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Abstract: The use of renewable energy sources to achieve carbon neutrality is increasing. However, the
uncertainty and volatility of renewable resources are causing problems in power systems. Flexible and
low-carbon resources such as Energy Storage Systems (ESSs) are essential for solving the problems of
power systems and achieving greenhouse gas reduction goals. However, ESSs are not being installed
because of Korea’s fuel-based electricity market. To address this issue, this paper presents a method
for determining the optimal investment timing of Battery Energy Storage Systems (BESSs) using
the Least Squares Monte Carlo (LSMC) method. A case study is conducted considering the System
Marginal Price (SMP) and Capacity Payment (CP), which are electricity rates in Korea. Revenue is
calculated through the arbitrage of a 10 MW/40 MWh lithium-ion BESS, and linear programming
optimization is performed for ESS scheduling to maximize revenue. The ESS revenue with uncertainty
is modeled as a stochastic process using Geometric Brownian Motion (GBM), and the optimal time
to invest in an ESS is determined using an LSMC simulation considering investment costs. The
proposed method can be used as a decision-making tool for ESS investors to provide information on
facility investments in arbitrage situations.

Keywords: energy storage system; battery energy storage system; energy arbitrage; scheduling;
geometric Brownian motion; Monte Carlo; least squares Monte Carlo; investment decision making

1. Introduction

In response to climate change, the Paris Agreement was adopted to keep the global
temperature rise below 2 ◦C compared to pre-industrial times and limit it to within 1.5 ◦C.
Subsequently, the Intergovernmental Panel on Climate Change published a Global Warming
of 1.5 ◦C report, suggesting a global path to achieve carbon neutrality by 2050 to meet the
goals of the Paris Agreement [1,2].

Aligned with these trends, South Korea has established the 2030 National Greenhouse
Gas Reduction Goals. The expansion of renewable energy generators and a reduction in
coal generators are methods for achieving this goal [3]. To reduce greenhouse gas emissions,
the Ministry of Trade, Industry, and Energy announced a basic plan for electricity supply
and demand, setting targets to increase the share of renewable energy generation from 6.2%
in 2018 to 21.6% by 2030 and 30.6% by 2036 [4]. The potential of renewable energy in Korea
is 6,180,571 GWh/year of solar thermal, 2,337,875 GWh/year of solar photovoltaic, and
1,691,704 GWh/year of geothermal energy [5].

However, with the increase in variable renewable energy resources, such as wind and
solar power, problems in power systems are increasing. The expansion of solar power
generation increases the output volatility during sunrise and sunset, requiring adjustments
in thermal power generation to accommodate these fluctuations.

Securing flexible resources is necessary to solve the problems that occur in power
systems [6]. An ESS, a low-carbon resource, is a representative flexible resource [7]. Various
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countries are actively installing ESSs, and the forecast based on each country’s energy plans
is expected to increase to 370 GWh by 2030 and 3400 GWh by 2050. To maintain global
temperature increases below 2 ◦C, it is forecasted that 754 GWh of ESSs will be installed by
2030, and by 2050, this capacity is expected to reach 9000 GWh [8]. The U.S. Department
of Energy announced the goal of accelerating the development and commercialization of
next-generation ESSs and reducing ESS installation costs by 2030. In Korea, as of 2021,
a total of 10.3 GWh has been installed, including 5674 MWh for renewable energy and
4349 MWh for peak reduction purposes [9,10]. Table 1 lists the ESS facilities to be configured
by 2036 based on the basic plan for electricity supply and demand [11].

Table 1. Energy Storage Mix by 2036 in Korea.

ESS Duration Capacity

Short-Term (within 30 min) 3.66 GW
4 h Long-Term 4.22 GW
6 h Long-Term 15.58 GW
8 h Long-Term 1.05 GW

Pumped Storage 1.75 GW

An ESS is used effectively for peak shaving, frequency regulation, and renewable
energy support [12]. The role of an ESS is classified depending on its duration; a short-term
ESS supplies power within a short period or shifts the surplus power to peak demand
hours. A long-term ESS addresses the output limitations of renewable energy on a daily to
weekly basis, and a seasonal ESS enables energy storage and supply on a seasonal basis,
contributing to power planning [13].

However, Korea’s fuel-based electricity market is unsuitable for investment-centric
sources, such as ESSs. Due to limited investments in ESSs, the renewable energy system was
reduced to 96 MW in 2021, 2 MW in 2022, and 0 MW in 2023. Consequently, only 107 MW
of ESSs were installed in 2023 [10]. To address this issue, ESSs are being installed through
the Jeju BESS central contract market, a long-term contract market aimed at expanding
ESSs. Similarly, the UK’s National Grid is installing ESSs through long-term contracts, such
as the Network Options Assessment Stability Pathfinder. PG&Es in the United States are
expanding their ESS facilities through long-term contracts [14–16]. To achieve the goal of
the basic plan for electricity supply and demand, a method must be developed to determine
the optimal investment timing of ESSs and research on ESS market participation is being
conducted [17].

In the past, research has been conducted to model the optimal investment timing of
ESSs along with economic evaluations [18–20]. Future uncertain demand has been modeled
using GBM, and studies have been conducted on the arbitrage of Vanadium Redox Bat-
teries [21]. Nguyen analyzed energy arbitrage considering the congestion of transmission
and distribution systems, and Sang examined the prediction of electricity prices to max-
imize ESS arbitrage [22,23]. A Monte Carlo simulation was used to mitigate uncertainty
in revenue [24]. Various studies explored ESSs using machine learning techniques such
as genetic algorithms and Long Short-Term Memory (LSTM) [25,26]. An ESS investment
analysis was also conducted by studying Locational Marginal Price variations in the MISO
energy market and Korea’s electricity market [27,28].

The revenue of the ESS varies depending on the charging and discharging scheduling
models and the investment cost. Yoon utilized a Genetic Algorithm, and M. M. Alam
planned the charging and discharging schedules of an ESS through LSTM [29,30]. Research
was also conducted using Dynamic Programming, a Mixed-Logit model, and Mixed-Integer
Linear Programming [31–35]. Mauricio B. C. Salles studied the potential arbitrage of ESSs
by choosing parameter values anticipated for future mature flow battery technology but
did not consider actual installed costs [36]. Optimal scheduling algorithms for non-central
dispatch ESSs were studied in the South Korean power market; however, the discussion
did not cover the determination of the investment timing of ESS facility expansion [37].
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This paper emphasizes the need to consider actual investment costs when evaluating
the revenue of ESSs and addresses the following implications:

• Development of a scheduling algorithm for the economic operation of a central dis-
patch ESS (10 MW/40 MWh) in the Korean electricity market.

• Using the GBM model for ESS arbitrage revenue to consider future revenue uncertainty.
• Analysis of ESS revenue and investment costs using LSMC simulations to determine

optimal investment timing.

The proposed method for determining the optimal ESS investment timing provides
incentives to ESS investors. This research analyzes lithium-ion battery ESSs to consider
the development costs and revenue through SMP and CP in the Korean electricity market.
ESS charging and discharging scheduling that maximizes the arbitrage revenue is derived
through linear programming optimization. ESS arbitrage revenue over 22 years is ana-
lyzed to create a probabilistic model of uncertain ESS revenue. To determine the optimal
investment timing in an ESS, using LSMC simulations that activate options when arbitrage
returns can recover actual investment costs. The proposed method contributes to securing
the ESSs required to respond to volatile resources.

The remainder of this paper is organized as follows: Section 2 presents the problems
that must be addressed. Section 3 introduces a method for determining the optimal invest-
ment timing for the ESSs. Section 4 describes the results of the proposed method, based on
a case study. Finally, Section 5 concludes this paper with suggestions for future research.

2. Problem Formulation

ESSs have emerged as a promising solution to mitigate the variability of renewable
generation and improve grid performance. However, its installation is constrained. One
of the primary problems with installation is the discrepancy between the high investment
costs of ESS installation and the relatively low revenue. Table 2 lists the annual capacity of
ESSs installed in Korea [10].

Table 2. Annual ESS installation capacity in Korea.

Year Coupled with Renewable Energy
[MW]

Peak Shaving
[MW]

E.T.C
[MW]

2017 430 460 156
2018 1397 2437 2
2019 1015 791 1
2020 2734 129 3
2021 96 262 1
2022 2 231 22
2023 - 39 68

This paper aims to solve the problems of ESS installation by proposing a method to
determine the optimal timing for ESS investments. To provide insight into the investment
timing for ESS infrastructure by considering both profitability and investment costs.

2.1. Optimal Investment Considering ESS’s Revenue and Investment Cost

The optimal investment of the ESS requires the revenue to exceed the installed costs
and expenditures. The formula used is as follows:

RevDischarging >
(

CostCharging + CostInstall + CostO&M

)
(1)

where RevDischarging is the revenue from the ESS discharge. CostCharging is the cost of
charging ESS. CostInstall and CostO&M are the costs of installing the ESS and operational
maintenance costs, respectively. The installation cost of ESSs decreases with technology
development, and the gap between the maximum and minimum SMP also increases. The
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ESS earns revenue through SMP’s arbitrage trading of the SMP, and the maximum and
minimum SMP determines the revenue.

2.2. GBM Model of Revenue Reflecting Uncertainty

The GBM models the probabilistic components by reflecting the uncertainty of the ESS
revenue. The GBM stochastic process model is expressed as follows:

dR = µRdt + σrRdz (2)

where R is the revenue, µ is the expected rate of return on revenue, t is the period, σr is the
volatility of revenue, and z reflects the uncertainty of revenue changes.

The method for generating revenue process in a risk-neutral world is as follows:

dR = rRdt + σrtRdz (3)

σrt =

√
1

m − 1∑m
i=1(xt−i − x)2 (4)

xi = ln
(

Ri
Ri−1

)
(5)

x =
1
m∑m

i=1 rt−i (6)

where the r is the risk-free interest rate, σrt is the year-to-year volatility of revenue, m is the
number of revenue rate observations, xi represents the log returns from day i − 1 to day i,
and x is the mean of xi.

The method for generating the process of revenue is as follows:

ln
(

Rt+dt
Rt

)
=

(
r − 1

2
σr

2
)

dt + σrε
√

dt (7)

Rt+dt
Rt

= exp
[(

r − 1
2

σr
2
)

dt + σrε
√

dt
]

(8)

Rt+dt = exp
[(

r − 1
2

σr
2
)

dt + σrε
√

dt
]

ε ∼ N(0, 1) (9)

where ε represents a random number, and the stochastic process of ln R, the natural loga-
rithm of revenue, is converted into a discrete-time model.

2.3. LSMC Simulation to Determine the Investment Timing

The optimal investment timing of the ESS is determined using an LSMC simulation.
Using the LSMC, the number of simulations required for computation can be reduced
compared to traditional probabilistic simulation methods. Additionally, it allows for the
analysis of interactions with ESS investment costs. The activation value function for the
LSMC option is expressed in Equation (10).

Valact = max(R − ESScost, 0) (10)

where R is ESS’s arbitrage revenue, and ESScost is ESS investment cost.
The profit path is generated using the GBM, and the activation value at option maturity

is calculated. Subsequently, the holding value for the in-the-money path just before maturity
is calculated, and the equation is as follows:

Payo f f (t) = Payo f f (t + 1)× e−rdt (11)

where Payo f f (t + 1) is the activated value at maturity and Payo f f (t) is the activated value
just before maturity. To determine the exact decision for LSMC, a regression analysis
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between revenue and holding value just before maturity is performed using Laguerre
Polynomials. The equation for the regression model using the least squares method is
as follows:

L0(R) = exp(1) (12)

L1(R) = −R + 1 (13)

L2(R) =
1
2

(
R2 − 4R + 2

)
(14)

L3(R) =
1
6
(−R3 + 9R2 − 18R + 6) (15)

To estimate the regression model, the coefficients are obtained by minimizing the
following equation for revenue and holding value:

Valhold = aL0(R) + bL1(R) + cL2(R) + dL3(R) (16)

where Valhold is the holding value and a, b, c, and d are the correlation coefficients. The regres-
sion coefficient is obtained using the estimated regression equation, and the holding value
immediately before maturity is recalculated to determine the activate decision. This process
is reversed until the initial year is reached to determine the optimal investment timing.

The next section describes in detail the method used to determine the optimal invest-
ment timing when the ESS arbitrage revenue exceeds installation costs and expenditures.
This method derives effective strategies for ESS investments and increases renewable
energy utilization.

3. LSMC-Based Method for ESS Investment Decision

The ESS scheduling results are used to set the discharge and charge amounts, and
the revenue from discharge and expenses for charging are calculated using the SMP and
CP data in the Korean electricity market [38,39]. Subsequently, the stochastic component
reflecting the uncertainty of the ESS revenue variation is modeled using the GBM, and the
optimal investment timing of the ESS is determined through an LSMC simulation.

3.1. ESS Scheduling for Arbitrage Revenue Calculation

ESS scheduling significantly affects ESS revenue. The ESS revenue is calculated as the
SMP arbitrage and CP. SMP is the market price applied to power transactions in the Korean
electricity market, which varies by power trading time and represents the market clearing
price for the electricity system. CP is the capacity payment paid to the central dispatch ESS.

To maximize the ESS arbitrage is the objective of scheduling. The equation is as follows:

Maximize
[{(

SMPD
t + CPD

t

)
× EPD

t × RTE
}
−

{
SMPC

t × EPC
t

}]
(17)

ESS daily and annual revenue from arbitrage are as follows:

ESSRev
d = ∑24

t=1

[{(
SMPD

t + CPD
t

)
× EPD

t × RTE
}
−

{
SMPC

t × EPC
t

}]
(18)

ESSRev
Year = ∑365

d=1 ESSRev
d (19)

where ESSRev
d is the ESS daily revenue on day d, and ESSRev

Year is the annual revenue. SMPD
t

is the SMP [$/kWh] during discharge at time t, CPD
t is the CP [$/kWh] during discharging

at time t, EPD
t is the discharge amount [MW] of the ESS at time t, Round Trip Efficiency

(RTE) is the ratio of the electricity generated to the electricity input, SMPC
t is the SMP

[$/kWh] during charging at time t, EPC
t is the charge amount [MW] at time t.

The constraint equations for scheduling are as follows:

SOCinit = SOC f inal (20)
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0 ≤ EPC
t ≤ PCSmax × DoD (21)

0 ≤ EPD
t ≤ PCSmax × DoD (22)

0 ≤ ∑24
t=1 EPC

t × DoD ≤ ESSmax × DoD (23)

0 ≤ ∑24
t=1 EPD

t × DoD ≤ ESSmax × DoD (24)

∑24
t=1 EPD

t ≤ ∑24
t=1 EPC

t (25)

where SOCinit and SOC f inal are the initial- and final-state constraints of the ESS, respec-
tively. State of Charge is expressed by dividing the current available battery capacity by
the total capacity. This is expressed in Equation (20). PCSmax is the maximum Power
Conditioning System (PCS) capacity [MW], ESSmax is the maximum ESS capacity [MW],
and Depth of Discharge (DoD) is the ratio of the discharge capacity to the total capacity of
the ESS batteries.

The ESS output for 4 h limitations are expressed by Equations (21) and (22). The cycle
constraints, which are the 1 Day/1 Cycle constraints considering the battery’s life, are
expressed by Equations (23) and (24).

The constraint that discharges accord to the amount of charge is expressed by
Equation (25).

3.2. ESS Installed Costs

The ESS installation cost includes a storage system and batteries. The storage system
is a DC storage block [$/kWh], DC storage BOS [$/kWh], and the batteries include the
power equipment [$/kW] and system integration [$/kWh]. Other ESS installation costs
include the EPC, project development, and grid integration. Fixed O&M and warranty are
also considered.

The installed cost is the total cost over 20 years; therefore, the Capital Recovery Factor
(CRF) is used. The CRF is a ratio used to calculate the annual amount that can evenly
recover investment over future years and is multiplied by the investment amount. The
CRF equation is as follows:

CRF =
a

ESSinvest cost
=

r(1 + r)n

(1 + r)n − 1
(26)

where ESSinvest cost is the initial investment, a is the annual equal recovery amount, and r is
the discount rate.

3.3. Overview Diagram of the Proposed Method

Figure 1 presents an overview of the proposed optimal ESS investment timing method.
The detailed steps of the paper are as follows:

Step 1: This paper starts with the ESS setting. Information regarding ESS type, capacity,
discharge duration, DoD, and RTE is collected and an ESS is set to conduct
research using the collected information.

Step 2: Perform ESS scheduling to calculate annual revenue. An objective function that
maximizes the revenue from arbitrage trading is used. The constraints on the
economic operation of the ESS are used. Scheduling uses the SMP and CP data.

Step 3: GBM modeling is performed to stochasticize the uncertain ESS revenue. A 20-year
ESS revenue process in a risk-neutral world is created. An analysis of 22 years of
revenue is conducted to determine the annual volatility of the ESS revenue.

Step 4: The investment value for the 20-year revenue scenario is calculated by considering
the ESS investment cost. Subsequently, the estimated T−1 holding value is
calculated by applying a risk-free interest rate in year T.

Step 5: The investment value in T−1 is calculated using least squares regression analysis
of the value in year T and the estimated holding value in year T−1. Least squares
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regression minimizes the sum of the residual squares between the actual and
estimated values.

Step 6: Determine investment decisions based on recalculated investment and holding
values. If the investment value is greater than the holding value, ESS investment
is carried out, and if the holding value is more significant, ESS investment is
not made.

Step 7: Repeating this process calculates the holding value for each revenue process. The
final investment and holding values of the process are compared to determine
the timing of the investment.
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4. Case Study
4.1. ESS Parameter and CRF Setting

ESSs should consider the aging of facilities due to long-term use, and in Korea, an
End-of-Life (EOL) system has been introduced to prepare for the safety of ESSs. EOL is
the battery capacity up to the facility warranty period, considering ESS degradation. The
initial design capacity of the ESS must satisfy the capacity demanded by the owner until
the end of the warranty period, and additional design capacity to extend the warranty
lifespan should not be added during operation [40,41]. In accordance with Korea’s EOL
system and the characteristics of lithium-ion batteries, the DoD is set to 80% [42–44]. The
RTE is the ratio of the electricity generated to the electricity input and is set at 85% based
on the characteristics of lithium-ion batteries [45–47]. A lithium-ion battery ESS is used to
consider the actual investment costs.
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In Korea, a central dispatch ESS is defined as a device that operates based on dispatch
orders of electricity exchange, with a maximum operating time of more than 2 h and a
maximum discharge capacity exceeding 10 MW. In addition, the device only provides
primary reserve services based on separate criteria [48]. In this paper, a long-term ESS
of 4 h is analyzed. Therefore, the ESS capacity is set to 40 MWh. According to the Jeju
long-term BESS contract market introduced in Korea, the PCS capacity is set at 10 MW.
Table 3 represents the ESS parameters.

Table 3. Parameters for the ESS used in the method for determining the optimal investment timing.

ESS Parameter Value

Depth of Discharge 80%
Round Trip Efficiency 85%

ESS Type Lithium-ion battety
PCS Capacity 10 MW

Duration 4 h
ESS Capacity 40 MWh

SOCinit 10%
SOC f inal 10%

The installation cost for a 10 MW/40 MWh lithium-ion battery ESS that can be operated
for 20 years is $4,056,920 [49]. Table 4 lists the ESS installation costs.

Table 4. 2021/2030 10 MW/40 MWh Lithium-ion Battery ESS Installed Costs.

ESS Installed Cost Operating Cost

Total Installed
Cost [$]

Total Installed
Cost [$] Fixed O&M [$] Warranty [$]

2021 1,854,320 1,854,000 102,200 246,400

2030 1,399,800 1,400,000 86,800 160,800

The installed cost applied to the CRF, according to Equation (26) in Section 3.2, is
$311,880.37. The learning rate is applied based on technological advancements. Using
investment costs in 2030, the learning rate is set to 2.76%, and the investment costs after
2030 are the same as those in 2030 [49]. Figure 2 shows the installed cost with the CRF
applied according to the learning rate.
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4.2. Arbitrage Revenue for Lithium-Ion Battery ESS Using Scheduling

Linear programming solvers are used for ESS scheduling optimization to calculate the
ESS revenue. The optimization uses the objective function and constraints described in
Section 3.1.

Table 5 lists the charging and discharging amounts based on the 1 January 2022.
Charging occurs during low-SMP hours at 12:00, 13:00, 14:00, and 15:00, and discharging
occurs during high-SMP hours at 19:00, 20:00, 21:00, and 23:00.

Table 5. ESS charging and discharging amounts on 1 January 2022.

Time [h] Charge and Discharge
Amount [MW] Time [h] Charge and Discharge

Amount [MW]

1:00 - 13:00 −10
2:00 - 14:00 −10
3:00 - 15:00 −10
4:00 - 16:00 -
5:00 - 17:00 -
6:00 - 18:00 -
7:00 - 19:00 2
8:00 - 20:00 10
9:00 - 21:00 10
10:00 - 22:00 -
11:00 - 23:00 10
12:00 - 2 24:00 -

Figure 3 shows the ESS charging and discharging amounts from 1 January 2022 to
7 January 2022. On 5th January, charging and discharging are not performed when profits
are not generated from arbitrage, whereas on 1st January, charging and discharging are
performed when profit is generated from arbitrage. The discharge capacity does not exceed
32 MW due to the DoD constraints. In addition, the number of charge and discharge cycles
is limited to one due to the 1 Day/1 Cycle constraints.
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Using Equations (18) and (19) in Section 3.1, the revenue over 22 years is calculated to
determine the revenue volatility required for the GBM model computation. Table 6 presents
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the annual revenue for ESS arbitrage from 2002 to 2023. The highest revenue is $403,451.64
in 2010, and the lowest revenue is $54,903.17 in 2016.

Table 6. Annual revenue from ESS arbitrage from 2002 to 2023.

Year Annual Revenue [$] Year Annual Revenue [$]

2002 227,039.90 2013 165,752.31
2003 235,138.02 2014 95,398.56
2004 201,955.34 2015 68,352.95
2005 225,728.24 2016 54,903.17
2006 261,268.71 2017 94,886.42
2007 200,328.90 2018 67,515.76
2008 353,412.06 2019 78,605.08
2009 248,704.85 2020 101,959.41
2010 403,451.64 2021 80,359.08
2011 258,419.64 2022 256,380.77
2012 282,986.01 2023 349,631.05

4.3. GBM Model Reflecting ESS Revenue Uncertainty

To generate the ESS revenue process, the initial revenue R1 is set at $349,631.05 in 2023.
Setting the variables in Equations (3)–(6) in Section 2.2 generates revenue in a risk-neutral
world. The risk-free interest rate r is 3.627%, which is the 180-day average for the Korea
Overnight Financing Repo Rate [50]. The annual revenue volatility σrt for ESS arbitrage is
43.368%, as calculated from the annual returns in Table 6. Table 7 shows the logarithmic
returns xi of the ESS over 21 years.

Table 7. ESS log returns from 2003 to 2023.

Year ESS Log Return Year ESS Log Return

2003 3.50% 2014 −55.24%
2004 −15.21% 2015 −33.34%
2005 11.13% 2016 −21.91%
2006 14.62% 2017 54.71%
2007 −26.56% 2018 −34.03%
2008 56.77% 2019 15.21%
2009 −35.14% 2020 26.01%
2010 48.38% 2021 −23.81%
2011 −44.55% 2022 116.02%
2012 9.08% 2023 31.02%
2013 −53.49%

To convert the stochastic process of the natural logarithm of the ESS revenue into a
discrete-time model, logarithmic returns are calculated according to Equations (7)–(9) in
Section 2.2. Using the GBM model in MATLAB, 1,000,000 revenue scenarios are generated.
Random numbers ε from a normal distribution are generated using the random function.
Figure 4 illustrates the ESS revenue process over 20 years using the GBM. All Revenue
Paths refer to the individual revenue scenarios; Revenue Mean denotes the mean of the
generated revenue.
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4.4. Determining of Optimal ESS InvestmentTiming

The option activation rate of LSMC determines the optimal investment timing of
the ESS. The LSMC method approximates the optimal investment policy at each exercise
opportunity using least squares regression and determines whether to exercise early based
on approximation. It estimates the expected payoff for ESS investors using the least squares
method. Simulation is used as a valuation and risk management of ESSs [51].

The investment value is calculated by Equation (10) in Section 2.3. R in Equation (10)
represents the 20-year ESS revenue generated through the GBM in Section 4.3, and the
ESScost are shown in Figure 2 in Section 4.1. The estimated T−1 holding value is calculated
by Equation (11). Subsequently, the investment value in T−1 calculated using least squares
regression analysis of the value in year T and the estimated holding value in year T−1.
Least squares regression minimizes the sum of the residual squares between the actual and
estimated values. The regression analysis formula utilizes Equations (12)–(16). Figure 5
presents the results of the LSMC simulations.

The horizontal axis represents years, and the vertical axis represents the option activate
rate. Among the 1 million simulations, the highest option activate rate is 30.1% in 2027, and
the frequency of option occurrence decreases as the years go on. From 2024 to 2025, the
LSMC option is not activated. The earned profit does not exceed the installed cost. Table 8
presents the active options ratios by year.
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Table 8. Option activation rate of the proposed LSMC model.

Year Option Active Rate Year Option Active Rate

2024 0% 2034 1.8%
2025 0% 2035 1.5%
2026 21.0% 2036 1.2%
2027 30.1% 2037 1.0%
2028 15.3% 2038 0.9%
2029 8.8% 2039 0.8%
2030 5.5% 2040 0.7%
2031 4.2% 2041 0.6%
2032 3.1% 2042 0.5%
2033 2.4% 2043 0.4%

5. Conclusions

This paper is used for ESS investors as a decision-making tool to determine investment
timing. Previous study has shown some limitations in using option theory to find the timing
of ESS investments. It has simply found that investment is delayed as the operating period
increases due to higher volatility in revenue. Furthermore, it has shown that investment
is delayed as the cost of ESS investment increases, without considering the learning rate
and actual investment cost [18]. Therefore, the optimal investment timing is determined
through a least squares simulation model considering these factors; economical and reliable
ESS scheduling is used for revenue calculation, and the optimal investment timing is
determined using the regression model that considers actual investment costs and the
learning rate. This paper analyzes the optimal investment of a 10 MW/40 MWh lithium-ion
BESS and addresses the following conclusions:

• Analyze revenue through economic ESS operational constraints in the Korean electric-
ity market, and consider future revenue uncertainty using GBM.

• Determine the optimal investment timing of ESSs using LSMC simulation considering
the actual investment cost.

ESSs are important for managing volatile energy resources. Delays in ESS installation
can lead to problems in power systems because of volatile resources. The proposed model
provides advantages for expanding ESS facilities. The installation of ESSs through the
government’s long-term contract market is also important. However, ESS investors should
be able to invest in the facilities themselves. The ESS can be installed on time using LSMC
models, enabling a stable power system operation.
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This paper focuses only on a lithium-ion BESS for 4 h. The role of the ESS varies
depending on the period, and simulations for various timeframes should be considered. A
short-term ESS charges and supplies power within a brief period or shifts surplus power
to other times. A long-term ESS resolves the limitations of renewable energy output. A
seasonal ESS allows for energy storage and supply on a seasonal basis, contributing to
power planning. To solve the problems of power systems, appropriate installation of
short-term, long-term, and seasonal ESSs is required. Further research is required to apply
and simulate the proposed method using various ESS durations.

The government is endeavoring to install ESS facilities in a timely manner. However, in
the Korean power market, installing investment-centric ESSs is problematic. The proposed
method for determining optimal investment timing using arbitrage provides investment
decisions to ESS investors. Even in a cost-oriented fuel market, an ESS stabilizes the power
system. Future research should investigate the optimal investment timing of power-to-X
such as power-to-gas, and power-to-heat using an ESS.
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