor α. Therefore, this paper proposes
to use the NGO algorithm to seek the optimization of the two key parameters of VMD, in
order to improve the decomposition effect of VMD, and the minimum envelope entropy is
used as the objective function of the optimization. Envelope entropy can reflect the sparsity
degree of the VMD decomposition signal, if the current signal is decomposed by the VMD
to get more IMF component noise, the smaller the sparsity degree of the reaction signal, the
larger the envelope entropy, and vice versa [21,22].

Therefore, the whole optimization process is to find the global minimum envelope
entropy and the corresponding K and α values. The envelope entropy is calculated as:

Ep = −
N
∑

j=1
ejlgej

ej =
a(j)

N
∑

j=1
a(j)

(28)

where a(j) is the result obtained after Hilbert demodulation of the IMF component of the
VMD decomposition, ej is the result obtained by normalizing a(j).

With the iterative update of the parameter combination, different local optimal com-
ponents will be generated, and each optimal component has a corresponding envelope
entropy value, at this time, the IMF component with the smallest envelope entropy value is
the optimal value of the parameter.

The implementation steps of the Northern Eagle optimization algorithm to optimize
the variational modal decomposition are specified:

(1) Initialize the parameters of the NGO algorithm, set the number of Northern Goshawk
populations in the search process to 20, the maximum number of iterations to 15, and
the range of values for the number of decomposition modal layers K values to [1, 8],
and the range of values for the penalty factor α to [300, 2000];

(2) Calculate and rank the size of individual adaptation value degrees;
(3) The VMD decomposition is performed, and the objective function is chosen to be the

minimum envelope entropy value minEp. This is computed by substituting pairs of K
and α under different combinations each time, and updating the current best objective
function value minEp;

(4) Update the Northern Goshawk position according to Equations (14)–(19);
(5) Determines whether to end the iteration. If t ≥ T then the iteration ends and the

optimal parameter combination [K, α] is output, otherwise t = t + 1 and the up-
date continues.

The optimal combination [K, α] after the optimization algorithm of the Northern
Eagle optimization is [6, 1200]. To validate the decomposition capability of the NGO-VMD
algorithm for signals, the NGO-VMD decomposition was performed on the given noisy
fault signal mentioned in the previous section, and the decomposition waveforms are
shown in Figure 5.

Figure 4 illustrates the step-by-step flow of the NGO-VMD algorithm.
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From Figure 5, the optimized VMD of NGO can divide the noise-containing signal
into six layers by the frequency, i.e., the number of modal decomposition layers is six.
Meanwhile, from the figure, the IMF1 component signal has a high degree of similarity to
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the waveform trend of the original signal of the fault and almost does not contain harmonic
signals, so that the NOV-VMD algorithm has a very good decomposition ability of the faulty
signals, and it still has a strong robustness to the noise. At the same time, the NGO-VMD
algorithm can adaptively find the optimal value of the VMD parameters, avoiding the
problem of determining the parameters due to subjective judgment.

3.4. Wave-Speed Independent Double-Ended Traveling Wave Localization Algorithm

According to the difference in ranging principles, traveling wave fault ranging tech-
niques can be categorized into single-ended traveling wave ranging techniques and double-
ended traveling wave ranging techniques. The single-ended traveling wave ranging
technique only requires the deployment of corresponding transformers at one end of the
line, while the double-ended traveling wave ranging technique requires the installation
of transformers at both ends of the line [23,24]. In this paper, the double-ended traveling
wave fault location technique is used to calculate the fault distance by using the difference
between the wave speed and time of the initial traveling wave of the fault arriving at each
end, and its principle is shown in Figure 6.
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The fault ranging formula for the double-ended traveling wave method is:{
dM = LMN+v(tM−tN)

2
dN = LMN+v(tN−tM)

2

(29)

where LMN is the distance of the line MN, tM and tN are the time when the initial wave
head of the faulty traveling wave arrives at the M and N ends, respectively, and v is the
wave speed of the faulty traveling wave.

Equation (29) shows that fault localization is closely related to the actual length of the
line, the traveling wave speed and the time when the traveling wave head reaches each
end. Assuming that the line is faulted at the moment t0, and d∗M and d∗N are the actual fault
distance from the fault point F to the M and N ends, there are:{

d∗M = (tM − t0)v
d∗N = (tN − t0)v

(30)

Therefore, it can be obtained that the actual calculated distance of the line MN is:

L∗MN = (tM + tN − 2t0)v (31)

Assuming that the conductors to the same line are uniformly stretchable under the
same external environment, the ratio of the actual length L∗MN of the line to the actual
length d∗M of the faulted point F, to the end of M when the faulted point is close to the end
of M, is approximately equal to the ratio of the length LMN of the end of MN to the ratio of
the dM of the distance from the faulted point F to the end of M. Thus, there is:

LMN
dM

=
L∗MN
d∗M

(32)
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Therefore, it can be obtained that the horizontal distance dM from the fault point F to
the end of M is:

dM =
d∗M

L∗MN
LMN =

(tM − t0)LMN
tM + tN − 2t0

(33)

As can be seen from Equation (33), this method of ranging only needs to know the
horizontal distance of the transmission line, the initial time of the fault occurrence, and
the time data of the traveling wave arriving at the two ends of the line, and is no longer
affected by the change of wave speed. In addition, the occurrence of time data in the
formula of the method are all time differences, thus reducing the effect of errors caused by
time desynchronization.

3.5. Fault Localization Steps

Establish the transmission line double-ended traveling wave ranging process with the
following steps:

Step 1: Build the simulation model through MATLAB, set the fault location and fault
circuit parameters, simulate the experiment, and extract the fault current traveling wave
signal from the simulation system recording device.

Step 2: Perform phase mode transformation using the improved phase mode transfor-
mation matrix to decouple and obtain the current traveling wave line mode components.

Step 3: The current traveling wave line mode component is decomposed by VMD after
NGO optimization to obtain the IMF component, and the Hilbert transform is performed
on the IMF1 component to obtain its instantaneous frequency, and then extract the initial
wavehead of the fault current traveling wave.

Step 4: The location of the fault point is calculated based on the time detected to
the ends of M and N, and its substitution to the improved double-ended traveling wave
ranging method formula, i.e., Equation (33).

4. Simulation Analysis

To verify the reliability of the method proposed in this paper, a simulation model of
transmission line faults was constructed using MATLAB software (version R2022a), as
shown in Figure 7.
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Figure 7. Transmission line simulation model.

The total length of the transmission line simulation model line MN is 100 km, the
simulation model is a double-fed power supply system, in which the voltage level is 220 kV,
the frequency is 50 Hz, and the sampling frequency is 1 MHz. The positive sequence and
zero sequence parameters of the transmission line are shown in Table 2.

Table 2. Transmission line positive sequence and zero sequence parameter table.

Phase Sequence R
Ω/km

L
mH/km

C
µF/km

Positive sequence 0.0208 0.8984 0.0129
Zero sequence 0.1148 2.2886 0.0084

To ascertain the effectiveness of the fault traveling wave feature extraction algorithm
and fault location method proposed herein across diverse fault scenarios, comprehensive
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simulation analyses were performed within a transmission line simulation framework.
These analyses built on the fault location procedures outlined in the preceding section,
incorporating a range of fault conditions to evaluate the methods’ effectiveness.

4.1. Simulation Analysis at Different Fault Locations

To validate the applicability of the fault location method proposed in this paper in
different fault locations, different fault locations are set up for simulation analysis.

Firstly, the fault is set at a distance of 20 km from the M-terminal, the transition
resistance is 50 Ω, the initial phase angle of the fault is 0◦, and the A-phase grounded
short-circuit fault occurs; the fault occurs at 0.016 s, and the whole simulation process lasts
for 0.05 s. After the fault occurs, the waveforms of the three-phase traveling currents of the
two measurement points of the M point and the N point are shown in Figure 8.
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To obtain the transient quantities of the current traveling wave signals, an improved
phase-to-mode transformation matrix is utilized for phase-mode transformation, and the
extracted current traveling wave line mode component is used as the analysis object for
the fault traveling wave signals. The waveforms of the current traveling wave line mode
components at measurement points M and N are shown in Figure 9.
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Figure 9. Waveform diagram of the line mode component of the current wave at the M and N ends
of the measuring point. (a) Waveform diagram of the line mode component of the M-point current
wave. (b) Waveform diagram of the line mode component of the N-point current wave.

Using the NGO-VMD-HHT algorithm to decompose the line mode component of the
fault current traveling wave and extract the time of the initial traveling wave head of the
fault arriving at the detection points at the M and N ends, then using the improved formula
of the double-ended traveling wave ranging method, the distance of the fault is accurately
calculated to achieve the purpose of fault location. Since the fault occurrence time is 0.016
s in the simulation model, the 15,000th sampling point to the 25,000th sampling point,
10,000 sampling points, are taken for the experiment, i.e., the experimental data from the
0.015 s to the 0.025 s are taken. Among them, the NGO-VMD-HHT decomposition signals
of point M and point N are shown in Figure 10.
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Figure 10. Signal decomposition diagram of M and N terminals of measurement points. (a) IMF
components at the M end of the measurement point. (b) IMF components at the N end of the
measurement point.

From Figure 10, it can be obtained that the waveform trends of the amplitude of IMF1
and line mode components are most similar, and by applying the Hilbert transform, the
instantaneous spectrogram of the IMF1 component can be obtained. When analyzing the
instantaneous spectrogram of the MF1 component, it can be found that the first frequency
mutation point corresponds to the instant when the traveling wave arrives for the first
time, so by extracting the data of the first mutation point, we can obtain the time when the
initial traveling wave arrives at the two different measurement points of M and N. The
data detection diagram of the first mutation point of the instantaneous spectrogram of the
IMF1 component at the M point and the N point is shown in Figure 11.
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Figure 11. Instantaneous spectrum diagram of IMF1 component of M, N point. The first mutation
point data detection diagram. (a) Instantaneous spectrum diagram of IMF1 component of M point.
The first mutation point data detection diagram. (b) Instantaneous spectrum diagram of IMF1
component of N point. The first mutation point data detection diagram.

Since the time period taken is from the 15,000th sample point to the 25,000th sample
point, i.e., 0.015 s to 0.016 s, t = 0.015 + sample point/106 in s. Hence, tM = 0.01606 1s,
tN = 0.016243 s.

Substituting LMN = 100 km, tM = 0.01606 1s, tN = 0.016243 s, and t0 = 0.016 s into
Equation (33), yields dM = 20.066 km and the relative error is calculated, which is given
by Equation:

εr% =
|Fault distance− Ranging results|

Total line length
× 100% (34)

According to Equation (34), the relative error is 0.066%.
Similarly, the A-phase short-circuit fault is simulated at different distances of 40, 55,

and 70 km from the M-terminal, and the results are shown in Table 3.
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Table 3. Fault localization results at different fault locations.

Fault Location/km Fault
Localization/km Error (ε/km) Relative Error (εr%)

20 20.066 0.066 0.066
40 39.937 0.063 0.063
55 55.031 0.031 0.031
70 69.937 0.063 0.063

As shown in Table 3, the fault location method based on the NGO-VMD-HHT algo-
rithm has a relative error of less than 1% at different fault positions, meeting the require-
ments for precise fault location and being suitable for practical engineering applications.

4.2. Simulation Analysis with Different Transition Resistances

To validate the robust applicability of the fault location method proposed in this paper
under various transition resistance conditions, this section conducts simulation experiments
on the transmission line model at the same fault location. All other conditions remain
constant, with only the fault transition resistance being altered.

Different transition resistances are set in MATLAB: 50 Ω, 100 Ω, and 200 Ω. With different
transition resistances, the waveforms of the line mode components at points M and N are
shown in Figure 12, for example, if the fault occurs at a distance of 20 km from end M. The
waveforms of the line mode components at point M and N are shown in Figure 12.

As illustrated in Figure 12, with the increase of transition resistance, the amplitude
of the line mode component decreases. However, the mutation point of the line mode
component and the trend of waveform change are not affected by the variation in transition
resistance. Using the fault location method based on NGO-VMD-HHT, fault location results
under different transition resistances can be obtained, as shown in Table 4.

Table 4 indicates that the double-ended traveling wave fault location method proposed
in this paper, based on the NGO-VMD-HHT algorithm, is not affected by different transition
resistances. It can still achieve precise location under various transition resistances, with the
relative error of fault ranging within 1%, meeting the requirements for accurate ranging.

Table 4. Fault localization results for four fault locations with different transition resistances.

Fault Location/km Transition Resistance/Ω Fault Localization/km Error (ε/km) Relative Error (εr%)

20
50 20.066 0.066 0.066

100 20.066 0.066 0.066
200 20.066 0.066 0.066

40
50 39.937 0.063 0.063

100 39.937 0.063 0.063
200 39.937 0.063 0.063

55
50 55.031 0.031 0.031

100 55.031 0.031 0.031
200 55.031 0.031 0.031

70
50 69.937 0.063 0.063

100 69.937 0.063 0.063
200 69.937 0.063 0.063
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Figure 12. Waveforms of linear mode components of different transition resistors at M and N points.
(a) Waveforms of linear mode components of different transition resistances at point M. (b) Waveforms
of linear mode components of different transition resistances at point N.

4.3. Simulation Analysis under Different Fault Initial Phase Angles

To validate the applicability of the fault location method proposed in this paper under
different initial fault phase angles, this section conducted simulation experiments on the
transmission line model with the same fault location but varying initial fault phase angles.
All other parameters were kept constant, with the transition resistance maintained at 50 Ω.

The fault initial phase angles were set to 0◦, 30◦, and 45◦, taking the fault occurrence
at a distance of 20 km from terminal M as an example. The waveforms of the line mode
components at points M and N are shown in Figure 13.

From Figure 13, with the change of the fault initial phase angle, there is a slight
difference in the amplitude of the line mode component waveforms at the same point
between point M and point N. However, the change trend of the waveforms of the line
mode components is not affected by the fault initial phase angle. Using the fault localization
method based on NGO-VMD-HHT, the fault localization results under different fault initial
phase angles can be obtained. The fault localization results of four fault locations under
different fault initial phase angles are shown in Table 5.
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Figure 13. Waveforms of initial phase angular line mode components for different faults at M and N
points. (a) Waveforms of initial phase Angle line mode components for different faults at point M.
(b) Waveforms of initial phase angular line mode components for N-point different faults.

Table 5. Fault localization results of four fault locations under different fault initial phase angles.

Fault Location/km Fault Initial Phase
Angle/◦ Fault Localization/km Error (ε/km) Relative Error (εr%)

20
0 20.066 0.066 0.066
30 20.071 0.071 0.071
45 20.073 0.073 0.073

40
0 39.937 0.063 0.063
30 40.066 0.066 0.066
45 39.933 0.067 0.067

55
0 55.031 0.031 0.031
30 54.952 0.048 0.048
45 54.984 0.016 0.016

70
0 69.937 0.063 0.063
30 70.096 0.096 0.096
45 70.033 0.033 0.033
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Table 5 shows that the double-ended traveling wave fault localization method, based
on the NGO-VMD-HHT algorithm proposed in this paper, can still locate the faults accu-
rately under different initial phase angles, and the relative errors of fault ranging are all
within 1%, which meets the demand of accurate ranging.

4.4. Simulation Analysis with Different Analysis Methods

To further validate the accuracy of the NGO-VMD-HHT fault signal extraction algo-
rithm proposed in this paper, a comparative analysis was conducted with the fault results
obtained using the VMD-HHT algorithm without NGO optimization and the wavelet
transform algorithm. For the VMD, the parameters were set to K = 4 and α = 2000; for
the wavelet transform, the db5 wavelet basis function was used with a decomposition
scale parameter of three. At the same time, the transition resistance is kept at 50 Ω, the
initial phase angle of the fault is kept at 0◦, and all other experimental parameters are kept
unchanged. Taking the distance as an example, the fault occurs at 20 km from the M end,
the simulation results of the wavelet transform algorithm are shown in Figure 14, and the
simulation results of the VMD-HHT algorithm are shown in Figure 15.
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Figure 14. Simulation results of wavelet transform algorithm. (a) M-point electrical wave mode
component wavelet transform. (b) N-point electrical wave mode component wavelet transform.
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From Figure 14 and the relationship between time and sampling point t = 0.015 + sampling
point/106 in s, it can be obtained that at this point tM = 0.016072 s and tN = 0.016275 s.

Substituting LMN = 100 km, tM = 0.016072 s, tN = 0.016275 s, into Equation (33),
yields dM = 20.749 km and substituting into Equation (34) % = 0.749% relative error.

From Figure 15 and the relationship between time and sampling point t = 0.015 + sampling
point/106 in s, it can be obtained that at this point tM = 0.016063 s and tN = 0.016249 s.

Substituting LMN = 100 km, tM = 0.016063 s, tN = 0.016249 s, t0 = 0.016 s into Equa-
tion (33), yields = 20.192 km and substituting into Equation (34) εr% = 0.192% relative error.

Similarly, fault localization is carried out at different fault distances using the three
analysis methods of NGO-VMD-HHT, VMD-HHT, and wavelet transform, and the simula-
tion results of fault localization at four fault locations under different analysis methods are
shown in Table 6 below.
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Table 6. Fault localization results of four fault locations under different analysis methods.

Fault Location/km Algorithm Name Fault Localization/km Error (ε/km) Relative Error (εr%)

20
Wavelet transform 20.749 0.749 0.749

VMD-HHT 20.192 0.192 0.192
NGO-VMD-HHT 20.066 0.066 0.066

40
Wavelet transform 39.706 0.294 0.294

VMD-HHT 39.815 0.185 0.185
NGO-VMD-HHT 39.937 0.063 0.063

55
Wavelet transform 54.519 0.481 0.481

VMD-HHT 55.183 0.183 0.183
NGO-VMD-HHT 55.031 0.031 0.031

70
Wavelet transform 70.317 0.317 0.317

VMD-HHT 70.245 0.245 0.245
NGO-VMD-HHT 69.937 0.063 0.063

From Table 6, it can be seen that the relative error in fault localization using the
improved double-ended traveling wave method, based on the traditional algorithm of
wavelet transform and the VMD-HHT algorithm, is higher than that of the NGO-VMD-
HHT algorithm proposed in this paper across different fault locations.

5. Conclusions

(1) Considering that the VMD decomposition outcome is heavily influenced by the num-
ber of modal components K and the penalty factor α, this paper suggests employing
the NGO algorithm to optimize these parameters, thereby ensuring a more rational
selection of K and α;

(2) In this paper, an improved double-ended traveling wave method without counting
the wave speed is derived, and the algorithm does not have to consider the influence
of the reflected wave of the traveling wave, which improves the accuracy of fault
localization;

(3) In this paper, the dual power supply network model of the transmission line is built
in the simulation software, and four fault locations are selected to set up single-phase
grounded short-circuit faults. The simulation shows that the ranging results of the
NGO-VMD-HHT algorithm have higher accuracy than those of the traditional wavelet
transform and the VMD-HHT algorithm in fault localization, and the method can
accurately locate faults with different transition resistances and different initial phase
angles of faults, and the relative errors are within 1%, which meets the requirements
of the actual engineering ranging accuracy;

(4) The fault localization method proposed in this paper combines the improved double-
ended traveling wave method and the newly introduced NGO-VMD-HHT algorithm,
which effectively solves the difficulties related to identifying faulty wave signals and
the differences in wave propagation speeds. This innovative method is promising for
practical engineering applications.
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