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Abstract: In this paper, the microstructure, deformability, tensile properties, and phase hardness of
the Ti–43Al–2Cr–0.7Mo–0.1Y alloy with a high β phase content were investigated. Microstructural
analysis showed that the β phase precipitated not only at the colony boundaries but also inside
the lamellae due to its high content. A high-quality forging stock was prepared through one-step
noncanned forging. The total deformation reached above 80%, suggesting that the alloy has good
hot deformability compared to other TiAl alloys. The deformed microstructure was composed of
fine and equiaxed grains due to dynamic recrystallization. The high β phase content was shown to
contribute to the decomposition of the initial coarse lamellae. Tensile testing showed that the alloy has
good room-temperature ductility, even if the β phase content reaches above 20%. This is inconsistent
with a previous study that showed that a large amount of the hard β phase is detrimental to the
room-temperature ductility of TiAl alloys. Nanoindentation testing showed that the hardness of the
β phase in the current alloy is about 6.3 GPa, which is much lower than that in the Nb-containing
TiAl alloys. Low hardness benefits the compatible deformation among various phases, which could
be the main reason for the alloy’s good room-temperature ductility. Additionally, the influence of
various β stabilizers on the hardness of the β phase was also studied. The β phase containing Nb had
the highest hardness, whereas the β phase containing Cr had the lowest hardness.
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1. Introduction

TiAl alloys are ideal candidates for use as components in the hot end of engines because of their
attractive properties, such as their light weight and good high-temperature performance [1,2]. In the
last two decades, studies on the composition design [3], microstructural control [4], and plasticity
forming [5] of TiAl alloys have made considerable progress. Several TiAl parts have been preliminarily
applied in the automotive and aviation industries [6,7]. However, their intrinsic brittleness has hindered
their wider use. Thermal deformation is a suitable way to obtain a fine-grained microstructure, which
is beneficial for the ductility of TiAl alloys [5,8]. Past research has confirmed that the hot workability of
TiAl alloys can be significantly enhanced by the β phase with a disordered body-center cubic lattice at
above 1150 ◦C [9,10]. The content of the β phase depends closely on β-stabilizers. Therefore, advanced
β-solidifying TiAl alloys have become a focus of attention.
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The β phase in β-solidifying TiAl alloys would transform into an ordered β0 phase at around
1100 ◦C [11,12]. For simplicity, both ordered and disordered phases are represented by β in this paper.
Previous studies have shown that the β phase in Nb-containing TiAl alloys has a high hardness of
7–8 GPa, which is much higher than that of the γ and α2 phases [13]. The precipitation of the fineω0

phase in the β phase caused by the high Nb content can further increase the hardness of the β phase
(9–11 GPa) [14]. A high content of the β phase with high hardness is considered to be detrimental to
the room-temperature (RT) ductility of TiAl alloys [15]. Therefore, research on Nb-containing TiAl
alloys attempts to minimize the β phase content to ensure the hot deformability of TiAl alloys. On
this basis, research has mainly concentrated on TiAl alloys with low β phase content. The β phase
content generally ranges from 5% to 10% [16,17]. However, all these conclusions are based on the
high hardness of the β phase in Nb-containing TiAl alloys. So far, very little research has been carried
out on the phase hardness in TiAl alloys without Nb. It has not been confirmed whether the β phase
also has such high hardness in TiAl alloys without Nb. Moreover, little information concerning TiAl
alloys with a high content of the β phase is available. The influence of the high β phase content on the
microstructure, deformability, and ductility of TiAl alloys is not clear.

In this paper, a Ti–43Al–2Cr–0.7Mo–0.1Y alloy with high content of the β phase was chosen as the
research object. A fine-grained forging stock was produced by one-step noncanned deformation. The
microstructure, tensile ductility, and phase hardness of the forging stock were investigated in detail.
Additionally, the influence of various β stabilizers on the hardness of different phases in the TiAl alloy
was studied for the first time.

2. Experimental Methods

A Ti–43Al–2Cr–0.7Mo–0.1Y ingot was produced by using a vacuum consumable electric arc
furnace. Several small specimens (∅8 mm × 12 mm) for hot compression tests and a large cylindrical
specimen (∅70 × 90 mm) for hot forging were machined from the ingot. A high-quality forging stock
was produced by noncanned forging with a reduction of above 80%. After forging, the alloy was
annealed at 800 ◦C for 10 h to avoid cracking. In order to study the effect of β stabilizers on the
hardness of the phases, several ingots of TiAl alloys with different β stabilizers were fabricated by
using a vacuum nonconsumable arc furnace. The nanohardness of the various phases was measured
using a Nano Indenter G200 equipped with a Berkovich diamond tip and an optical microscope
(Agilent, PaloAlto, USA). The indentation depth is 60 µm. The maximum indentation force, the vertical
resolution, and the force resolution of the instrument were 10 N, 0.01 nm, and 50 nN, respectively.
The loading and unloading time was 10 s. The desired phase position could be observed using an
optical microscope to ensure high measurement accuracy. The hardness value was obtained directly
by the instrument. All indentations were further identified using a scanning electron microscope
(SEM) after the measurement. Isothermal compression tests were carried out using a Gleeble 1500D
simulator (DSI, Saint Paul, USA). Microstructures were examined by a Quanta 200F scanning electron
microscope (SEM) (FEI, Hillsboro, USA) equipped with an electron backscattered diffraction (EBSD)
system (FEI, Hillsboro, USA), and a Tecnai G2 F30 transmission electron microscope (TEM) (FEI,
Hillsboro, USA). Energy-dispersive X-ray spectrometry (EDX) (FEI, Hillsboro, USA) and selected area
electron diffraction (SAED) (FEI, Hillsboro, USA) were used to identify the phases. In order to avoid
the effect of the deformed layer and residual stress, EBSD samples were produced by electropolishing
technology. The samples were ground using 2000-grit SiC paper, followed by ultrasonic cleaning.
Then the samples were electropolished in a solution of 60% methanol, 32% butanol, and 8% perchloric
acid at −25 ◦C and 30 V. An acceleration voltage of 20 kV was used for EBSD image acquisition. The
measured step size was 0.4 µm. The EBSD data were processed using orientation imaging microscopy
(OIM) software, which provides a cleanup method to remove erroneous data. The TEM samples were
produced using the ion milling method. The accelerating voltage and spatial resolution of the TEM
system were 300 kV and 0.2 nm. Tensile tests were performed on an Instron universal testing machine
(Boston, Massachusetts, USA).
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3. Results and Discussion

3.1. The As-Cast Microstructure

The microstructure of the cast Ti–43Al–2Cr–0.7Mo–0.1Y alloy was examined by SEM. The
microstructure (Figure 1) mainly consisted of γ/α2 lamellar colonies, a bright β phase, and black γ
phase, as indicated by the arrows. Compared with other β-solidifying TiAl alloys, the current alloy
has more of the β phase [18]. Image analysis software shows that the β phase content was about 14%.
The high β phase content could be ascribed to the strong β stability of Cr and Mo, which has been
confirmed in the literature [3]. Previous studies on TiAl alloys with low β phase content have shown
that the β phase mainly precipitates at colony boundaries [19]. Nearly no β phase can be observed
inside the γ/α2 lamellae. By contrast, when the β phase content is high, it can be seen from Figure 1
that the β phase precipitates not only at colony boundaries, but also inside γ/α2 lamellae. Coarse γ/α2

lamellar colonies were divided by the β phase. Moreover, it can be seen that the distribution of the β
phase in the microstructure is inhomogeneous. Coarse lamellar colonies and the unevenly distributed
β phase were unfavorable to the mechanical properties of the TiAl alloys. Additional hot working is
required to optimize the microstructure of the alloy.
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alloy was compressed at 1200 °C/0.05 s–1, suggesting that the alloy can be deformed under this 
condition. On this basis, a high-quality forging stock was prepared by one-step noncanned forging 
using hydraulic equipment (400 tons). The total deformation reached above 80%, and the appearance 
of the forging stock is shown in Figure 2a. The visual inspection shows no crack in the outer surface 
of the forging stock, which indicates that the Ti–43Al–2Cr–0.7Mo–0.1Y alloy has better hot 
deformability than other β-solidifying TiAl alloys with low β phase content. The XRD data show that 
the forging stock is composed of the γ, β, and α2 phases. 

Figure 1. SEM micrograph showing the microstructure of the Ti–43Al–2Cr–0.7Mo–0.1Y ingot. (a)
Coarse lamellae; (b) β and γ phases.

3.2. Noncanned Forging and Microstructural Evolution

The hot deformability of TiAl alloys depends closely on their β phase content. In order to avoid
cracking, TiAl alloys with low β phase content are generally deformed by means of isothermal forging
or near-isothermal canned forging at 1200–1350 ◦C [9,20]. The deformation is generally set to 50–70%.
Considering the high β phase content, the hot processing window of the current alloy should be wider
than that of the TiAl alloys with low β phase content. According to the alloying design principle
of β-containing TiAl alloys [3], TiAl alloys exhibit good plastic deformation properties when the
deformation resistance is lower than 100 MPa under certain deformation conditions. Therefore, hot
compression experiments were carried out to estimate the deformability of the current alloy. Results
show that the deformation resistance is about 65 MPa when the Ti–43Al–2Cr–0.7Mo–0.1Y alloy was
compressed at 1200 ◦C/0.05 s−1, suggesting that the alloy can be deformed under this condition. On
this basis, a high-quality forging stock was prepared by one-step noncanned forging using hydraulic
equipment (400 tons). The total deformation reached above 80%, and the appearance of the forging
stock is shown in Figure 2a. The visual inspection shows no crack in the outer surface of the forging
stock, which indicates that the Ti–43Al–2Cr–0.7Mo–0.1Y alloy has better hot deformability than other
β-solidifying TiAl alloys with low β phase content. The XRD data show that the forging stock is
composed of the γ, β, and α2 phases.
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Figure 2. The appearance (a) and XRD pattern (b) of as-forged Ti–43Al–2Cr–0.7Mo–0.1Y alloy.

Compared with conventionalβ-solidifying TiAl alloys, the highβphase content in the current alloy
inevitably influences the microstructural evolution of the alloys. In order to study the microstructural
evolution during hot forging, the microstructure in different regions of the forging stock was observed
by SEM, as shown in Figure 3. The sampling locations are indicated in Figure 3a. The microstructure in
the center of the billet (position 1) is shown in Figure 3b. It can be seen that the microstructure mainly
consists of a black γ phase and a white β phase. It is difficult to distinguish the α2 phase in the image
due to its low content. The refined microstructure suggests that the initial coarse microstructure has
been fully decomposed. Figure 3c shows the microstructure in the middle area of the billet (position 2),
which is similar to that in the center area. Nearly no remaining lamellae can be found, indicating that
the initial lamellae in the middle area were also decomposed. Figure 3d shows the microstructure on
the edge of the billet (position 3), where it can be seen that most of the lamellae have decomposed.
However, a closer examination reveals a few remaining lamellae, as indicated by the arrows. In spite
of this, the current alloy still has high microstructural homogeneity. As reported in previous research,
a large number of lamellae remain in the deformed microstructure, particularly at the edge of the
forging stock [21,22]. This is because the decomposition of the initial lamellae depends closely on the
deformation amount. A large deformation can provide enough driving force to cause microstructural
evolution. The deformation amounts in different regions of the round forging stock are different.
Maximum deformation generally appears at the center, while the deformation at the edge is minimal.
For conventional TiAl alloys, deformation is difficult due to their poor hot deformability, which limits
the decomposition of γ/α2 lamellae. By contrast, the current alloy has a high β phase content. Some of
the soft β phase is distributed inside the γ/α2 lamellae, which can enhance the plastic deformation of
lamellae around the β phase. This explains why only a few lamellae remain, even on the edge of the
forging stock.
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position; (b) position 1; (c) position 2; and (d) position 3.

In order to describe the as-forged microstructure more clearly, EBSD technology was employed to
analyze the microstructure in the center area of the forging stock, as illustrated in Figure 4. The phase
distribution features are shown in Figure 4a. The statistical results show that the content of the γ, β, and
α2 phases are 74%, 22.5%, and 3.5%, respectively. The volume fraction of γ andα2 phases in the lamellar
regions are generally measured by using TEM by orienting the γ and α2 platelets edge-on [23,24]. γ/α2

lamellae in TiAl alloys generally contain 80% γ lath and 20% α2 lath [23–25]. It is apparent that a
great number of initial γ/α2 lamellae have been transformed into the γ phase during hot forging. A
similar phase transformation has also been identified in previous studies on high-Nb-containing TiAl
alloys [20]. The amount of the β phase increased slightly after forging. It can also be observed that
the β phase was more uniformly distributed in the microstructure compared to the as-cast alloy. The
inverse pole figure (Figure 4b) shows that both the β and γ grains have fine and homogeneous shapes.
According to Figure 4b, the grain size measured by the manual measurement method is about 3–15
µm, indicating that severe plastic deformation can remarkably refine the microstructure of the current
alloy. As shown in Figure 4c, the grain boundary (GB) feature of the as-forged microstructure was
also detected. The data show that the fraction of the large-angle GB is above 90%, while the fraction
of low-angle GB is 7.1%. Generally, the low-angle GB is a feature of substructures. The high density
of large-angle GB indicates that dynamic recrystallization should be the main softening mechanism
during the hot deformation of the current TiAl alloys.
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In order to further study the deformation mechanism, the features of the constituent phases in the
deformed microstructure were also examined by TEM. As shown in Figure 5a, a great number of γ
grains several microns in diameter can be identified. These γ grains have a low dislocation density and
a relatively regular shape, indicating that these γ grains were formed by dynamic recrystallization [26].
Previous research has shown that the γ phase affords larger deformation compared to the α2 phase.
The deformation of the γ phase can be realized by ordinary dislocations, superdislocations, and
mechanical twinning, while the dislocation movement in the α2 phase is very difficult [27]. Dynamic
recrystallization can significantly decrease the dislocation density of the γ phase. Some β phase was
also identified, as shown in Figure 5b. It can be seen that the β phase has an irregular shape, indicating
that dynamic recrystallization has not occurred for the β phase. The β phase has a body-centered cubic
structure and higher stacking fault energy [28]. Dynamic recovery is more likely to occur for the β
phase [29]. It can also be seen that the region around the β phase has a high dislocation density. The
soft β phase has excellent deformability and can contribute to the deformation of alloys. Moreover, a
small quantity of the remaining lamellae can also be found in the deformed microstructure, as shown
in Figure 5c. This is because the decomposition of the initial γ/α2 lamellae is related to the relative
orientation between the lamellae and loading [30].
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3.3. Tensile Properties

In order to study the effects of high β phase content on tensile properties, tensile tests were carried
out on the Ti–43Al–2Cr–0.7Mo–0.1Y alloy. The dependence of strength and elongation on temperature
is summarized in Figure 6. The RT tensile strength is about 726 MPa, which is higher than that of the
Cr- and Mn-containing TiAl alloys [31], but lower than that of high-Nb-containing TiAl alloys [32]. The
RT elongation is about 1.5%, which is close to that of the TiAl alloys with low β phase content. Thus,
the current forging stock has good RT tensile properties, even though the β phase content reached
about 20%. A similar phenomenon was also observed in a study on the Ti–43Al–9V–Y alloy. Kong et al.
found that the RT elongation of a Ti–43Al–9V–Y alloy with about 20% β phase can also reach about 2%.
This is inconsistent with the conclusion on the Nb-containing TiAl alloys that high β phase content can
significantly reduce the ductility of TiAl alloys [33]. The reason for this phenomenon is discussed in
Section 3.4. The tensile properties of the alloy at 650–750 ◦C were also tested. At 650 ◦C, the tensile
strength and the elongation are 634 MPa and 4.8%, respectively. When the testing temperature is
700 ◦C, the alloy still has high strength (556 MPa) and superior ductility (5.9%). However, as the
temperature is raised to 750 ◦C, the alloy suddenly has very high elongation and very low strength,
suggesting that 750 ◦C is higher than the ductile-brittle transition temperature of the alloy. Thus, the
working temperature of a Ti–43Al–2Cr–0.7Mo–0.1Y alloy should be not higher than 700 ◦C.
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3.4. Nanohardness of the Constituent Phases

Previous studies on Nb-containing TiAl alloys showed that the hardness and brittleness of the β
phase are very detrimental to the RT ductility of alloys [22]. The elongation of TiAl alloys with high β
phase content is generally very low, which is inconsistent with the current study. In order to clarify this
issue, nanoindentation tests were conducted on the Ti–43Al–2Cr–0.7Mo–0.1Y alloy. Three indentations
were performed on each phase to ensure measurement accuracy. In this study, we only measured
the hardness of the γ and β phases. It is hard to measure the hardness of the α2 phase due to its low
content in the microstructure. Figure 7 shows a comparison of the phase hardness in different alloys,
including the current alloy, A1, and A2 [13,15]. As shown in Figure 7, the hardness value of the γ
phase in the current alloy is 4.4 GPa, which is close to that (4.2 GPa) in the A2 alloy and slightly lower
than that (5.3 GPa) in the A1 alloy. By contrast, the β phase in the current alloy has a hardness value of
6.3 GPa, which is much lower than that in the A1 alloy (8.5 GPa) and that in the A2 alloy (7.4 GPa). It
can also be seen that the hardness difference between the γ and β phases is reduced. The low hardness
of the β phase could help coordinate the deformation of various phases at RT, thereby decreasing harm
to the RT ductility of TiAl alloys. This also explains why the Ti–43Al–2Cr–0.7Mo–0.1Y alloy with high
β phase content still has superior tensile properties. Moreover, it is obvious that the hardness of the
various phases in TiAl alloys is related to β-stabilizers.
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In order to further study the effect of β–stabilizers on the phase hardness, nanoindentation tests
were performed on the β phase, γ/α2 lamellae, and γ phase in various TiAl alloys containing different
β-stabilizers. To investigate the phase hardness more accurately, the β phase content was controlled
at 3–10 vol % in this study. Previous studies have confirmed that different elements exhibit different
β stability [3]. The amounts of different elements required to introduce β phase mainly depend on
their β stability. Thus, several alloys with nominal compositions of Ti–43Al–10Nb, Ti–43Al–1.5Mo,
Ti–43Al–1.5W, Ti–43Al–5Cr, Ti–43Al–5Mn, and Ti–43Al–6V were chosen as research objects. All of
these alloys have similar β-solidifying microstructures, which consist of γ/α2 lamellae, as well as β
and γ phases. The detailed microstructures have been reported in other studies [3,34]. Figure 8 shows
the average hardness values of the constituent phases in various TiAl alloys. It can be seen that the
hardness of the constituent phases depends closely on the β-stabilizers. As shown in Figure 8, the
hardness of the γ phases in different TiAl alloys is between 3.5 GPa and 4.7 GPa, and the hardness
of the γ/α2 lamellae in different TiAl alloys is between 3.6 GPa and 5.2 GPa. This indicates that the
hardness of the γ phases and γ/α2 lamellae are less affected by β-stabilizers. By contrast, the hardness
of the β phase is more affected by β-stabilizers. The β phase introduced by adding Nb exhibits the
highest hardness (7.4 GPa). This hardness value is in good agreement with other results published in
previous studies [13,15]. The β phase with high hardness is detrimental to the RT ductility of TiAl
alloys. The β phase introduced by adding Cr exhibits the lowest hardness (4.6 GPa). Low hardness
could help improve the RT ductility of TiAl alloys. This provides a new idea for the composition design
of β-solidifying TiAl alloys with excellent ductility. Further research on this aspect will be conducted
in the future.
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4. Conclusions

(1) The Ti–43Al–2Cr–0.7Mo–0.1Y alloy with a high β phase content has a coarse and inhomogeneous
as-cast microstructure. The β phase precipitates not only at the lamellar boundaries, but also
inside the lamellae. The Ti–43Al–2Cr–0.7Mo–0.1Y alloy has good hot workability due to the high
content of its β phase. A high-quality forging stock was prepared after one-step forging with
80% deformation. A high β phase content contributes to the decomposition of the coarse as-cast
microstructure during hot forging.

(2) The forging stock has a uniform and fine microstructure, which is composed of γ and β phases
and a small amount of the α2 phase. The alloy has good room-temperature ductility, even though
it contains a high β phase content. The room-temperature elongation can reach about 1.5%, which
can be ascribed to the low β phase hardness. The nanohardness of the β phase in the current
alloy is about 6.3 GPa, which is much lower than that in the high-Nb-containing TiAl alloys.
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(3) The hardness of the β phase depends closely on β-stabilizers. The β phase containing Cr, Mn, or
V has low hardness, while the β phase containing Nb, Mo, or W has high hardness. Reducing
the hardness of the β phase by alloying may be an effective way to improve the ductility of
β-solidifying TiAl alloys.
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