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Abstract: The selection of multiple contingency scenarios is a key task to perform resilience-oriented
long-term planning analyses. However, the identification of relevant multiple contingencies may
easily lead to combinatorial explosion issues, even for relatively small systems. This paper proposes an
effective methodology for the identification of relevant multiple contingencies and their probabilities,
suitable for the long-term resilience analysis of large power systems. The methodology is composed
of two main pillars: (1) the clustering of lines that are more likely to fail together, to reduce the
computational complexity of the analysis exploiting historical weather data and (2) the probability-
based identification of multiple contingencies within each cluster, where the contingency probability is
computed applying the copula theory. Tests performed on a portion of the Italian EHV transmission
system confirm the validity of the clustering results compared against historical failure events.
Moreover, the copula-based algorithm for contingency probability estimation passes the tests carried
out on relatively large clusters with very low error tolerance. The method successfully pinpoints
critical multiple contingency scenarios and their likelihoods, making it valuable for assessing power
system resilience over long-term horizons in support of resilience-oriented planning activities.

Keywords: contingencies; clustering; threats; vulnerability; resilience

1. Introduction

Traditionally, power system reliability assessment has focused on identifying potential
failure scenarios to quantify the ability of the system to deliver energy to customers within
specified standards [1]. However, resilience assessment goes beyond this, as it requires
pinpointing in a rapid and robust way the most representative contingency scenarios, i.e.,
those disruptions that are most likely to occur and have a significant impact [2]. In recent
years, resilience has been investigated in many research activities, as shown in [3,4]. This is
critical, because resilience assessment requires analyzing a multitude of potential disrup-
tions, from natural disasters to equipment failures. In the literature, most references [2,3,5]
adopt a Monte Carlo sampling (MCS) method to generate failure scenarios, i.e., the failures
(OFF state) of components are extracted considering specific failure probabilities in the
sampling process, also including correlations among component failures such as during
severe weather events. Such a method is very time consuming, especially for large power
systems, even though variance reduction techniques can be used to reduce the time to
convergence, such as the importance sampling [6] or stratified sampling techniques [7].
In [8], a cross-entropy (CE)-based optimization process is combined with nonsequential
Monte Carlo simulation (MCS) in order to obtain an auxiliary sampling distribution, which
can minimize the variance of the reliability index estimators. Other references suggest
the adoption of the subset simulation method, either alone [9] or in combination with CE
optimization [10], to speed up the conventional MCS. Alternatively, “analytical” methods
exist, such as Markov cutset methods [11], state space methods [12] and enumeration
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methods [13]. The first methods, based on the application of Markov processes to cutsets,
require the elaboration of the Markov transition matrix from normal to adverse weather,
and their search space is intrinsically limited by the maximum cardinality (hardly higher
than 3) of the considered cutsets. The second category of methods is based on a state-space-
pruning-based intelligent search and requires the tuning of the parameters for heuristic
algorithms to select the most critical contingencies. Enumeration methods limit the number
of contingencies to be analyzed according to specific criteria (e.g., probability of occurrence,
severity); they are simpler than state space methods and their search space may be larger
than the one of the Markov cutset methods. MCS methods are usually more time consum-
ing than enumeration methods, but they are also more accurate in case of a sufficiently high
number of samples to assure its convergence. Moreover, traditional enumeration methods
are limited to a set of low-order contingencies due to combinatorial explosion issues; thus,
they cannot capture the higher-order contingencies that are usually the focus of resilience
analyses. Some techniques have been proposed to identify multiple contingencies, such as
minimum cutsets [14], random chemistry [15] and graph theory [16], but they usually rank
the contingencies only based on their impacts, thus overlooking their likelihood, which
could be derived from a historical series of past extreme events. Recently, semi-analytical
Monte Carlo methods for rare event sampling have also been proposed in the literature [17]
to join the benefits of these two categories of methods (the speed of analytical methods with
the accuracy of Monte Carlo sampling), even if no application to resilience analyses has
been reported and only low-order contingencies have been simulated in the case studies.

The added value of the present paper is to propose an innovative method to identify,
and estimate the long-term probability of, the most representative multiple contingencies
potentially affecting grid components in large power systems during extreme weather
events while also exploiting data from past weather events. This represents an important
step forward in the application of enumeration methods in resilience assessment.

The paper is organized as follows: Section 2 briefly presents the requirements and the
architecture of the proposed methodology. Sections 3 and 4 describe the two main pillars
composing the methodology, namely the clustering of grid components and the probability-
based selection of the contingencies, respectively. Section 5 discusses some tests on the
methodology on a realistic set of lines from a real-world power system. Section 6 concludes.

2. The Proposed Methodology

This section presents the context and the general approach of the proposed contingency
identification method.

2.1. The Context: The RELIEF Risk-Based Resilience Assessment Framework

Resilience was defined by CIGRE WG C4.47 [18] as “the ability to limit the extent,
severity and duration of system degradation following an extreme event”. Accordingly,
analyzing resilience implies the modeling of the complex relationships between the power
system and the (natural and human) environment. In fact, a resilience assessment process
begins by modeling the root causes (e.g., wet snowstorm) of the failures, i.e., natural
or man-made threats. To this goal, Figure 1 shows the conceptual bowtie model used
to show the connections between threats, component vulnerabilities and power system
contingencies and their impact within the risk-based resilience assessment framework
RELIEF (REsiLIEnce measures For the grid) developed by RSE [1,19].
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Figure 1. Bowtie conceptual scheme of the RELIEF risk-based resilience assessment framework [19].

A thorough discussion of this conceptual scheme is presented in [19]. It is worth
recalling that the threats (indicated on the left) strike power system components via stress
variables (e.g., wind speed for wind threat) and they provoke the faults of components
by exploiting their vulnerabilities. These faults can lead to a contingency whose impact
also depends on the response of protection, control, defense and automation systems. The
impact of the initial contingency on other vulnerabilities of the power system may lead to
cascade trippings and, ultimately, to a blackout. The barriers in Figure 1 try to avoid or at
least to make less probable the process from threats to load disruptions, e.g., by reducing
threat severity or decreasing component vulnerabilities to the threats.

In this approach, the extended concept of risk meant as the quadruple {threat, fault,
contingency, impact} [19] is a key enabler to quantitatively assess power system resilience,
and vulnerability is seen as the property that provides the causal nexus between any
couple of quantities in the bowtie, i.e., threat, fault, contingencies and impacts. The bowtie
model can be applied in different contexts, from planning to operation, considering their
respective uncertainties.

Besides the innovative concept of extended risk, other aspects that make the RELIEF
framework different from the resilience assessment methodologies from the literature are
(1) the adoption of an analytical approach to compute the risk indicators for resilience
quantifications, (2) the applicability to different time horizons (from long-term planning
to operational planning and quasi-real-time operation) and (3) the exhaustive library of
models for components’ vulnerabilities and countermeasures with reference to a large
variety of threats. Most of the conventional resilience assessment methods rely on the
Monte Carlo sampling method and on statistical models for asset vulnerabilities and
focus on few threats and on specific time horizons (either for planning or operation). On
the contrary, the choice of a suitable probabilistic model for the threat in the analytical
RELIEF approach allows for an easy application to different time horizons. Moreover, the
availability of analytical models for countermeasures makes RELIEF suitable to quantify
the technical benefits of the countermeasures in terms of an increase in the failure return
periods of the asset.

Some aspects of the framework have been validated in case of the availability of a
sufficient amount of historical data; for example, the component failure return periods
for specific threats (e.g., wet snow) have been validated against the statistics from past
recorded failures [1].
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In particular, the present paper focuses on the description of the methodology to
identify relevant contingencies and their probabilities (represented in the central part of the
bowtie in Figure 1) for the long-term power system planning application context [20].

2.2. Requirements for Application to Large Systems

The methodology aimed at identifying relevant contingencies and calculating their
probabilities of occurrence should meet the following requirements for its successful appli-
cation to large power systems:

• Ensure scalability and computational efficiency for high values of the number of lines
to be treated (for example, a whole department of the Italian transmission system
contains up to 900 lines);

• Consider the correlation between failures, in fact that the same weather event (e.g.,
wet snowstorm or strong wind) can affect several lines in the same time frame.

The methodology proposed herein is general and can be applied to any threat and any
component. For exemplification purposes, the paper considers the wet snow threat, which
is responsible for a significant amount of the annual energy not supplied to customers in
Italy [13]. The system components most affected by such a threat are overhead lines (OHLs).

2.3. Overview of the Proposed Methodology

The proposed methodology is divided into four stages within two major pillars,
detailed in the following sections.

Pillar 1: Clustering of grid components

• Correlation Matrix Calculation (stage 1): This stage accounts for the possibility of
multiple line failures due to a single event (like wet snow events). A correlation matrix
is built, based on historical weather events (see Section 3.1), to quantify the likelihood
of lines failing together during a specific time frame (e.g., an hour).

• Highly Correlated Line Clustering (stage 2): Based on the correlation matrix, this
stage identifies groups of lines such that multiple line failures within each group are
more likely than between groups (see Section 3.2). This clustering helps focus the
contingency identification process on the most probable combinations of line failures.

Pillar 2: Identification of relevant contingencies and their probability

• Contingency Identification within Clusters (stage 3): Within each identified cluster,
this stage pinpoints relevant contingencies, representing specific combinations of line
failures that have a significant probability of occurring together (see Section 4.3). To
ensure efficiency, negligible probability scenarios are excluded.

• Multiple Contingency Probability Estimation (stage 4): This stage calculates the probabil-
ity of each identified contingency within the clusters, exploiting the correlation between
line failures and the individual failure probabilities of each line (see Section 4.4).

Figure 2 reports the workflow of the proposed methodology for the efficient enu-
meration of multiple contingencies. It is worth pointing out that the component failure
probabilities in input to the process are obtained by combining weather data and infras-
tructure vulnerability models as recalled in Section 4.1.
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Figure 2. Workflow of the proposed methodology for the efficient enumeration of multiple contin-
gencies for resilience analyses.

3. Clustering of Correlated Lines

This section presents stage 1 (correlation matrix computation) and stage 2 (clustering).

3.1. Calculation of the Correlation Matrix

The starting point for building the correlation matrix is an [Nevents × N] event matrix
M evaluated as in (1), where Nevents is the number of relevant weather events and N is the
total number of lines considered in the analysis. An event is considered relevant if a specific
intensity threshold has been overcome at least for one line.

M(i, j) =
{

0 if i-th event does not strike j-th line
1 if i-th event strikes j-th line

(1)

Matrix M allows to compute the event table, which reports the number of weather
events when the intensity threshold has been overcome in the lines, see example referring
to lines L1 and L2 in Table 1.
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Table 1. Event table for lines L1 and L2.

L2 Not L2 Totals

L1 n11 n10 n1*

not L1 n01 n00 n0*

Totals n*1 n*0

The meaning of the symbols in Table 1 is explained below:

• n11 is the number of severe events for which both lines L1 and L2 are affected by
a weather variable exceeding a threshold Th (e.g., in m/s for wind and kg/m for
wet snow);

• n10 is the number of severe events for which line L1 is affected while line L2 is not
affected by a weather variable exceeding a threshold Th;

• n01 is the number of severe events for which line L2 is affected while line L1 is not
affected by a weather variable exceeding a threshold Th;

• n00 is the number of severe events for which neither line is affected by a weather
variable exceeding a threshold Th.

The linear correlation coefficient between lines L1 and L2 is computed as in (2).

φ12 =
n11·n00 − n10·n01√

n∗1·n∗0·n1∗·n0∗
(2)

Repeating the computation in (2) for any pair of lines, the algorithm builds the line
correlation matrix R for the whole set of lines, R(i, j) = φij [20].

It is worth noting that the correlation analysis is constrained by the limited avail-
ability of data on actual line failures. To address this challenge, the correlation matrix R
is constructed by analyzing past weather events. Rather than directly counting compo-
nent failures, events are identified as critical when the stress placed on the lines by the
weather exceeds a predefined threshold based on international and national standards
(e.g., 1.5 kg/m for wet snow according to the Italian standard CEI 11.4 [21]). This approach
captures potential damage scenarios where lines are more likely to fail together since they
are exposed to the same extreme weather conditions.

This approach is general and can also be applied to other natural threats, not necessar-
ily those that are weather-related (e.g., earthquakes), by indicating the lines where a specific
intensity threshold of the associated stress variable (e.g., the peak ground acceleration in
case of earthquakes) is exceeded for historical events.

3.2. Clustering

The identification of suitable line clusters can significantly improve the efficiency of
estimating long-term resilience indicators. As recalled above, clusters are defined as sets of
lines such that, within each set, multiple contingencies are likely to occur. Accordingly, the
identification of multiple contingencies will be carried out within each cluster, neglecting
inter-cluster contingencies.

Clustering leverages dimensionality reduction, which involves a tradeoff between
computational speed and accuracy. In fact, as the number of lines within each cluster
increases, the required computational time grows exponentially. On the other hand, if
the clusters selected are too small, the risk of missing significant multiple contingencies
(involving lines from more than one cluster) increases. Therefore, selecting the maximum
cluster cardinality, compatible with computational constraints, is essential for achieving
both efficiency and accuracy.

Moreover, the correlation matrix R plays a crucial role in this process: it captures the
historical impact of weather events on different sets of lines, allowing to choose clusters
that optimize this tradeoff. To meet such requirements, the defined clustering algorithm
allows to:



Energies 2024, 17, 2028 7 of 20

• Create clusters with a user-defined threshold of minimum internal correlation between
the lines in each cluster;

• Create clusters with a maximum cardinality (NMAX, LI);
• Subdividing clusters that are too large (with cardinality higher than NMAX, LI) into

smaller clusters of maximum cardinality NMAX, LI based on topological information.

The steps that compose the algorithm are the following:

• Step 1: identification of the clusters based on the correlation matrix R;
• Step 2: identification of subclusters using topological indications;
• Step 3: aggregation of individual clusters through a mix of topological indications and

correlation factors.

3.2.1. Step 1: Clustering of the Lines Based on the Correlation Matrix R

Step 1 applies an agglomerative hierarchical clustering technique [22] to group the
lines together based on the correlation matrix R. This technique is chosen because it does
not require a predefined number of clusters, which is advantageous in situations where
the optimal number of groups is unknown. Additionally, hierarchical clustering allows for
easy interpretation of the identified groups.

Two metrics are used in the following steps:

• The cophenetic distance [23] between two groups, which is a matrix that summarizes
an indication of the distance between the elements of the two clusters;

• The silhouette coefficient [24], which represents how correctly a point is classified
within a given cluster.

The lines are grouped into clusters using the information of the N × N correlation
matrix R:

1. The parameters of minimum value of the intra-cluster average correlation (ρintra
min,s1)

and the distance limit between two distinct clusters (Dinter
max,s1) are set;

2. The distance matrix between the lines is calculated, defined as D = 1—R’, where R’ is
the correlation matrix with all zeros set along the main diagonal and 1 is an N × N
matrix entirely filled with ones;

3. N groups are defined, each containing one line of the set;
4. Lines i and j are identified s.t. D(i, j) = min(min(D));
5. Lines i and j are grouped into a new group “N + 1”;
6. The cophenetic distance is calculated between the group made up of i and j and the

remaining N − 2 groups (excluding the groups related to rows i and j). Ψ is defined
as the set of N − 2 groups. This distance is defined as max(max(D([i j], h)));

7. The matrix D is updated, in particular D(N + 1, h) and D(h, N + 1) with h ∈ Ψ;
8. The rows and columns associated with the original groups i and j are deleted;
9. Steps 3 to 7 are repeated until one of the following conditions occurs:

• The minimum value of the intra-cluster mean correlation (calculated as the
average value of the linear correlation coefficient between any pair of lines
belonging to the same cluster) becomes less than a threshold ρintra

min,s1;
• The minimum distance between two distinct clusters becomes greater than a

threshold Dinter
max,s1.

10. Steps 2–9 are repeated on several pairs of parameters ρintra
min,s1, Dinter

max,s1, defined as the
Cartesian product of two sets containing reasonable values for both of the aforemen-
tioned parameters, in order to select the pair that provides the best performance
indicator according to the indications at step 11;

11. The pair of parameters that ensures the highest performance index is selected, indi-
cated as the weighted sum of the 5% quantiles of the silhouette coefficient and the
internal correlation value of the non-single clusters. This guarantees the best sepa-
ration between the groups and at the same time a good cohesion within the groups.
Values between 0.50 and 0.70 for the silhouette indicate reliable groups, while values
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between 0.7 and 1 very reliable groups (as they are cohesive and well separated from
the others).

3.2.2. Step 2: Splitting of Wide Clusters According to Topological Information (Cutsets)

Step 1 only takes into account the information provided by the correlation matrix: this
can lead to clusters with a cardinality (i.e., a number of elements) much greater than the
maximum desired value. This problem is addressed in Step 2.

The rationale of this step is to split clusters exceeding a certain size threshold (NMAX, LI)
into smaller clusters, making sure that the lines, whose simultaneous tripping causes the
disconnection of primary substations, are kept in the same cluster (because such events
highly affect resilience indicators such as expected energy not served). This sub-division
leverages topological information about the grid to ensure the resulting clusters maintain
meaningful relationships between lines.

In particular, the following sub-steps are performed:

• The cutsets of lines that lead to the disconnection of the substations (primary sub-
stations, PSs) of the network portion are identified. Then, the connectivity matrix
A of dimensions N × NPS is defined where N is the number of lines and NPS is the
number of PSs of the considered network, s.t. A(i, j) = 1 if PS j is terminal 1 of line i
and A(i, j) = −1 if PS j is terminal 2 of line i, A(i, j) = 0 otherwise;

• For each PS j, a vector Xj of dimensions NPS × 1 is set such that Xj(j) = −1, it is
1 otherwise;

• Yj = A × Xj gives a vector NL × 1 where the non-zero terms represent the minimum
subset of lines which cuts PS j;

• For each cluster larger than NMAX, LI:

i. The sub-matrix S of matrix A corresponding to the lines belonging to the cluster
to be disaggregated is obtained;

ii. The columns of S are sorted according to the decreasing number of non-zero
terms. We obtain the Sord reordered matrix;

iii. The sub-cluster is identified as the set Lsc of lines associated with the first
column of the Sord matrix. The lines of the sub-cluster Lsc are discarded from
the lines of the original cluster Lco, redefining the matrix S on the basis of the
set Lco’ of the remaining lines to be clustered where card(Lco’) = card(Lco) −
card(Lsc), “card” being the “cardinality” operator which indicates the number
of elements of the set.

iv. tems ii and iii are repeated on the new matrix S, updating the set of Lco’ lines to
be clustered until the set Lco’ has a cardinality lower than or equal to NMAX, LI;

v. The subclusters are reaggregated on the basis of the following criteria:

a. The subclusters in pairs form a cutset of the network;
b. The sum of the dimensions of the reaggregated subclusters are at most

equal to NMAX, LI.

Obviously, at the level of this step it is possible to introduce additional data (e.g., the
distance in km between the lines or the proximity of the substations belonging to each
sub-cluster), which allows further aggregation of sub-clusters in order to limit the loss of
information that this step necessarily entails. Important outcomes of step 2 are the NG
clusters and the correlation matrix MR among the NG clusters: this matrix results from the
application of steps 1 and 2 to the original correlation matrix R.

3.2.3. Step 3: Cutset-Oriented Re-Aggregation of Clusters

After the first two steps, there are still two aspects to consider:

• There are still some groups composed of a single line that have high correlations with
already clustered lines;

• There may be relatively small clusters that can be increased with a small decrease in
the intra-cluster correlation.
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This step thus has the following two purposes:

• To increase cluster size with little detriment on cluster internal correlation;
• To aggregate unpaired lines with already clustered lines.

Given NG clusters from step 2:

1. For each cluster i1 = 1 . . . NG − 1, the clusters i2 = i1 + 1 . . .. NG are analyzed and the
following are calculated:

a. The mean value of the correlation between each pair of clusters i1 and i2 (defined
as the arithmetic mean of the absolute values of the linear correlation coefficients,
each calculated on a different pair of lines, one belonging to cluster i1 and the
other to cluster i2) reported in position (i, j) of matrix MR;

b. The maximum value of the correlation between two lines of clusters, i1 and i2;
c. The best candidates for aggregation between clusters are identified according

to the following criteria:

i. Clusters that fully define a cutset (topological clusters) and have an

average inter-cluster correlation at least equal to a fixed value ρ
inter,topo
s3 ;

ii. Clusters that have an inter-cluster correlation no less than a fixed value
ρinter

s3 ;
iii. Topological clusters that have a maximum correlation value at least

equal to a fixed value equal to ρ
inter,topo
max,s3 .

d. Two matrices, M1 and M2, of dimension NG × NG are defined s.t. in position
(i, j) if they contain 1 or 0, respectively, depending on whether the following
criteria are verified or not:

i. criterion c.i or c.ii for matrix M1;
ii. criterion c.iii for matrix M2.

2. The conditionality matrix MC between clusters i1 and i2 is also defined such that
MC(i1, i2) = 0 if the sum of the dimensions of clusters i1 and i2 is greater than a defined
value (parameter NMAX, LI); it is 0 otherwise;

3. For the candidates selected in point 1.c, the Matrix_total of the performance indicators
is calculated as in (3):

Matrix_total = [(1 − α) · MR + max(M1, M2) · (α)]× MC (3)

where α is the weight given to the cutset-based topological clustering;
4. The previous steps 1 and 2 are repeated until:

a. the residual correlation between the “single” groups and the multi-line groups
does not fall below an established threshold (ρinter

residual,s3), or;
b. the maximum number of iterations Nit

max,s3 is exceeded.

3.3. Management of Greenfield Lines and Partially Buried Lines

The clustering approach so far presented relies on historical data describing the stress
of past weather events on grid assets. It may be required to adopt the methodology
to the scenario of new lines in the planning stage (green field lines), for which similar
historical data are not available, and to the scenario of the partial burying of existing lines,
which would prevent the buried portions of lines from being affected by the wet snow
weather threat.

To this aim, considering the planning intervention as accomplished, the steps of the
re-clusterization with Npi partially buried lines and Ngreen greenfield lines are shown below:

1. Consider the clusters Ch h = 1 . . . NC identified in the pre-intervention analysis;
2. Modify matrix M in the columns of the partially buried lines q = 1 . . . Npi;
3. The partially buried lines that are part of singleton clusters in the pre-intervention

analysis remain in the singleton cluster;
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4. Increase the number of matrix M columns by adding the columns of greenfield lines
i = 1 . . . Ngreen (on the basis of the hypothetical layout of the greenfield lines, the events
of exceeding the threshold in the greenfield lines are counted considering the same
weather events of the pre-intervention analysis);

5. Calculate the correlation coefficients Rqj between each partially buried line q = 1 . . .
Npi not belonging to singleton clusters and the other lines j;

6. Calculate the correlation coefficients Rij between the greenfield line i = 1 . . . Ngreen and
the other lines j;

7. Greenfield line i is attributed to cluster h*, which has the highest median value calculated

on the absolute values of the coefficients Ris with s ∈ Ch, i.e., max
h=1...Nc

[
median

s∈Ch
(|Ris|)

]
;

8. Steps 6 and 7 are repeated for all greenfield lines.

In order to assure the consistency of the risk indicators before and after the application
of the specific resilience enhancement measure (i.e., the addition of a greenfield line or the
burying of a line), the new combinations involving greenfield lines and existing lines are
not subject to the minimum threshold ε normally applied to contingency probability and
described in Section 4.3, while combinations involving partially buried lines are subject to
the minimum probability threshold ε.

4. Selection of Contingencies and Probability Computation

While selecting clusters with a limited number of lines (i.e., line cardinality) helps
control the combinatorial explosion, analyzing all possible combinations of line failures
within even these smaller clusters (typically 10–15 lines) still represents a computationally
tough task.

This section presents an effective methodology based on the total probability theo-
rem and copulas of binary variables to efficiently filter out multiple contingencies that
is also suitable for large power system applications. With reference to Section 2.3, this
section describes stage 3 (cluster-based contingency identification) and stage 4 (contingency
probability calculation) of the methodology.

Three steps compose the algorithm for contingency probability calculation and contin-
gency selection:

1. Computation of the probability of the “AND” event of multiple line trippings;
2. Iterative filtering based on total probability theorem;
3. Calculation of the probability of occurrence of retained contingencies.

A preliminary discussion on the probability modeling of multiple contingencies is
proposed in the following.

4.1. Probabilistic Modeling of Multiple Contingencies

The evaluation of the probability of multiple contingencies is based on the analysis of
historical data series related to past weather events: for recorded past events, the goal of
such analysis is to identify the set of affected lines during the time interval (typically a few
hours) when grid assets were exposed to the weather event. These data must be processed
in a proper way to identify the actual multiple failure events and their probabilities in the
chosen time interval (e.g., one hour).

On an hourly basis, it is also possible to assume the mutual exclusivity of the contin-
gencies (due to the reduced time interval considered). Therefore, the following condition
holds: the hourly probability of a line failure must be equal to the sum of the hourly
probabilities of the contingencies that foresee the failure of that line.

For illustrative purposes, consider Figure 3: in case (a), two single failure events occur
involving lines L1 and L2 in different periods of year Y (February and March), while in
case (b), a contingency N-2 occurs, involving lines L1 and L2, during the same weather
event in February. For the purposes of calculating the resilience indicators, it is of interest
to evaluate the probability of the multiple events as in case (b). To do this, it is necessary to
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assess the probability of failure focusing on a limited time interval (for example, one hour).
In fact, if the probabilities of the combinations of events were calculated starting from the
annual probabilities of line failure, the combinations would be evaluated on an “annual
basis” including situations analogous to case (a), i.e., considering as multiple contingencies
all the sets of single trips that occurred in the course of the year under analysis. Conversely,
focusing on the average hourly probability of failure allows to evaluate the probability of
“real” multiple contingencies, i.e., those that comprise the simultaneous loss (due to the
same weather event) of several network components, as in case (b).

Figure 3. Difference between (a) two failures occurring at different time instants over the year and (b)
a N-2 contingency.

The hourly failure probability of a line can be estimated using its annual failure return
period, obtained through the extreme value analysis of historical or prospective weather
data. This estimation assumes an underlying exponential distribution with a constant,
year-averaged failure rate (λ): this is a reasonable assumption for long-term studies. So, the
average hourly probability of the failure of a generic line j, Pj,1hr, is given by (4).

Pj,1hr = Pj,1yr ×
1

8760
(4)

where Pj,1yr represents the annual probability of failure of generic line j, i.e., the inverse of the
return period (RP) of failure of the line. The value of Pj,1yr is obtained by combining the line
vulnerability model with the probabilistic model of the weather threat variables [1,13,20].

Historical weather data, along with the average hourly failure probabilities (P1hr) for
each line, estimated using weather data and vulnerability models, is then used to derive
the average hourly probabilities of various contingencies, as described in the following.

In the sequel, a contingency is meant as a combination (AND event) of line trippings
and non trippings due to the threat actions, occurring within a defined time interval of
analysis (e.g., one hour).

4.2. Copula-Based Computation of Contingency Probability

The mathematical formulation employed for the probability calculation relies on copu-
las [25]. Copulas are versatile in describing complex dependences among random variables
compared to alternative methods such as conditional distributions. This characteristic
makes them well suited for this application, where the relationships between the variables
might not be straightforward. A specific copula-based formulation is used to calculate prob-
abilities and a specific computational algorithm is employed for evaluation as described in
the following.

Let us define two types of events:
Fj = {line Lj tripping due to initiating event};
Tj = {overcoming of a critical weather variable threshold at line Lj}.
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Some reasonable assumptions are proposed in (5).

P =
(

Fj ∩ not Tj
)
= 0

P(Fj|T j) = 1
P(Fj|T j, . . . , Tn ) = P(Fj|T j)

P(not Fj ∩ Tj) = 0

(5)

Under these assumptions, it is possible to derive the expression in (6) to compute the
probability of the AND event related to the failures of n lines:

P(F1 . . . .Fn) =
n

∏
i=1

P(Fi)×
P(T1 . . . Tn)

∏n
i=1 P(Ti)

(6)

Two terms are kept separate in (6), i.e., the failure probabilities of the lines P(Fi) and
the correlation of the weather event on the n lines given by ratio P(T1 ...Tn)

∏n
i=1 P(Ti)

. Under the
assumption that the correlation of line failures can be assimilated to the correlation of
events of weather threshold exceedance on the same lines, Equation (6) can be modeled
using the copula theory as follows.

Each line L is associated with a binary variable X such that X = 0 when the line is in
service and X = 1 when the line is failed (failure event F).

Therefore, a Bernoulli probability mass function (pmf) can be associated to the variable
X so that conditions in (7) are fulfilled:

P
(
Xj = 0

)
= 1 − P

(
Fj
)

P
(
Xj = 1

)
= P

(
Fj
) (7)

where P(Fj) is the probability of a failure in the j-th line. In the sequel, for the sake of brevity
the following notation is used: P(Fj) = pj.

With a copula-based notation, the probability of the AND event of line failures in
(6) can be computed as the copula cumulative distribution function (CDF) evaluated at
pi values, considering a suitable copula family. Different family copulas have been tested
(e.g., empirical, Clayton and Frank copulas), and we have found that the Gaussian copula
is the best tradeoff between accuracy and computational speed for a reliable evaluation of
the multiple contingency probabilities.

The numerical computation of the copula CDF represents an important topic in recent
research [26,27] because the accuracy of such computation can decrease rapidly when the
dimensions of the copula, i.e., the number of involved variables, increases. Specifically,
for applications to realistic power systems, one can find line clusters with cardinalities in
the range of 10–20, which can jeopardize the accuracy of commonly used algorithms, such
the one described in [26]. Thus, making the methodology suitable for applications to real
power systems requires the adoption of more recent techniques. Specifically, the proposed
methodology exploits Botev’s tilting method [27] to accurate evaluate the copula CDF.

4.3. Filtering of Failure Combinations Based on Total Probability Theorem

The calculation of CDF values via copulas allows to filter out contingencies with
negligible probability by exploiting the total probability theorem [25]. In particular, it
efficiently evaluates the probabilities of an exhaustive set of failure combinations (logic
AND) via the copula formulation (Section 4.2) and discards the combinations for which the
probability is lower than a given probability threshold. As the h-th contingency consists of
a combination of n_th trippings and n_nth not trippings, its probability is always lower than
the probability of the AND of the n_th trippings thanks to the total probability theorem.
Thus, the contingencies that include any of the discarded AND combinations are also
discarded by the algorithm.



Energies 2024, 17, 2028 13 of 20

4.4. Calculation of the Probability of Occurrence of Multiple Contingencies

Once the clusters of lines and, within each of the clusters, the sets of line trippings
with the most significant probabilities have been identified (stage 3 of the process outlined
in Section 2.3), it is possible to evaluate the probability of the combinations of line trippings
and not trippings (i.e., contingency probability) by applying the theory of copulas for
binary variables [25] in each cluster (stage 4).

Using Sklar’s theorem applied to discrete (particularly binary) variables, the probabil-
ity of the occurrence of a given set St of trippings and a set Snt of not-trippings, i.e., P(St
and Snt), can be written as an algebraic sum of the cumulative distribution of probability of
the copula C (copula CDF) evaluated at suitable points according to the general formula
indicated in (8).

P
(
X
)
= ∑s1

. . . ∑sq
sign(s)C

(
CDF1(s1). . .CDFq

(
sq
)
, R

)
(8)

where X = (X1 = x1 . . . , Xn = xn) and s in (9) is a vector with q components s1, . . ., sq,
where sj can be xj or xj − 1.

sign(s) =
{
+1 if sj = xj −1 for an even number of positions j
−1 if sj = xj −1 for an odd number of positions j

(9)

In case of more clusters, the methodology assumes independence among failures
affecting lines belonging to different clusters.

Once the average hourly probabilities of occurrence of the contingencies have been
calculated, their annual probabilities are obtained assuming that we are dealing with
(independent) Poissonian events with the calculated hourly rate. In particular, the annual
probability of the generic h-th contingency Pctg h, 1yr is a function of the hourly probability
of the same h-th contingency Pctg h, 1hr by means of (10).

Pctgh,1yr = 1 − e−Pctgh,1hr×T (10)

where T = 8760 is the number of hours in a year. The expression in (10) represents the
probability that the h-th contingency, modeled as a Poisson event, occurs at least once
during the year.

5. Case Study
5.1. Test System and Simulations

To validate its effectiveness in real-world applications, the proposed methodology
was applied to a detailed model encompassing a portion of the Italian extra-high-voltage
(EHV) transmission system.

The analysis considered the threat of wet snow and encompassed all 647 EHV and high
voltage (HV) overhead lines (OHLs) within the selected area. Details of the simulations
conducted are provided in Table 2.

Table 2. Summary of the simulation cases.

Sim ID Description Goal

CLU
Three-step clustering algorithm application
to the set of 647 lines, assuming a maximum
cardinality NMAX, LI = 12.

To verify the representativeness of the
identified clusters with respect to
historical weather events.

PRO
Copula-based algorithm application via two
alternative algorithms to one specific cluster
of the line set analyzed in sim CLU.

To verify the accuracy and the
robustness in the copula CDF
computation method adopted in
the methodology.
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5.2. Simulation CLU: Line Clustering for Wet Snow Events

Figure 4a shows the size of the identified clusters (top left) and their level of internal
correlation (defined as the average value of the absolute values of the correlation coefficients
between distinct elements from the same cluster and reported in the bottom left diagram)
after stage 1. Figure 4b shows the analogous results after stage 3.

Figure 4. Main results after stage 1 (a) and after stage 3 (b): size of the clusters (top left) and level of
intra-c luster correlation (bottom left).

It is worth noting that after stage 1 the internal correlation among the lines in the
clusters is very high (lowest value is 0.7) but the cardinality of many clusters can be larger
than 60. After stage 1, the silhouette coefficients for groups with more than one element
mostly show values between 0.5 and 1, which demonstrates the correctness of the clustering
of the large majority of the lines inside each cluster. To this purpose, Table 3 shows the
quantiles for the silhouette index distribution over all the lines subject to clusterization:
75% of all the lines have a silhouette index higher than 68% after stage 1.

Table 3. Quantiles of the silhouette index distribution for the lines subject to clusterization.

Probability 0.05 0.25 0.5 0.75 0.95

Quantile 0.2176 0.6806 0.9671 1.0000 1.0000

After leveraging grid topology and merging smaller clusters, the resulting clusters
hold a maximum of NMAX, LI lines each. Importantly, these clusters still exhibit a strong
internal connection between lines, with a minimum correlation value of around 0.5.

Many clusters identified by the algorithm correspond to sets of lines that had failed
at the same time during past weather events and that are already known by the TSO as
“responsible for multiple contingencies” and often for energy not supplied to the utilities.

Table 4 reports the internal correlation for the lines inside the topological cutsets.
It is also worth noting that most of the topological cutsets preserve a significant inter-



Energies 2024, 17, 2028 15 of 20

nal correlation (50% of the topological cutsets have an internal correlation value higher
than 50%).

Table 4. Quantiles of the distribution of mean values of the internal correlation of the topological
cutsets.

Probability 0.05 0.25 0.5 0.75 0.95

Quantile 0.3162 0.4709 0.6005 0.7857 0.9901

Table 5 reports the quantiles of the distribution of the average values of the internal
correlation of the clusters.

Table 5. Quantiles of the distribution of mean values of the internal correlation of the clusters.

Probability 0.05 0.25 0.5 0.75 0.95

Quantile 0.5272 0.6583 0.7826 0.9901 0.9901

It is worth noting that the internal correlation exceeds 0.52 in 95% of the clusters and
that the median value is very high (0.78).

5.3. Simulation PRO: Tests on the Algorithm for Contingency Probability Computation

This simulation case assesses the performances (in terms of accuracy and speed) of
the algorithm to compute the copula CDF values used to assess contingency probabilities.

In particular, a typical necessary condition that must be satisfied on an hourly ba-
sis to assess the algorithm accuracy is in (11), i.e., the sum of the hourly probability of
contingencies involving line j should be equal to the hourly failure probability of line j.

N(j)
CTG,i

∑
i=1

PCTG,i = P
(

Fj
)

(11)

where PCTG,i is the hourly probability of i-th contingency involving line j and N(j)
CTG,i is the

number of contingencies involving line j. The metrics used to assess the fulfillment of such
a condition is the percentual error in (12) between the line failure probability derived from
the failure return periods RPj, i.e., P

(
Fj
)
= 1/

(
RPj ∗ 8760

)
and the reconstructed failure

probability PR,j =
N(j)

CTG,i

∑
i=1

PCTG,i.

err% =
PR,j − P

(
Fj
)

P
(

Fj
) · 100 (12)

This metric is computed for each line of one cluster from the set within simulation
CLU considering two alternative methods mentioned in Section 4.3:

• A well-known algorithm [25] from the literature, commonly used to compute Gaussian
multivariates (referred to as algorithm A);

• The tilting algorithm from Botev [27] is adopted in the proposed methodology and
called algorithm B.

The same metric is computed for:

a. Different numbers of lines in the cluster, with the same correlation matrix R;
b. Different values for the return periods, with the same cluster cardinality and matrix R;
c. Different correlation matrices R among the lines, with the same line cardinality.



Energies 2024, 17, 2028 16 of 20

The original cluster has 12 lines, with the failure return periods reported in Table 6
for subcases (a), (b) and (c). The large dispersion of RP values adopted in the simulation
reflects a typical condition found during power system resilience analyses.

Table 6. Parameters used for the simulations in the subcases (a)–(c).

Subcase Set of RPs (Year) Cluster Cardinality Minimum Correlation in the Cluster

(a) 22, 2743, 32, 33, 38, 46, 959, 1374, 150, 150, 10, 72, 400, 90, 120 5, 7, 10, 12, 14, 15 >0.9

(b) 22, 100(*), 32, 33, 38, 46,959, 1374, 50(*), 50(*), 10, 72, 400, 90, 120 10, 12 >0.9

(c) Same as subcase (a) 12 >0.9, 0.8, 0.5, 0.3

(*) different values between subcases (a)–(c) and subcase (b).

Subcases (a) and (b) are run considering a very high correlation (>0.9) among all the
lines in the cluster: this is a common condition due to the fact that the previous stages of
the methodology create clusters with high internal correlations.

5.3.1. Subcase (a): Comparison of the Two Algorithms with Different Line Cardinalities

This subcase is run considering the RP values in the first row of Table 6 and a very
high correlation among all the lines of the cluster. Table 7 reports the percentage error for
cluster cardinalities {5, 7, 10, 12} for the two algorithms. It is worth noting that algorithm A
maintains acceptable errors below 15% only for the lowest cardinalities (5 and 7) but the
error becomes unacceptable for higher cardinalities.

Table 7. Comparison of maximum percentage error—algorithms A and B, subcase (a).

Maximum Percentage Error (%) Computational Time (s)

Cluster Cardinality Algorithm A Algorithm B Algorithm A Algorithm B

3 4.43 × 10−13 4.51 × 10−13 0.9 1.5

5 3.2 5.72 × 10−13 3.6 2.7

7 10.5 1.35 × 10−11 16 5.8

10 413.5 8.93 × 10−10 217.9 38

12 1945 9.30 × 10−9 1067 175

Figure 5 reports the percentual errors on the hourly failure probabilities for the 12
lines of the cluster using algorithm A (left) and algorithm B (right).

Figure 5. Percentual errors on the line failure probabilities for a cluster with cardinality equal to 12
using algorithm A (a) and algorithm B (b).
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Figure 6 reports the maximum percentual errors over the lines using algorithm B
for different cardinalities of the cluster. The percentual errors are also very low for a
significant number of lines in the cluster (up to 15). From Table 7, it can be seen that
algorithm A attains maximum errors equal to 10.5% and 413.5% for the same 7-line and
10-line clusters, respectively.

Figure 6. Percentual errors versus number of clustered lines—algorithm B.

5.3.2. Subcase (b): Comparison of the Two Algorithms with Different RP Values

A cluster with the first 12 lines of Table 6 is used in the present subcase, but three RP
values are changed in order to quantify the potential changes in the performances (accuracy
and computational efficiency) of the two algorithms.

Table 8 also presents the computational times for the two algorithms A and B and for
two cardinalities of the cluster (10 and 12, a typical limit value for the cluster cardinality
representing a good tradeoff between computational burden and accuracy during the
clusterization process).

Table 8. Comparison of maximum percentage error—algorithms A and B, subcase (b).

Maximum Percentage Error (%)

Cluster Cardinality Algorithm A Algorithm B

10 228 2.41 × 10−10

12 1430 2.75 × 10−8

It is important to note that the error given by algorithm A is much more sensitive to
the values of RP (passing from 413% in subcase (a) to 228% for the 10-line cluster), while
algorithm B is extremely accurate and its accuracy does not depend on the RP values.
Algorithm A errors remain unacceptable for cluster cardinalities higher than 5–7.

Table 9 further compares the computational times of algorithms A and B for clustering
line sets of different sizes (10 and 12 lines). Notably, a key advantage of algorithm B emerges:
its speedup factor over algorithm A increases for clusters with higher cardinalities. This is
crucial for resilience analysis in large power systems, as CLU simulations often identify
clusters with high numbers of lines. Furthermore, the computational time for algorithm B
is much less sensitive to the RP values; in fact, it takes 175 s and 38 s for the 12-line and
10-line clusters in subcase (a). In contrast, the computational time for algorithm A has a
high dependency on the RP values: for the 12-line cluster, it takes 816s against 1067s in
subcase (a). If one considers a cluster of 15 lines, algorithm B takes 2040 s, against more
than 4 h for algorithm A.
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Table 9. Comparison of computational performance—algorithms A and B, subcase (b).

Computational Time (s) Speed up Ratio

Cluster Cardinality Algorithm A Algorithm B

10 164 38 4.3

12 816 175 4.7

5.3.3. Subcase (c): Comparison of the Two Algorithms with Different Correlation Levels

This test is meant to understand the impact of the level of internal correlation among
the lines of the cluster on the accuracy of the probability computation algorithm.

Table 10 shows the maximum percentual errors in absolute value among the lines of a
cluster with a cardinality of eight for four correlation levels.

Table 10. Maximum percentual errors with different correlation levels—algorithms A and B, sub-
case (c).

Correlation Level
Algorithm A, % Algorithm B, %

Maximum Percentual Error, % Computational Time, s Maximum Percentual Error, % Computational Time, s

Very high (min corr > 0.9) 41.7 40.0 6.91 × 10−11 9.9

High (min 0.8) 59.5 35.0 0.21 10.0

Medium (min 0.5) 22.2 12.3 0.03 10.1

Low (min 0.3) 4.0 8.2 2.86 × 10−3 10.1

It is worth noting that algorithm A improves its accuracy when the correlation level is
reduced but algorithm B is still much more accurate than algorithm A, even for relatively
lower correlations, keeping the maximum error below 0.5% for any analyzed correlation
level. Moreover, given the same correlation matrix, the computational time for algorithm B
is much smaller than algorithm A in the large majority of the simulated cases.

5.3.4. Some Remarks

These results show that algorithm B, based on Botev’s tilting method, emerges as the
clear winner with respect to:

• Enhanced speed and accuracy: compared to algorithm A, Botev’s algorithm boasts
significantly faster execution times and demonstrably higher accuracy, at least for
contingency probability computations in power system resilience assessment. This
improved accuracy is particularly crucial, as even small deviations in contingency
probabilities can have substantial consequences.

• Robustness across scenarios: algorithm B exhibits remarkable stability to various input
characteristics. Its calculation time remains independent of the specific line failure
probabilities within a cluster, unlike algorithm A, which can be sensitive to these
values. This robustness ensures reliable performance across diverse situations.

• Accuracy maintained for large clusters: even when dealing with very large clusters
(tested up to a size of 15, often considered the upper limit) and significant variations
in line reliability parameters (RPs), algorithm B delivers exceptional accuracy. This
characteristic makes it ideal for real-world power system analysis, where large clusters
and diverse RP values are common.

• Adaptability to correlation matrices: Botev’s algorithm maintains its high accuracy
regardless of the correlation matrix configuration. It performs equally well with
highly correlated, moderately correlated, or weakly correlated line failures, providing
a versatile solution for various power system scenarios.

By virtue of these advantages, algorithm B establishes itself as the most robust and
accurate choice for calculating multivariate Gaussian CDFs in contingency probability
assessments. This superiority has led to its adoption in the proposed methodology, guaran-



Energies 2024, 17, 2028 19 of 20

teeing a solid foundation for precise multiple contingency probability evaluation, a crucial
aspect of power system resilience analysis.

6. Conclusions

The paper has proposed a methodology for an efficient selection of the most relevant
multiple contingencies to be considered in resilience studies. Specifically, this methodology
has been conceived to ensure scalability and efficiency in its application to realistic models
of large power systems.

To attain these goals, the methodology quantifies the correlation among the weather
events affecting the lines of the grid by computing a correlation matrix (R) from historical
events. It then utilizes an innovative three-step clustering process to identify groups of
lines likely to trip together. This clustering leverages information from both the correlation
matrix and the grid’s topology.

This approach allows avoiding the potential combinatorial explosions deriving from
the brute enumeration of all the N-k potential contingencies on the whole set of branches
in real-world power systems.

The simulations performed on a portion of the Italian EHV grid show the effectiveness
of the proposed clustering process in aggregating lines that are more likely to fail together
and the ability to fast screen the contingencies inside each cluster. In particular, many
identified clusters contain sets of lines that have historically failed together, known by
system operators (TSOs) as “responsible for multiple contingencies” and often leading to
energy not served to customers.

Additionally, simulations show that the use of Botev’s tilting algorithm to compute
Gaussian multivariate in the copula-based calculation of contingency probability is accurate
and fast even for relatively large line clusters, providing multiple contingency probabilities
that are consistent with the line failure probabilities. This makes the proposed approach a
sound solution for resilience analyses in real-world power systems.

Further developments will concern the extension of the methodology to multiple
threats, as well as the modeling of the perspective evolution of correlations over the
future decades.
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