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Abstract: Microstructure as well as magnetic, thermal and magnetocaloric properties of the
mechanically alloyed Fe72Nb8B20 powders have been investigated by means of Mössbauer
spectrometry, differential scanning calorimetry (DSC), and magnetic measurements. The Mössbauer
spectrometry results showed the formation of nanostructured Fe(B) and Fe(Nb) solid solutions,
Fe2B boride, and an amorphous phase. The endothermic and exothermic peaks that are observed in
the DSC curves might be related to the Curie temperature, and the crystallization of the amorphous
phase, respectively. The critical exponent values around the magnetic phase transition of the
amorphous phase (TC = 480 K), are deduced from the modified Arrott plots, Kouvel−Fisher curves
and critical isotherm examination. The calculated values (β = 0.457 ± 0.012, γ = 0.863 ± 0.136
and δ = 3.090 ± 0.004) are near to those of the mean field model, revealing a dominating role of
magnetic order arising due to long-range ferromagnetic interactions, as the critical exponents are
mean-field-like. The maximum entropy change and the refrigerant capacity values are 1.45 J/kg·K
and 239 J/kg, respectively, under a magnetic field of 5 T.

Keywords: ball milling; Fe-Nb-B system; magnetocaloric properties; thermal analysis; Mössbauer
spectroscopy; critical behavior

1. Introduction

Magnetic refrigeration (MR) is a promising alternate to the conventional refrigeration, and a
developing technology that enhances energy efficiency and environmental respect as it uses clean
energy. MR is established on the magnetocaloric effect (MCE) which represents a thermal reaction or a
temperature variation of certain magnetic solids under the solicitation/removal of a magnetic field in
an adiabatic condition [1]. Indeed, the application of a magnetic field gives rise to the alignment of
the magnetic moments of a solid parallel to it and hence, to the increase of the temperature owing
to the released thermal energy. Consequently, the magnetic entropy is reduced. By removing the
magnetic field, the sample cooled down due to the random orientation of the magnetic moments,
and the entropy increased [2].

Many researches have been devoted to nanoscale magnetic materials magnetic materials owing to
a large MCE in the superparamagnetic nanostructured materials [3,4]. According to their magnetic
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phase transition, magnetic refrigerant materials can exhibit either a first order magnetic phase transition
(FOMT) or a second order magnetic phase transition (SOMT). The former is described by large magnetic
entropy variations, considerable hysteresis, a narrow temperature range, and a strong correlation
between magnetism and crystallographic structure [5,6]. Whereas the SOMT materials show no
structural transition at the Curie temperature (TC) that could improve the magnetization change,
and they have negligible hysteresis, lower magnetic entropy change peaks and a wide temperature
range [7–10]. The main problem of magnetic phase transitions theory consists in studying the
behavior of a given system in the neighborhood of the ferromagnetic (FM) to paramagnetic (PM)
magnetic transition temperature. Indeed, some physical magnitudes corresponding to the system have
singularities at the critical point. These singularities are, generally, expressed in terms of power law
categorized by critical exponents, which qualitatively determine the nature of the behavior of a given
system. According to different theoretical models [11], the magnetic phase variation near TC is defined
by a set of critical exponents (β, γ and δ), where β is related to the spontaneous magnetization Ms
(µ0H = 0) under TC; γ is linked to the initial magnetic susceptibility χ0 below TC, and δ can be deduced
from the magnetic isotherm at T = TC.

Fe-Nb-B alloys are very stimulating materials owing to their soft magnetic properties
(high magnetization of saturation, low core losses, zero magnetostriction, etc.) that can be achieved after
optimum thermal heat treatment [12]. Accordingly, they have many industrial applications such as
telecommunications, magnetic heads, sensors, power transformers, etc. [13,14]. Besides, Fe-Nb-B alloys
exhibit other possible functionalities such as MCE [15,16]. Indeed, in the amorphous Fe93-xNb7Bx (x = 9,
14 and 20) prepared by rapid quenching, the entropy values are −∆SM = 1.44, 1.07 and 0.97 J/kg·K
for x = 9, 14 and 20, respectively [17]. The temperature dependence of the MCE was studied in
amorphous and nanocrystalline Fe80.5Nb7B12.5 melt-spun ribbons [18]. The maximum entropy change
was about 0.72 J/kg·K, at TC ∼ 363 K of the amorphous phase, upon a magnetic field modification
of 0.7 T. Nevertheless, the magnetic entropy variation decreased and its peak broadened with the
progressive nanocrystallization of the amorphous ribbons.

Many methods have been used to produce magnetocaloric materials such as mechanical alloying
(MA) [19,20], solid state reactions [21], sol gel routes [22], melt spinning [23,24], etc. In the mechanically
alloyed powders, the MCE response can be affected by several factors such as the alloy composition,
the multiphase character, the demagnetizing field effect, etc. [25]. Consequently, depending on the
experimental procedure, the obtained results might be different. Hence, the goal of the current work
was to study the structure and the magnetocaloric, magnetic and thermal properties of the ball-milled
Fe72Nb8B20 powders. The critical behavior near the Curie temperature of the amorphous phase is
also discussed.

2. Experimental Details

Fe72Nb8B20 (wt. %) powders were ball-milled for 50 h. The experimental details are reported in
reference [26]. The local 57Fe environment was studied by Mössbauer spectrometry in transmission
geometry, at 300 K, by means of a 57Co source diffused in an Rh matrix. Setaram DSC131 evo apparatus
(DSC) (Setaram Instrumentation, Lyon, France) was used to examine the thermal behavior within the
temperature range 323−973 K, under argon atmosphere, by using different heating rates. The hysteresis
loops were measured, at room temperature, with a Lakeshore 7404 vibrating sample magnetometer
(VSM) (LakeShore, Westerville, Oh, USA) under an applied magnetic field of 1.5 T. Magnetization
versus temperature comparisons were performed on a BS2 magnetometer developed at the Néel
Institute. The demagnetization field effect might have been neglected because the sample was used in
powder form. The demagnetization factor D = 0.027 was determined from the slope of the M(Happ)
curve near zero field. The corrected magnetic field after subtraction of the demagnetization field is
H = Happ −HD = HappDM, where Happ is the applied magnetic field.
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3. Results and Discussions

3.1. Hyperfine Structure

Mössbauer spectrometry of 57Fe enables the examination of the iron sites by the determination of
the local Fe environment, composition variations and the spreading of Fe atoms. The coexistence of
crystalline and amorphous magnetic phases is evidenced by the presence of sharp and widened magnetic
lines, respectively, in the Mössbauer spectra of the Fe72Nb8B20 powders (Figure 1). The presence
of nonmagnetic B and/or Nb atoms in the neighborhood of Fe atoms leads to the atomic disorder
which is manifested by the enlargement of the Mössbauer lines. In order to identify the different
Fe sites, the Mössbauer spectra were fitted by a least-squares MOSFIT program [27], by using two
magnetic sextets (SS1, SS2), one paramagnetic doublet (SS3) and a hyperfine field distribution (HFD).
The obtained hyperfine parameters magnetic field (Bhf), isomer shift (IS), quadrupolar splitting/shift
(QS/2ε), line width (Γ) are presented in Table 1. The IS is related to α-Fe at room temperature.
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Table 1. Bhf, IS, 2ε, QS, Γ and percentage of the formed phases.

Phases Site Bhf (T)
±0.2

IS (mm/s)
±0.01

2ε or QS (mm/s)
±0.01

Γ (mm/s)
±0.2

Relative area
±1 (%)

α-Fe SS1 33.0 0.011 −0.016 0.42 12.5
Fe2B SS2 23.2 0.062 0.163 0.60 13.5

Doublet SS3 −0.203 0.996 0.56 05.0
Amorphous HFD 10.5 0.281 69.0

The hyperfine parameters of the sextet SS1 (Bhf = 33 T and IS = 0.011 mm/s) can be associated
with an Fe-rich Fe(B) solid solution containing a very small concentration of boron atoms. Indeed,
existence of one B atom as the nearest neighbor (nn) of an Fe atom raises IS by about 0.07 mm/s. In such
Fe(B) sites, the average number of B atoms (nB) can be estimated from the linear relationship between
the hyperfine magnetic field (Bhf) and the number of B atoms [28]: Bhf = 33.6–2.7nB. Accordingly,
the number of B atoms in the sextet SS1 is about nB = 0.22. The sextet SS2 with B =23.2 T and IS = 0.062
mm/s, is ascribed to the Fe2B boride phase. The paramagnetic doublet with IS = −0.203 mm/s and
QS = 0.996 mm/s can be linked to an Fe(Nb) solid solution, since the existence of one Nb atom as the
first or second nn of an Fe atom diminishes IS by 0.04 mm/s [29]. The HFD is due to the existence of
numerous non−equivalent Fe surroundings where the Fe atoms are mainly surrounded by B atoms in
their neighborhoods. The HFD can be linked to a B-rich FeB amorphous matrix. These results agree
well with XRD findings (not shown here) [26].
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3.2. Thermal Analysis

The continuous heating DSC curves with several heating rates (5, 10, 15 and 20 K/min) are shown
in Figure 2. The DSC scans exhibit two endothermic peaks at about ~389 K and 428 K that can be
associated to the magnetic transition (TC) of the amorphous phase, since those of α−Fe (1043 K)
and Fe2B (1015 K) are higher [30]. The existence of two TC might be related to the impurity phases
and/or the distribution of Curie transitions in the highly disordered amorphous matrix. Similar results
have been observed in other ball-milled powder alloys [31,32]. The obtained values are analogous to
those of B containing alloys [17,18]. The broad exothermic peak in the temperature range 650−800 K
can be attributed to the crystallization of the amorphous phase. The apparent activation energy
under continuous heating conditions can be calculated by means of the Kissinger peak displacement
method [33]: ln(β/T2) = −EA/RT + const., where β is the constant heating rate, R is the gas constant and
T stands for the crystallization peak temperature. The activation energy EA = 342 ± 10 kJ/mol has been
estimated from the linear fit of ln(β/T2) versus 1/T plot. This value can be linked to a grain growth
process. A slightly different value of about 324 ± 35 kJ/mol has been found in the 80h ball-milled
Fe74Nb6B20 powders [34]. Those discrepancies might be related to the milling conditions and the
obtained phases.
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Figure 2. DSC scans measured with several heating rates (the inset shows the first peak). Peaks 1 and 2
correspond to two FM-PM transitions, and peak 3 to the crystallization process.

3.3. Magnetic Properties

Figure 3 displays the hysteresis loops recorded at room temperature for the ball-milled and
heat-treated powders after DSC analysis. The hysteresis loops show the same trend. They are
saturated and exhibit a sigmoidal shape type. For the as-milled powders, the coercivity is 0.0302 T
and the saturation magnetization is 92 emu/g. However, after DSC heat treatment, both the coercivity
and saturation magnetization increased to ~0.0397 T and 181 emu/g, respectively. The increase in
coercivity may be attributed to a higher number of non-magnetic phases and/or Fe2B boride. However,
the increase in saturation magnetization might be correlated to the formation of α−Fe nanocrystals.

Figure 4 displays the magnetization as a function of temperature, M(T), measured in a magnetic field
of 0.05 T. TC of the amorphous phase that corresponds to the minimum of δM/δT, was found to be 480 K.
This value is higher than that observed in the DSC curves by about 100 K. The measured TC depends on
the compositional heterogeneity, strain distribution, sample shape and/or the determination method,
in particular in several constituent alloys [35]. During heating, the sensitivity of a reaction is related to
its energy evolved as well as to the mass of the sample. In the M(T) curve, TC is usually determined
from the drop of magnetization or the inflection point method, whereas, DSC detects TC as a heat flow
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variation owing to the small quantity of energy accompanying the ferromagnetic-to-paramagnetic
phase transition. Hence, the endothermic reaction that happens below TC represents the absorbed
energy during heating to induce randomization of the magnetic dipoles. Furthermore, the presence of
many phases should impact the modification of the magnetization around TC. This later depends on the
exchange interaction between the magnetic moments, which in turn depends on the distance between
the magnetic atoms. Consequently, TC is dependent on the composition of the amorphous phase.
For example, in the Fe80.5Nb7B12.5 melt-spun ribbons TC was found to be 363 K [18]. In the amorphous
Fe100-xBx alloys (10≤ x ≤35 at. % B), TC of the amorphous phase increased with the augmentation of
the boron content from 480 K for x = 10 up to 820 K for x = 28, and then decreased [36].
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3.4. Magnetocaloric Effect

Figure 5 displays the isothermal M(H) plots in the temperature range 400−700 K.
The magnetocaloric behavior can be studied through the evaluation of the magnetic entropy changes
∆SM from the magnetization measurements by using the Maxwell Equation:

∆SM(T, ∆H) = SM(T, H2) − SM(T, H1) =

∫ H2

H1

(
∂M
∂T

)
T

dH (1)
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With H1 and H2 the applied magnetic fields where H1 < H2, and ∆H = H2 −H1. The numerical
Maxwell’s Equation can be given by:

∆SM(T, M) =
∑

i

Mi+1(Ti+1, Hi+1) −Mi(Ti, Hi)

Ti+1 − Ti
∆H (2)

where Mi and Mi+1 are the experimental data of the magnetization at Ti and Ti+1, respectively,
under the magnetic field HC, the temperature dependence of change in magnetic entropy − ∆SM(T) is
presented in Figure 6. The magnetic entropy change versus temperature shows a peak, which has been
previously identified as TC. One also observes that ∆SM increases as the applied magnetic field rises
and attains 1.45 J/kg·K under 5 T. Different values of −∆SM and TC (Table 2) are obtained for certain
Fe-Nb-B alloys [17,18,37–39]. Those differences might be accredited to the experimental conditions
such as the fabrication method, alloy composition, particle size and shape, structure, phase nature,
matrix interactions, neighboring particles, etc. Those parameters have a deep effect on the magnetic
behavior of a material.
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Table 2. TC and −∆SM(T) in amorphous and partially amorphous (partially am.) Fe-Nb-B alloys.

Composition Sample Shape Structure TC
(K)

µoH
(T)

-∆SM(T)
(J/kg·K) Ref.

Fe72Nb8B20 Powder Partially am. 480 2 0.66 This work
Fe84Nb7B9 Ribbons Amorphous 335 1.5 0.80 [37]

Fe80.5Nb7B12.5 Ribbons Amorphous 363 0.7 0.72 [18]
Fe75Nb10B15 Powder Amorphous 250 1.5 0.60 [38]
Fe79Nb7B14 Ribbons Amorphous 372 1.5 1.07 [17]
Fe75Nb10B15 Powder Partially am. 395 1.5 0.95 [39]

A linear dependence has been found between the maximum entropy change and log(H).
The Equation is:

∆SM(H) = n log H + C (3)

The linear fitting is ∆SM(H) = 1.1192 log H + 0.3386 (R2 = 0.9694). This tendency indicates that
when increasing the applied magnetic field, the maximum entropy change increases (with a factor
below that corresponding to magnetic field change).

The refrigerant capacity (RC) associated with the entropy variation represents a way to evaluate
the magnetocaloric efficacy of materials. RC denotes the transferred quantity of warmth between the
warm and cold tanks [40]. RC is determined experimentally from ∆SM(T) and the full width at half
maximum (δTFWHM) of the peak entropy, since it is defined as follows:

RC = −

T2∫
T1

∆SM(T)dT (4)

The temperatures T1 and T2 are defined by δTFWHM of ∆SM(T) peak; as an example, T1 = 325 K
and T2 = 650 K at 1 T. RC reaches 239 J/kg for a magnetic field change of 5 T.

3.5. Critical Behavior

The universal behavior of materials can be studied by the critical exponents (β, γ and δ) related
to the phase transitions (Table 3). Four distinct conventional models [11] can be used to estimate the
critical exponents β, and δ from the M(H) curves such as the: (i) mean field model related to long-range
mean field theory, (ii) Heisenberg model correlated to short-range interactions, (iii) 3D-Ising model,
and (iv) tricritical mean field model. The exponent β is correlated to the variation of the spontaneous
magnetization as a function of temperature (MS ≈ (T − TC)β). It describes the ordered moment growth
for T < TC; γ is connected to the temperature dependence of the initial magnetic susceptibility against
of the temperature ((χo)−1

≈ (T − TC)γ). It defines the divergence of χo at TC, and δ is associated to
with the critical isothermal magnetization. It designates the curvature of the isothermal magnetization
curves M(H) at TC.

Table 3. Critical exponents of Fe72Nb8B20 powders compared to those of theoretical models. MAP
(modified Arrott plot), K-F (Kouvel-Fisher) and CI (critical isotherm).

Model Technique β γ δ Ref.

MAP 0.457 ± 0.012 0.863 ± 0.136 2.888 ± 0.124
This workK−F 0.432 ±0.015 1.002 ± 0.093

CI 3.090 ± 0.004

Mean field 0.5 1.0 3.0

[11]3D-Heisenberg 0.365 1.336 4.80
3D-Ising 0.325 1.241 4.82

Tricritical mean field 0.25 1.0 5.0



Materials 2020, 13, 4476 8 of 13

The exponents β, γ and δ have been evaluated by using the modified Arrott plots (MAP) [41],
Kouvel-Fisher plots (K–F)( [42,43] and critical isotherm (CI) methods according to evaluated by
using Equations:

MS(T) = M0(−ε)
β; ε < 0, T < Tc (5)

χ−1
0 (T) =

(
h0

M0

)
εγ; ε > 0, T > TC (6)

M = DH1/δ; ε = 0, T = TC (7)

ε = (T-TC)/ TC is the reduced temperature; Mo, ho, and D are the critical amplitudes.
The modified Arrott plots around TC of the amorphous phase are presented in Figure 7.

In order to determine the model that defines the system, it is necessary to evaluate the relative
slope RS = S(T)/S(Tc) which is defined by the relationship between the slope at each temperature T,
S(T), and the slope at TC, S(TC). RS is obtained from the linear fit of the high field area of each curve
(Figure 8). Accordingly, the phase transition in the ball-milled Fe72Nb8B20 powders can be described
by the mean field model because the relative slope RS is close to the unit.
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The exponents β, γ can be deduced by fitting of MS(T,0) and χ−1
0 (T, 0) curves by means of

Equations (5) and (6), respectively (Figure 9). The determined values β = 0.457 ± 0.012 and
γ= 0.863± 0.136 are reasonable and comparable to those of the mean field (Table 3). TC is approximately
40 K higher than that obtained from the M(T) curve. Those divergences might be correlated to the
determination method. Moreover, the Kouvel-Fisher (K-F) method can be used to evaluate the critical

exponents’ β and γ from the slopes 1/β and 1/γ of MS(T)(dMS(T)/dT)−1 and χ−1
0 (T)

(
dχ−1

0 (T)/dT
)−1

plots versus temperature, respectively (Figure 10).
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One notes that β = 0.432 ± 0.015 and γ = 1.002 ± 0.093 values are also close to those of the mean
field model. Likewise, the Widom scaling relationship permits the determination of the third exponent
δ since it is related to β and γ exponent values through the subsequent Equation [44]:

δ = 1 + (γ/β) (8)

By using the critical exponentsβ andγ that are deduced from the K–F method, the obtained δ value,
δ = 2.888 ± 0.124 (Table 3), is similar to that estimated from the CI curves (Figure 11), δ = 3.090 ± 0.004.
The scaling hypothesis confirms the reliability of the critical exponents and TC [45]:

M(H, ε) = εβf±
(
H/εβ+γ

)
(9)

The regular analytic functions f+ and f− are undertaken for T > TC and T < TC, respectively.
Figure 12 displays the M|ε|-β as a function of H|ε|-(β+γ) are plotted in the vicinity of the Tc. The accuracy
of the predicted critical exponents and TC is confirmed by the presence of two distinct branches below
and above TC.
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long-range ferromagnetic interactions, as the critical exponents are mean-field-like. The maximum 
entropy change and the refrigerant capacity values are of about 1.45 J/kg·K and 239 J/kg, respectively, 
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4. Conclusions

Partially amorphous Fe72Nb8B20 powders have been prepared by MA. The MCE, critical behavior,
thermal, hyperfine structure and magnetic properties have been investigated. The milling process
leads to nanocomposite type structure where nanocrystalline α−Fe(B), Fe(Nb) and Fe2B phases and
embedded into an amorphous matrix. The detected endothermic and exothermic peaks in the DSC
scans are related to the Curie temperature and crystallization of the amorphous phase, respectively.
The saturation magnetization and the coercivity increase after the crystallization. The critical exponent’s
values (β = 0.457 ± 0.012, γ = 0.863 ± 0.136 and δ = 3.090 ± 0.004) around TC = 480 K, are near to
those of the mean field model, with a dominating role of magnetic order arising due to long-range
ferromagnetic interactions, as the critical exponents are mean-field-like. The maximum entropy change
and the refrigerant capacity values are of about 1.45 J/kg·K and 239 J/kg, respectively, for an applied
magnetic field of 5 T. These alloys, as magnetocaloric materials, are candidates to work in magnetic
refrigeration devices (high temperature span applications) after consolidation in optimized geometries.
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