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Abstract: Assessments of the hosting capacity of electricity distribution networks are of paramount
importance, as they facilitate the seamless integration of rooftop photovoltaic systems into the
grid, accelerating the transition towards a more carbon neutral and sustainable system. This paper
employs a deep reinforcement learning-based approach to evaluate the real-time hosting capacity of
low voltage distribution networks in a model-free manner. The proposed approach only requires
real-time customer voltage data and solar irradiation data to provide a fast and accurate estimate of
real-time hosting capacity at each customer connection point. This study addresses the imperative
for accurate electrical models, which are frequently unavailable, in evaluating the hosting capacity
of electricity distribution networks. To meet this challenge, the proposed approach utilizes a deep
neural network-based, data-driven model of a low-voltage electricity distribution network. This
proposed methodology incorporates model-free elements, enhancing its adaptability and robustness.
In addition, a comparative analysis between model-based and model-free hosting capacity assessment
methods is presented, highlighting their respective strengths and weaknesses. The utilization of the
proposed hosting capacity estimation model enables distribution network service providers to make
well-informed decisions regarding grid planning, leading to cost minimization.

Keywords: hosting capacity; deep reinforcement learning; deep learning; low voltage networks;
quasi-static time series

1. Introduction

Rapid integration of rooftop photovoltaic (PV) systems into low-voltage (LV) electricity
distribution networks has raised concerns among distribution network service providers
(DNSPs) due to its impact on power quality and reliability. High levels of PV penetra-
tion without proper consideration of integration planning may lead to adversities such
as over-voltage, unnecessary curtailments, high imbalance, and thermal overloading of
network elements.

The hosting capacity (HC) of an electricity distribution network may be defined as
the maximum distributed generation that can be safely and reliably integrated without
causing any adverse impacts to the grid. Undertaking a HC assessment allows DNSPs to
plan investments more efficiently and integrate more distributed energy resources (DERs)
into the grid, ensuring a cost-effective grid expansion. Traditional HC assessment strategies
are commonly classified into three groups: deterministic methods, stochastic methods, and
quasi-static time-series (QSTS) methods [1,2]. Deterministic methods require lower com-
putational complexity and provide a fast estimate of HC with less accuracy [3]. Stochastic
methods utilize probabilistic power flow to model uncertainties in the LV distribution
network and quantify the HC [4]. QSTS methods utilize a series of steady-state power
flows to accurately analyze the HC of distribution networks [5]. In contrast to other meth-
ods, QSTS simulations offer a partial representation of the system dynamics associated
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with control elements, providing a more refined estimate of the HC of the distribution
network under study. Most of the traditional HC assessment strategies that employ QSTS
simulations define the HC of a distribution system as a static value. However, the HC of a
distribution network is dynamic in nature and necessitates a real-time assessment with the
consideration of the temporal characteristics of the grid.

The performance index that frequently restricts the HC of LV distribution networks is
the operational constraint for voltage [6]. When using the QSTS simulation-based approach,
a detailed electrical model of the LV network is required to perform the necessary voltage
calculations to quantify the HC with voltage as an operational constraint. However, such
detailed electrical models of LV networks are not readily available for the DNSPs and, due
to the sheer number of LV networks, the development of accurate LV network models
entails significant time and monetary investments. This dilemma calls for the exploration
of electrical model-free calculations of voltage levels. As an example, the deep neural
network (DNN)-based voltage calculation using smart meter data proposed in [7] offers a
pioneering and promising resolution.

In contrast to traditional HC assessment methods that calculate a static HC value, deep
learning methods for HC assessments are capable of quantifying the real-time HC of LV
networks and have garnered significant attention among researchers in recent years. In [8],
long short-term memory (LSTM) neural networks were utilized to evaluate the real-time
HC of distribution networks by identifying a mapping rule between power flow data and
HC data. However, despite being a very powerful strategy for real-time HC quantification,
this method requires an electrical model of the distribution network, which may not be
readily available for most LV distribution systems. Deep reinforcement learning (DRL) is a
subdivision of artificial intelligence (AI) and machine learning that combines the merits of
reinforcement learning principles with deep learning techniques. Amidst numerous DRL
algorithms, actor–critic frameworks such as deep deterministic policy gradient [9] and soft
actor–critic (SAC) [10,11] are the most commonly used DRL algorithms in power systems
applications since they deliver efficient performance in continuous action spaces [12].
DRL-based model-free voltage control schemes were proposed in [13,14] and a DNN-
based model is used for voltage calculations; however, a DRL-based HC assessment is
not presented in these studies. Model-free DRL algorithms such as SAC offer a powerful
framework to solve the HC quantification problem in LV distribution networks and remain
relatively unscrutinized in recent research works.

This paper proposes a model-free DRL-based approach for quantification of real-time
HC of LV distribution networks. The methodology is demonstrated using an accurate
electrical model of a real-world LV network and historical smart meter data. The key
contributions of this paper are summarized as follows:

• Development of a DNN-based surrogate model to perform voltage calculations using
smart meter data, integrating the model-free aspects in the proposed methodology.

• Evaluation of the real-time HC using the SAC algorithm. The proposed approach only
requires real-time customer voltages and solar irradiation data to provide a fast and
accurate estimate of real-time HC at each customer connection point.

• A comparative analysis is presented between the model-based and model-free HC
assessments, highlighting advantages and disadvantages of both approaches.

2. Problem Formulation
2.1. System Model and Constraints

Voltage calculations at customer connection points (CCPs) using power flow or equiv-
alent methods are at the heart of most well-recognized HC assessment strategies. Deter-
mining the likely voltages to occur at the CCPs can assist in electricity distribution network
planning such as identifying the feasibility of new connection requests, management of
DERs and evaluating the impact of grid augmentations. The conventional method for
voltage calculations in electricity distribution networks is via power flow analysis, which
relies on an accurate model of the network that accounts for the complex network topology.
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Provided that LV distribution network data are readily available, power flow calculations
can be easily performed using appropriate software. The HC assessment presented in this
study utilizes a QSTS simulation that accounts for the temporal variability of the electric-
ity distribution network by considering changing load patterns and uncertain weather
conditions (solar irradiation). Historical time-series data gathered from smart meters for
customer load active power (Pload ), customer load reactive power (Qload ), and voltage at
CCP (VCCP ) are utilized in the proposed HC assessment. The voltage constraints consid-
ered are based on the AS/NZS 4777.2:2020 standard [15] which states that the active power
export must cease if the local voltage exceeds 258 V.

2.2. Surrogate Model of the Network

Due to the presence of a vast number of LV networks, the topological and electrical
component data of every LV distribution network is not always readily available to DNSPs.
The absence of an accurate LV network model presents a significant challenge when
undertaking HC assessment. However, the widespread deployment of smart meters
presents an interesting opportunity to utilize Pload, Qload, and VCCP measurements at the
customer level to develop equivalent LV feeder models. The study presented in this paper
utilizes a DNN-based surrogate model to approximate voltages at the CCPs. The proposed
method for voltage estimation is a model-free approach that only relies on historical smart
meter data and does not require an electrical model that represents the intricate details of
the distribution network. A graphical illustration of the proposed DNN-based surrogate
model of the LV distribution network is given in Figure 1.
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Figure 1. DNN-based surrogate model of the LV distribution network.

The surrogate model is a nonlinear regression method that maps the active power
exports

(
Pgen,i

)
, active power load (Pload,i), and reactive power load (Qload,i) of N number

of customers to their respective voltage at the CCP (VCCP,i) where, i = 1, 2, 3, . . . , N. The

input layer of the DNN requires three inputs
{

Pgen , Pload , Qload

}
for each N number of

customers, resulting in 3N total number of inputs. The output layer of the DNN provides
N number of outputs for the voltage VCCP of each customer. The relationship between the
inputs xl,k and the output Ol of a single neurone l is given in (1).

Ol = Fl

(
∑n

k=1 (wl,k · xl,k) + b
)

(1)
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where k represents the inputs from other neurones, wl,k are the corresponding weights for
each input, Fl is the activation function, and b is the bias term. The activation function
introduces nonlinearities to the DNN and ensures that the neurone response is bounded,
determining the threshold at which a neurone activates. For this study, a rectified lin-
ear unit (ReLU) activation function with a range of [0, 1] is used for all the hidden lay-
ers. The bias term is a learnable parameter that allows neurones to have individual
response characteristics offsetting the neurone output. The relationship between DNN
input {Pgen , Pload , Qload} and each output VCCP,i is described in (2).

VCCP,i = ∑n
k=1

[
wi,k · Zi,k

(
Pgen , Pload , Qload

)]
+ b (2)

where Zi,k

(
Pgen , Pload , Qload

)
is the hierarchical transformation of the input data through

multiple hidden layer nonlinear mappings. The surrogate model is trained in a supervised
manner and the network parameters θ (i.e., weights and biases) are updated using stochastic
gradient descent by minimizing the loss function L(θ). During each epoch, the loss is
calculated according to mean square error as given in (3) using a sampled batch B from the
training data.

L(θ) =
1
B∑B

n=1

[
Vn − V̂n

(
Pgen,n , Pload,n , Q

load,n

)]2
(3)

where Vn is an instance of CCP voltages (VCCP,i ) and V̂n

(
Pgen,n , Pload,n , Q

load,n

)
is the

voltage estimated by the surrogate model. The old network parameters θold are updated to
θnew by applying stochastic gradient descent as given in (4).

θnew = θold − α·∇L(θold) (4)

where α is the hyperparameter for the learning rate that regulates the rate at which the
network parameters are updated. For this study, the learning rate of 0.001 is used.

3. Hosting Capacity Assessment Framework

The real-time HC of electricity distribution networks is directly impacted by the
instantaneous voltage observed at CCPs and the solar irradiation levels that govern the
current active power exports of DERs. The proposed HC assessment framework utilizes the
SAC deep reinforcement learning algorithm to approximate the real-time HC based on the
real-time observations of voltage levels at CCPs and solar irradiation levels. The exceptional
performance of the SAC algorithm has garnered significant attention among researchers
and emerged as a favored option for tackling complex tasks that require continuous actions
in deep reinforcement learning. SAC leverages the Markov decision process (MDP) to
formalize sequential decision making in reinforcement learning tasks. The following
sections describe the formulation of the MDP and the application of the SAC algorithm to
estimate the real-time HC.

3.1. Formulation of Markov Decision Process

In this study, the assessment of HC is formulated as a MDP with infinite time steps.
MDP is a powerful mathematical framework designed to formalize the sequential decision-
making process of a decision maker, otherwise known as an agent, in an uncertain envi-
ronment while adhering to the Markov property. The key components of a MDP can be
described as a 5-tuple {S, A, P, R, γ}, where: S is the state space (s ∈ S), which is a com-
prehensive set encompassing all feasible conditions (states) of an environment accessible to
the decision maker; A is the action space (a ∈ A) that defines the entirety of permissible
decisions (actions) that an agent can take in the environment; P : S×A× S→ R+ rep-
resents the transition probability function that determines the conditional probability of
transitioning to a new state considering the current state and action; R : S×A× S→ R
represents the reward function that evaluates the agent’s performance with a numerical
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reward based on the action executed in a particular state; and the variable γ represents the
discount factor γ ∈ (0, 1).

At each time step t = {0, 1, . . . , T}, given the state of the environment st, the agent
takes an action at by interacting with the environment and receiving an immediate reward
rt. Consequently, the environment is then transitioned into its next state st+1. The policy
function π governs the sequential decision-making process of an agent, dictating the
agent behaviour in the environment. Given a particular state (s ∈ S), a stochastic policy
presents a probability distribution π(a|s), including all feasible actions (a ∈ A) the agent
can undertake. The goal of an agent in reinforcement learning is to maximize its discounted
cumulative reward R(st, at) = rt + γrt+1 + · · ·+ γT−trT by optimizing the policy π. In
reinforcement learning, the action value function Qπ(s, a) is utilized to evaluate the policy
π amidst uncertain environment transition dynamics and undertake improvements to
achieve an optimal policy. According to the Markov property and leveraging the Bellman
theorem, the action value function is derived in (5).

Qπ(s, a) = Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γ Ea′∼π(·|s′)

[
Qπ

(
s′, a′

)]]
(5)

where s′ is the next state and a′ is the next action.
The formulation of the HC quantification problem as a MDP is detailed as follows.

• Environment: the environment that the agent interacts with is the actual LV distribu-
tion network.

• Agent: the agent is the controller that estimates the rated capacity (SPV,i) of the
customer PV inverters.

• State: the state of the environment at time t consists of two observations (VCCP,i , GHIi),
where GHIi is the global horizontal irradiation at customer i.

• Action: the action that an agent takes is the estimated real-time HC of each cus-
tomer i, denoted by the rated capacity (SPV,i). To reduce the search space and pre-
vent the (SPV,i) estimates of the SAC algorithm reaching unrealistically high values
during periods of low solar irradiation, action is clipped between 0 and MaxHC,
a ← clip((SPV,i), 0, MaxHC) , where MaxHC is the upper limit for PV capacity that
is unlikely to be achieved during periods of high solar irradiation.

• Reward Function: the immediate reward rt that an agent receives for taking an action
at at state st while satisfying voltage constraints is given in (6).

rt = −
[
(MaxHC× N)−∑N

i=1(SPV,i)
]

(6)

If voltage constraints are violated at any CCP, the reward (r t) is assigned the penalty
value, which is a significantly high negative integer. The Markov property stipulates that
the future states and actions are determined exclusively by the current state and action,
rendering historical states and actions of an agent irrelevant for predicting future outcomes.
As a result, the modeling process becomes more streamlined and enables the use of the
SAC algorithm for determining optimal policies that maximize expected rewards.

3.2. Soft Actor–Critic Algorithm

Soft actor–critic is an off-policy algorithm that optimizes a stochastic policy utilizing
an actor–critic framework. The actor represents the stochastic policy π(·|s ), which is a
probability distribution over actions for a given state. The critic represents the action
value function Qπ(s, a) that provides an estimate of the expected cumulative reward. An
off-policy algorithm updates its current policy from experience samples generated by a
different policy, which leads to fewer interactions with the environment and an improved
sample efficiency. Through the years, SAC has undergone several iterations and enhance-
ments [10,11]. However, for this study the SAC algorithm follows the architecture presented
in [10], which utilizes a total of five feed-forward neural networks that include one actor
network (πϕ), two critic networks

(
Qθ1 and Qθ2

)
, and two target critic networks

(
Qθ′1

and
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Qθ′2

)
. The proposed framework for HC assessment using a SAC agent is illustrated in

Figure 2.
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The key feature of the SAC algorithm is entropy regularization, which is designed
to encourage exploration and regulate the exploitation–exploration trade-off during the
learning process. The entropy H(π(·|s )) of an agent’s policy represents the randomness
of the agent’s actions as given in (7). A high entropy implies a more exploratory policy
with less exploitation, while a low entropy implies a more deterministic policy with less
exploration. The Bellman equation for entropy regularized action value function Qπ(s, a)
for the SAC algorithm is given in (8).

H(π(·|s )) = Ea∼π(·|s)[−log(π(·|s ))] (7)

Qπ(s, a) = Es′ ∼ P
a′ ∼ π

[
r
(
s, a, s′

)
+ γ

[
Qπ

(
s′, a′

)
− αlog π

(
a′
∣∣s′)]] (8)

SAC employs two critic functions
(
Qθ1 , Qθ2

)
and uses the minimum of the two critics

for the policy updates; this reduces the overestimation bias and improves the learning
stability. The target networks

(
Qθ′1

, Qθ′2

)
of SAC facilitate the generation of more stable

and reliable value estimates during the learning process. The training process of the SAC
algorithm is summarized in Algorithm 1, which further elaborates the process of network
parameter updates. It should be noted that the reparameterization trick is not used in the
proposed SAC algorithm to reduce further additions of complexity to the HC quantification
problem since the current algorithm already displays excellent performance. For the HC
assessment, the learning rates used for the actor and the critic networks were 0.001 and
0.002 respectively. Five hidden layers were used for all actor and critic networks consisting
of [256, 512, 1024, 512, 256] nodes. A fixed entropy coefficient of α = 0.2 and a batch size of
750 samples were used in the final SAC design, which were optimized by undertaking a
sensitivity analysis.
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Algorithm 1: Soft Actor–Critic

1: Initialize critics Qθ1 , Qθ2 and actor πϕ with random parameters θ1, θ2, and ϕ respectively.
2: Initialize target critics Qθ′1

and Qθ′2
with main network parameters θ′1← θ 1 and θ′2← θ 2

3: Initialize the empty replay buffer D, batch_size = size(B)
4: for t = 1 to T do:
5: Observe state s of the environment and take action a ∼ π(·|s )
6: Execute action a. Then observe next state s′ and attain reward r
7: Register experience tuple {s, a, r, s′} in the replay buffer D
8: if number_o f _transitions_in_ D ≥ batch_size
9: Randomly sample a batch of B transitions {s, a, r, s′} from D
10: Sample next action

∼
a
′

from the actor network
∼
a
′
∼ πϕ(·|s′ )

11: Compute the target y(r, s′) for the critic network updates

y(r, s′) = r(s, a) + γ

(
min
i=1,2

Qθ′i

(
s′,
∼
a
′)
− αlog πϕ

(∼
a
′∣∣∣s′))

12: Update critics Qθ1 and Qθ2 by gradient decent using:

∇θi
1
|B|∑(s, a, r, s′)ϵB

[(
Qθi (s, a)− y(r, s′)

)2
]

for i = 1, 2

13: Update the policy ϕ by gradient accent using:

∇ϕ
1
|B|∑sϵB

[(
min
i=1,2

Qθi

(
s,
∼
a
)
− αlog πϕ

(∼
a
∣∣∣s))]

,
∼
a ∼ πϕ(·|s )

14: Update target networks with ρ≪ 1:
θ′i← ρθ i + (1− ρ)θ′i for i = 1, 2

15: end if
16: end for

4. Numerical Study
4.1. Experimental Setup

A single-line diagram of the developed DIgSILENT PowerFactory LV feeder model,
which consists of 28 customer connections, is given in Figure 3. The MV segment of the
distribution network is represented as a Thevenin-equivalent model with a voltage source
and a series impedance. The main feeders are 3-phase with a neutral conductor and the
service feeders that ties the main 3-phase busbars and CCPs are single-phase with a neutral.
The selected real-world LV network for the numerical study displays a significant level of
phase unbalance, which is a typical feature of most LV networks. Operational constraints
and the electrical characteristics of the modeled network are detailed in Table 1.
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Table 1. LV network electrical characteristics and constraints.

R1 Ohm/km X1
Ohm/km

R0
Ohm/km

X0
Ohm/km

Main Feeder 0.298557 0.259633 1.132508 0.945961

Service Feeder 1.480003 0.088 - -

Network Constraints
Nominal voltage

= 230 V
Maximum voltage

limit = 258 V Minimum voltage limit = 218 V Transformer
rating = 1 MVA
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For the HC assessment, a 100% PV penetration scenario is considered, and each
customer is given the opportunity to make active power exports to the network. Different
data sets were used in the numerical study consisting of historical smart meter data, which
are detailed in Table 2. Data Set 1 and Data Set 2 represent yearly time-series data that
capture all diverse seasonal variations and are excellent for training and evaluation of the
proposed DNN-based models. Data Set 3 consists of high-resolution time-series data for a
single day and is ideal for the HC assessment and guarantees more accurate results.

Table 2. Data sets used in the numerical study.

Data Set Days Time Step
Resolution Time Steps Simulation

1 120 30 min 5760 Training of the surrogate model
and the SAC agents

2 120 30 min 5760 Surrogate model evaluation

3 1 5 s 17,280 HC assessment

4.2. Surrogate Model Performance Evaluation

All the proposed DNN-based models in this paper are implemented using TensorFlow
2, which provides a high-level API and simplifies the process of deploying deep learning
models. The DNN-based surrogate model is trained for 3000 epochs with a batch size of 48
to capture the complex mapping relationship between the inputs (Pgen , Pload , Qload) and
output (VCCP). As illustrated in Figure 1 and considering that there are 28 customer connec-
tions in the LV network, the input layer of the surrogate model consists of 28 × 3 = 84 nodes.
The hidden layers consist of five fully connected dense layers of size [256, 512, 1024, 512,
256] and the output layer consists of 28 nodes providing VCCP of each customer. Hyperpa-
rameters of the surrogate model, i.e., hidden layer size, batch size, and learning rate, were
optimized by conducting sensitivity analysis.

The training process of the surrogate model follows the methodology described in
Section 2.2 and, upon completion of the training iterations, the performance of the trained
model must be evaluated. Data Set 2 is used for the performance evaluation, which consists
of completely different samples of data from that of Data Set 1, which was used for training.
Voltage deviation is used as the metric to evaluate the surrogate model, which is defined as
Vtarget(i, t)−VCCP(i, t) for each customer i at time step t, where Vtarget is the actual smart
meter voltage at CCP according to Data Set 2. The voltage deviations of the surrogate
model calculated for all customers of the LV network are illustrated as violin plots in
Figure 4. Based on the calculated voltage deviation results, the maximum voltage deviation
is identified to be ±3 V across all the customers. Therefore, it can be concluded that
the trained surrogate model is capable of delivering accurate estimates of the voltages at
the CCPs.



Energies 2024, 17, 2075 9 of 12Energies 2024, 17, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 4. Voltage deviation of the LV network customer voltages evaluated by the surrogate model. 

4.3. Hosting Capacity Assessment Results 

The LV network PowerFactory model and the surrogate model were used to train 

two distinct SAC agents (model-based SAC and model-free SAC, respectively) for the HC 

assessments. The design and the hyperparameters of the two agents are identical except 

for the environment that they interact with. Data Set 1 is used for the training of both SAC 

agents and for each time step, 12 episodes were considered, resulting in a total of 5760 × 

12 = 69,120 training episodes. The learning curves of the model-free and model-based SAC 

agents are illustrated in Figure 5. Both agents converge to a similar reward and display 

similar learning efficiency, which is consistent with the fact that they are of similar design. 

Minor deviations in the two learning curves can be explained by the disparity between 

the PowerFactory model and the surrogate model. Upon the completion of training, the 

network parameters of both SAC agents were saved and utilized for the HC assessment. 

 

Figure 5. Learning curve of the model-free and model-based SAC agents. 

Data Set 3 was utilized to undertake two high-resolution QSTS simulations and ana-

lyze the real-time HC of the LV distribution network by each SAC agent. The trained SAC 

agents estimate the real-time HC for each customer within milliseconds using just cus-

tomer voltage 𝑉𝐶𝐶𝑃,𝑖 from smart meter measurements and live solar irradiation 𝐺𝐻𝐼𝑖 data 

Figure 4. Voltage deviation of the LV network customer voltages evaluated by the surrogate model.

4.3. Hosting Capacity Assessment Results

The LV network PowerFactory model and the surrogate model were used to train
two distinct SAC agents (model-based SAC and model-free SAC, respectively) for the
HC assessments. The design and the hyperparameters of the two agents are identical
except for the environment that they interact with. Data Set 1 is used for the training
of both SAC agents and for each time step, 12 episodes were considered, resulting in a
total of 5760 × 12 = 69,120 training episodes. The learning curves of the model-free and
model-based SAC agents are illustrated in Figure 5. Both agents converge to a similar
reward and display similar learning efficiency, which is consistent with the fact that they
are of similar design. Minor deviations in the two learning curves can be explained by the
disparity between the PowerFactory model and the surrogate model. Upon the completion
of training, the network parameters of both SAC agents were saved and utilized for the
HC assessment.
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Data Set 3 was utilized to undertake two high-resolution QSTS simulations and analyze
the real-time HC of the LV distribution network by each SAC agent. The trained SAC
agents estimate the real-time HC for each customer within milliseconds using just customer
voltage VCCP,i from smart meter measurements and live solar irradiation GHIi data as
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inputs. The real-time HC of all customers estimated by the SAC agents for a duration of
24 h is illustrated in Figure 6, depicted as a shaded region. The validity of the estimated
real-time HC values can be confirmed by performing a power flow calculation to check for
voltage constraint violations.
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It should be noted that HC is evaluated as the maximum allowed PV rating for each
customer installation. In Figure 6, HC is defined only for durations when GHI is present,
with HC assigned a value of zero during nighttime periods. This explains the fluctuation
of HC between zero and MaxHC (where MaxHC = 50 kVA for this numerical study and
is an arbitrary value, as detailed in Section 3.1) during the periods around sunrise and
sunset when GHI values are close to or at zero. To ensure fairness between customers
for active power exports, the HC estimates of customers by the SAC agent are clipped
between ±10% of the mean hosting capacity among customers at each instance of time.
This characteristic is evident in Figure 6, where the HC range across all customers does
not vary by more than ±10% at any given point in time. Considering the model-based
HC values as the benchmark, it is evident from the results that the model-free SAC agent
slightly overestimates the real-time HC during periods of high GHI. However, overall
results indicate that the quantified model-free HC values and the model-based HC values
are more or less similar to each other.

5. Discussion

The proposed method for real-time HC evaluation is superior to traditional HC
evaluation methods in different aspects. The dynamic and adaptive nature of the proposed
real-time HC evaluation strategy enables DNSPs to make informed decisions related to grid
planning and expansions while responding to grid constraints. To evaluate the real-time
HC more accurately using the proposed model-free SAC algorithm with a surrogate model,
the actual LV distribution network needs to exhibit some level of PV penetration at the
current stage. Since the proposed DNN-based surrogate model features as a regression
model, minimal PV penetration levels result in sparse training data representing active
power exports and ultimately lead to suboptimal mapping of active and reactive powers
to voltages. Based on the sensitivity analysis conducted using a surrogate model for HC
evaluation, a minimum of roughly 30% PV penetration should exist in the current LV
distribution network to yield accurate results.

Model-based high-resolution QSTS simulations generally take a significant amount of
time for the simulations to complete. This is mainly due to the time taken for the power flow
calculation itself and the time delay caused by the data transfer between the power flow
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software and the scripting software. The use of a DNN-based surrogate model bypasses
this time delay and significantly reduces the simulation time of the QSTS simulations. After
the training of SAC agents, any persisting exploratory actions of the SAC algorithm due to
entropy regulation may result in slight errors in the quantified HC. However, this error can
be negated by using SAC as a deterministic agent for the HC assessment after training by
assigning the entropy coefficient to α = 0. Overall, SAC is a powerful algorithm that is less
sensitive to hyperparameters and delivers exceptional performance in high-dimensional
and continuous action spaces.

6. Conclusions

An electrical model of a real-world 3-phase LV distribution network was developed
and a DNN-based surrogate model of the same LV network was designed and its perfor-
mance was evaluated. A model-based SAC agent and a model-free SAC agent were trained
using the electrical model and the DNN-based surrogate model, respectively. In this paper,
the real-time HC of the LV distribution network is evaluated using both the trained model-
based SAC agent and the model-free SAC agent. Furthermore, a comparative analysis
is presented between the proposed model-based and model-free HC assessments. The
experimental results demonstrate the excellent performance of the proposed real-time HC
quantification strategy.

The proposed methodology represents a notable advancement over traditional HC
quantification methods, which typically yield static estimates. By contrast, the proposed
approach utilizes trained neural networks to provide HC estimates within milliseconds,
eliminating the need for lengthy calculations inherent in traditional methods. This method-
ology leverages artificial intelligence and machine learning to enable the application of
advanced algorithms capable of more effectively addressing complex, nonlinear, and non-
convex optimization challenges compared to conventional techniques.

Future work entails the extension of the presented HC quantification methodology
as an advanced coordinated control strategy to regulate the dispatched active and reac-
tive power of customer PV systems and enhance the overall HC of the grid. Further
investigation will be conducted to develop a more precise surrogate model of the LV distri-
bution network capable of adjusting to network variations without necessitating significant
changes to the neural network architecture or requiring extensive retraining.

Author Contributions: Conceptualization, J.S., D.A.R. and A.R.; methodology, J.S. and A.R.; software,
J.S.; validation, D.A.R. and A.R.; writing—original draft preparation, J.S.; writing—review and
editing, A.R. and D.A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Developed Python scripts, trained neural network models and the
DIgSILENT PowerFactory LV network model can be downloaded at: https://github.com/suchithra-
jude/A-model-free-DRL-based-approach-for-the-assessment-of-real-time-PV-hosting-capacity.git.

Acknowledgments: The authors wish to acknowledge the support of Endeavour Energy through the
Australian Power Quality Research Centre in providing funding for the resources, which made this
research possible.

Conflicts of Interest: Author Amin Rajabi was employed by the company DIgSILENT Pacific. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Rajabi, A.; Elphick, S.; David, J.; Pors, A.; Robinson, D. Innovative approaches for assessing and enhancing the hosting capacity of

PV-rich distribution networks: An Australian perspective. Renew. Sustain. Energy Rev. 2022, 161, 112365. [CrossRef]
2. Mulenga, E.; Bollen, M.H.J.; Etherden, N. A review of hosting capacity quantification methods for photovoltaics in low-voltage

distribution grids. Int. J. Electr. Power Energy Syst. 2020, 115, 105445. [CrossRef]
3. Ebe, F.; Idlbi, B.; Morris, J.; Heilscher, G.; Meier, F. Evaluation of PV hosting capacities of distribution grids with utilisation of

solar roof potential analyses. CIRED Open Access Proc. J. 2017, 2017, 2265–2269. [CrossRef]

https://github.com/suchithra-jude/A-model-free-DRL-based-approach-for-the-assessment-of-real-time-PV-hosting-capacity.git
https://github.com/suchithra-jude/A-model-free-DRL-based-approach-for-the-assessment-of-real-time-PV-hosting-capacity.git
https://doi.org/10.1016/j.rser.2022.112365
https://doi.org/10.1016/j.ijepes.2019.105445
https://doi.org/10.1049/oap-cired.2017.0848


Energies 2024, 17, 2075 12 of 12

4. Kabir, M.N.; Mishra, Y.; Bansal, R.C. Probabilistic load flow for distribution systems with uncertain PV generation. Appl. Energy
2016, 163, 343–351. [CrossRef]

5. Deboever, J.; Grijalva, S.; Reno, M.J.; Broderick, R.J. Fast Quasi-Static Time-Series (QSTS) for yearlong PV impact studies using
vector quantization. Sol. Energy 2018, 159, 538–547. [CrossRef]

6. Torquato, R.; Salles, D.; Pereira, C.O.; Meira, P.C.M.; Freitas, W. A Comprehensive Assessment of PV Hosting Capacity on
Low-Voltage Distribution Systems. IEEE Trans. Power Deliv. 2018, 33, 1002–1012. [CrossRef]

7. Bassi, V.; Ochoa, L.F.; Alpcan, T.; Leckie, C. Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter
Data. IEEE Trans. Smart Grid 2022, 14, 3271–3282. [CrossRef]

8. Wu, J.T.; Yuan, J.; Weng, Y.; Ayyanar, R. Spatial-Temporal Deep Learning for Hosting Capacity Analysis in Distribution Grids.
IEEE Trans. Smart Grid 2022, 14, 354–364. [CrossRef]

9. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on International Conference on Machine Learning, Beijing, China, 21–26 June 2014; Volume 1,
pp. 605–619.

10. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft Actor-Critic
Algorithms and Applications. arXiv 2018, arXiv:1812.05905.

11. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. arXiv 2018, arXiv:1801.01290.

12. Chen, X.; Qu, G.; Tang, Y.; Low, S.; Li, N. Reinforcement Learning for Selective Key Applications in Power Systems: Recent
Advances and Future Challenges. IEEE Trans. Smart Grid 2022, 13, 2935–2958. [CrossRef]

13. Cao, D.; Zhao, J.; Hu, W.; Ding, F.; Yu, N.; Huang, Q.; Chen, Z. Model-free voltage control of active distribution system with PVs
using surrogate model-based deep reinforcement learning. Appl. Energy 2022, 306, 117982. [CrossRef]

14. Kou, P.; Liang, D.; Wang, C.; Wu, Z.; Gao, L. Safe deep reinforcement learning-based constrained optimal control scheme for
active distribution networks. Appl. Energy 2020, 264, 114772. [CrossRef]

15. AS/NZS 4777.2:2020; Grid Connection of Energy Systems via Inverters, Part 2: Inverter Requirements. Australian/New Zealand
Standards: Sydney, Australia, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apenergy.2015.11.003
https://doi.org/10.1016/j.solener.2017.11.013
https://doi.org/10.1109/TPWRD.2018.2798707
https://doi.org/10.1109/TSG.2022.3227602
https://doi.org/10.1109/TSG.2022.3196943
https://doi.org/10.1109/TSG.2022.3154718
https://doi.org/10.1016/j.apenergy.2021.117982
https://doi.org/10.1016/j.apenergy.2020.114772

	Introduction 
	Problem Formulation 
	System Model and Constraints 
	Surrogate Model of the Network 

	Hosting Capacity Assessment Framework 
	Formulation of Markov Decision Process 
	Soft Actor–Critic Algorithm 

	Numerical Study 
	Experimental Setup 
	Surrogate Model Performance Evaluation 
	Hosting Capacity Assessment Results 

	Discussion 
	Conclusions 
	References

