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Abstract: New high entropy alloys with good corrosion resistance in severe environment are receiving
increasing attention. This work reports upon the microstructure and the corrosion resistance of the
non-equiatomic Fe36Mn20Ni20Cr16Al5Si3 alloy in different acidic solutions. This alloy was designed
by thermodynamic calculations using CALPHAD SOFTWARE, fabricated through casting, subjected
to cold-rolling and solution-treatment, and compared with SS304 stainless steel. The corrosion test
was performed through electrochemical behavior in 0.6 M NaCl and 0.6 M NaCl with 0.5 M H2SO4

and 0.6 M NaCl with 1 M H2SO4 solutions. Experimental results indicate that the alloy is composed
of FCC phase as the main constituent besides a small amount of other BCC/B2 phases and other
intermetallics. The corrosion test measurements revealed that cold-rolled Fe36Mn20Ni20Cr16Al5Si3
alloy is more resistant to corrosion in 0.6 M NaCl, while it is more susceptible to localized pits in
H2SO4 to 0.6 M NaCl. Experimental results indicate that the pits are preferentially occurred in the
areas of BCC/B2 phase precipitates. The solution-treated Fe36Mn20Ni20Cr16Al5Si3 HEA has the
highest corrosion resistance compared to others with the addition of H2SO4 to 0.6 M NaCl. Surface
morphologies of the different conditions were studied, and relevant results were reported.

Keywords: corrosion; high entropy alloys; acidic media; microstructure

1. Introduction

Developing advanced materials with low cost and good properties operating in severe
environments is an urgent demand for many industrial sectors [1]. High entropy alloys
(HEAs) are considered one of these promising advanced materials which are solid solution
alloys by mixing five or more different elements with equal or near equal atomic ratios.
Unlike conventional alloys, HEAs generally appear as simple face, centered cubic bodies,
centered cubic or hexagonal close-packed, rather than complex intermetallic phases [2].
This endows HEAs with excellent performance in many industrial applications within a
wide range of temperatures from cryogenic to elevated temperatures, for instance, superior
mechanical properties, attractive physical properties, superior electrochemical properties,
good ductility, high hardness, and high temperature resistance [3]. These distinctive
properties make them suitable for various harsh environments such as: thermal, wear,
and resistant coatings, chemical plants, components for nuclear power plants, geothermal
power plants components, structural materials for transportation, and energy industries,
etc. [4]. The corrosion resistance of these HEAs is essential for ensuring the functionality
of these alloys to fit in these applications. Accordingly, corrosion behavior of many HEAs
have been extensively investigated in various aqueous solutions in recent years. Generally,
HEAs gain their good corrosion resistance from the formation of the protective passive film
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on their surfaces. The nature of the formed passive film plays a critical role on the level of
corrosion resistance. Luo et al. [5] studied the corrosion behavior of the Co-Cr-Fe-Mn-Ni
HEA in sulfuric acid solution and compared the results with SS304. The HEA shows less
corrosion resistance due to the lower content of Cr and the formation of hydroxide in the
surface passive film. In another study, AlxCrFe1.5MnNi0.5 HEAs alloys display a better
general corrosion resistance than SS304 in 1 M H2SO4, but they exhibit a lower pitting
corrosion resistance than SS304 in 1 M H2SO4 and 1 M NaCl. The corrosion resistance
decreases with increasing the aluminum content. Aluminum formed a thick porous passive
film which enhanced the localized pitting corrosion [6]. Same results were achieved by
Niu et al. [7] for the Al0.5FeCoCrNiCu HEA, which shows weak corrosion resistance in
1 M NaCl and 0.5 M H2SO4. Chou et al. [8] reported the effect of mixing sulfates with
chlorides on the pitting corrosion of a Co1.5CrFeNi1.5Ti0.5Mo0.1 alloy. The pitting potential
was critical when the ratio of sulfates to chlorides reached 0.5. Gorr et al. [9] studied the
high temperature oxidation properties of the NbMoCrTiAl HEA system, and they reported
that the surface of the alloys was covered with a non-protective oxide film when exposed
to oxidation test. Quiambao et al. [10] evaluated the passivity of the NiCrFeRuMoW
alloy in non-oxidizing sulfate solution at various pH levels. The highly acidic sulfate
solution causes spontaneous passivation, and the alkaline solutions cause active-to-passive
transition passivation. Chen et al. [11] reported that the Cu0.5NiAlCoCrFeSi alloy showed
resistance to pitting corrosion in chloride-free solution, and its resistance became less
effective in chloride contaminated environments. Qiu et al. [12] reported that CrFeCoNi
and CrMnFeCoNi alloys showed pitting resistance to be very close to many austenitic
stainless steel alloys. In another work, Qiu et al. [13] studied the corrosion performance
of cast AlxCoCrFeNiTiy, and reported the formation of oxides of Al2O3, Cr2O3, Fe2O3,
and Co3O4 on the surface after the polarization test of 0.6 M NaCl. Lu et al. [14] reveled
that the CoCrFeMnNi system exhibited the obvious characteristics of pitting corrosion
in NaCl solution. Zhu et al. [15] studied the effect of potential on the passivity of the
surface of the CoCrFeMnNi alloy in a weak alkaline electrolyte solution, and found primary
and secondary passivation behavior. Li et al. [16] investigated the corrosion behavior of
the AlCoCr-FeNi HEA in 3.5 wt.% NaCl and compared the results with AISI1045 steel.
They reported better corrosion resistance of HEA compared to AISI1045 steel, which was
attributed to the formation of oxides of Al and Cr on the surface. Moreover, Feng et al. [17]
evaluated the corrosion resistance of the CrCoNiN in 3.5 wt.% NaCl solution. The compact
passive film improved the corrosion resistance. Another alloy that shows more pitting
resistance compared to the SS304 L in 3.5 wt.% NaCl solution is the CoCrFeNi HEA due
to its higher Cr content [18]. Besides, Rodriguez et al. [19] evaluated the effect of the
different elements on the corrosion resistance of the CoCrFeMnNi HEA system. They
found that Cr is the most important element for enhancing corrosion resistance. Cr enhance
the corrosion resistance of the Fe50Mn30Co10Cr10 alloy against 3.5 wt.% NaCl due to the
formation of Cr enrichment passive film [14]. In another study, Torbati-Sarraf et al. [20]
investigated the effect of Mn on the pitting corrosion of CrMnFeCoNi and CrFeCoNi
systems. They reported that Mn negatively affects the protective ability of the passive film.
One of the HEAs families is Fe-Mn-Ni-Cr-Al-Si system. It is composed from relatively
low-cost elements, and it contains corrosion resistance elements, such as Cr, whilst Si and
Al lower alloy density. Such characteristics made it a promising material for corrosion
resistant applications [21].

One of the novel alloys of this system is the Fe36Mn20Ni20Cr16Al5Si3 alloy, which
showed very promising mechanical properties and excellent deformability, as reported
in [22]. Therefore, studying the corrosion properties in acidic media was an important step
towards the complete investigation of the properties of this new HEA.

This current work performs an extensive study on microstructure of the Fe36Mn20Ni20
Cr16Al5Si3 HEA in its cold-rolled and solution-treated conditions. An in-depth investigation
regarding its corrosion resistance was performed. The effect of different acidic media on
Fe36Mn20Ni20Cr16Al5Si3 HEA performance in its cold rolled and solution-treated condition
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were investigated and compared with the corrosion behavior of stainless steel SS304.
Additionally, the surface morphologies of the corroded surfaces were also performed.

2. Materials and Methods

A new non-equiatomic High Entropy Alloy (HEA) system (Fe36Mn20Ni20Cr16Al5Si3)
was designed based on the Thermo-Calc software calculations from the following common
elements of Fe, Mn, Ni, Cr, Al, and Si to show high strength, good deformability, corrosion
resistance, and effective cost. This HEA contains high Mn and Ni content to make FCC,
the main phase in the alloy, while Cr is essential to achieve high corrosion-resistance. Al
is good in strengthening FCC phase, but it is a BCC stabilizer, so Al-content is limited
to only 5%. Si was shown to improve much the corrosion resistance of HEAs, but it is a
strong intermetallic former, so it is limited to only 3%. The alloy was produced using an
electric arc furnace (ARCAST 200, Maine, ME, USA) under a high purity argon atmosphere.
For homogeneity, it was melted 4 times, flipping each time. The ingot of HEA was cut
into two parts with rectangular cross-section 10.8 mm by12.66 mm. The two parts were
coldrolled to produce two bars with 5 mm diameter that reached about 86% area reduction
ratio. One part from the coldrolled HEA was solution-treated at 900 ◦C for 30 min. The
heat treatment temperature was chosen to be relatively low temperature (900 ◦C) and for a
short time (30 min), to allow for recrystallization after cold-rolling but not to allow for grain
growth in order to maintain the good properties. Additionally, short solution treatment
time was aimed to not make much secondary phases precipitation so as not to affect the
corrosion resistance of the alloy. Before the microstructural examination, the cold-rolled,
solution-treated HEAs were ground using emery papers up to 1200 grit, then polished
by alumina past with 0.3 µm. After that, the electrochemical etching was performed
using 10% oxalic acid. The optical microstructures of the cold-rolled and heat-treated
Fe36Mn20Ni20Cr16Al5Si3 HEA were examined. The microstructure investigations were
carried out using scanning electron microscope (FESEM/QUANTA FEG). X-ray diffraction
(D8 Discover with GADDS system, 35 kV, 80 mA) was used in the scanning range of
40 ≤ 2θ ≤ 100◦ intervals with a step size of 0.05 deg. Their phase identifications were
characterized to investigate the crystal structure of the cold-rolled and solution-treated
samples. Corrosion samples with 2 mm thickness and 5 mm diameter were cut from both
cold-rolled, and solution-treated Fe36Mn20Ni20Cr16Al5Si3 HEA. The investigated samples
were ground and polished before the corrosion test. In this work, different corrosion testing
medias have been chosen to cover a wide range of working environment severity in order
to explore the response and behavior of our new HEA alloy in different working medias,
especially the water treatment related conditions. The potentiodynamic-polarization test is
performed using three corrosion mediums (0.6 M NaCl, 0.6 M NaCl with 0.5 M H2SO4 and
0.6 M NaCl with 1.0 M H2SO4). The target of adding sulfuric acid to sodium chloride is to
study the effect of the Cl− and SO4

2− anions on the investigated HEA as a simulation of
the cooling system in the many types of industries. The electrochemical parameters during
the test usually include the corrosion potential (Ecorr) and corrosion-current density (icorr).
The parameter, icorr, can be used to calculate the average corrosion rates from Equation (1)
which represent the general corrosion resistance [23,24]:

Corrosion rate (mm/year) = 3.27 × 10−3 × icorr

ρ
× EW (1)

where ρ is the density of the alloy (in g/cm3), icorr (in µA/cm2) is the corrosion current
density, and EW is the equivalent weight of the alloy. The calculated EW of the investigated
HEA is about 20.49 gm (which is derived from the alloy composition, elements atomic
weight, and valence).

Surface morphology and chemical analysis of the corroded cold-rolled and heat-treated
Fe36Mn20Ni20Cr16Al5Si3 HEA were examined by using scanning electron microscopy (SEM),
energy dispersive X-ray analysis (EDX), and mapping for their elemental distribution.
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3. Results and Discussion
3.1. Material Characterizations

The equilibrium phase diagram of the Fe36Mn20Ni20Cr16Al5Si3 HEA predicted by
Thermo-Calc calculations [21] is shown in Figure 1. It composed of FCC phase as the
main constituent besides a small amount of other phases, such as Sigma, silicides, B2,
and other intermetallics. This is due to the higher content of FCC stabilizers (Ni and Mn)
and the lower content of BCC stabilizers (Si and Al). SEM micrographs of the cold rolled
condition revealed some twinning (green arrows) and slip bands (yellow arrows) as shown
in Figure 2. Many intergranular precipitations (red arrows) appeared homogenously at the
grain boundaries. Figure 3 showed the SEM micrographs of the solution-treated sample.
The deformation features, such as slip bands and twinning, disappeared during the high
temperature heat treatment. Many precipitations with different sizes and features appeared
as intergranular and transgranular in the matrix. Additionally, the apparent number of
precipitates in the annealed condition is significantly increased in comparison to that of
the as-rolled condition. The detailed microstructures and the mechanical properties of the
alloy in as-rolled and solution-treated conditions were found in our recently published
work [22]. Generally, the EDX and mapping of the microstructure in both conditions reveals
homogenous distributions of all the alloying elements as shown in Figures 4 and 5. The
XRD pattern, as shown in Figure 6, of the cold-rolled condition shows only FCC phase,
while its solution-treated sample showed FCC structure with little BCC/B2 phase structure.
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3.2. Corrosion Behavior

The corrosion behavior of the Fe36Mn20Ni20Cr16Al5Si3 HEA as cold rolled and solution
treated condition in addition to SS304 in different acidic media in terms of potentiodynamic
polarization curves are given in Figure 7. Moreover, their electrochemical parameters
were obtained though the potentiodynamic polarization tests in solutions of 0.6 M NaCl,
0.6 M NaCl with 0.5 M H2SO4, and 0.6 M NaCl with 1 M H2SO4, and these are listed in
Table 1. Generally, the trend of the corrosion current density of the Fe36Mn20Ni20Cr16Al5Si3
HEA in cold-rolled and solution-treated conditions the SS304 samples decreases and then
increases. Neither the two HEA in as cold-rolled and solution-treated conditions, nor the
SS304 samples established an active to passive transition zone. This may be due to the
instantaneous formation of a protective passive film on the surface.
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Table 1. The electrochemical parameters of cold-rolled HEA, solution-treated HEA, and SS304.

Conditions Ecorr, mV icorr,
µA/cm2

Rp,
kohm.cm2

CR,
mm/y

Cold-rolled

0.6 M NaCl −455.1 12.70 33.00 0.136

0.6 M NaCl + 0.5 M H2SO4 −546.1 309.96 1.70 3.33

0.6 M NaCl + 1 M H2SO4 −417.8 563.10 0.024 6.056

Solution-treated

0.6 M NaCl −403.8 75.85 13.43 0.815

0.6 M NaCl + 0.5 M H2SO4 −497.1 178.8 5.57 1.92

0.6 M NaCl + 1 M H2SO4 −477.1 101.18 9.44 1.095

SS304

0.6 M NaCl −261.2 22.4 8.77 0.241

0.6 M NaCl + 0.5 M H2SO4 −417.8 288.2 0.402 3.10

0.6 M NaCl + 1 M H2SO4 −460.9 2715 0.095 29.20

3.2.1. Corrosion Resistance in 0.6 M NaCl

For a solution of only 0.6 M NaCl, the cold-rolled condition has the highest po-
larization resistance (Rp), which represents the protective ability of the surface passive
film, of 33 kohm.cm2, which is almost three times that of the solution-treated condition
(13.43 kohm.cm2) and four times higher than that of the SS304 (8.77 µA/cm2). This means
the oxide passive film that formed on the surface of the cold-rolled HEA condition is stable.
An almost reverse trend was observed for the corrosion current density (icorr), which is
considered a sign of better corrosion resistance when it shows lower values. The cold-rolled
condition has the corrosion current density (icorr) of 12.7 µA/cm2 which is almost the
value of one over nine times that of the solution-treated condition (75.8 µA/cm2) and
almost half of current density of the SS304 (22.4 µA/cm2). According to these results,
it can be concluded that the corrosion resistance of the Fe36Mn20Ni20Cr16Al5Si3 HEA in
as cold-rolled condition is optimal in 0.6 M NaCl solutions. Furthermore, the annealing
treatment reduces the corrosion resistance of the alloy, but still the resistance is much higher
compared to SS304. For cold-rolled and solution-treated HEA samples, a slight increase in
the current density occurred at 0.1 V, indicating the initiation and growth of stable pitting,
while the SS304 sample show a smooth curve (Black curves in Figure 7). Moreover, the
polarity of the current density was changed from cathodic to anodic at very close nega-
tive corrosion potential values. Figure 8 illustrates the SEM surface morphologies of the
Fe36Mn20Ni20Cr16Al5Si3 HEA as cold-rolled and solution-treated conditions after being
subjected to a 0.6 M NaCl solution. The samples’ surface appeared to be smooth after being
subjected to corrosion test, however, in both conditions, samples have been subjected to
varying limited degrees of corrosion. The corrosion occurs in localized areas, especially in
the annealed-treated conditions, as shown in Figure 8b. This may be in the areas that sigma,
BCC/B2 phases, and other intermetallics were precipitated. Going deeply on the localized
corrosion areas, the EDX patterns (Figure 9 and Table 2) of the corroded areas in both
cold-rolled and annealed-treated conditions, after being subjected to 0.6 M NaCl, showed
relatively higher concentrations of Cr, Si, and Al compared, to the alloy composition, which
are considered strong BCC stabilizers, thus increasing the probability of creating these BCC
phase in the corroded areas. In addition, the features of the pits appeared very similar
to the shape of these precipitates in the SEM images before performing the corrosion test
(see Figure 2b). These BCC and sigma phases will deplete the passive film formed (Cr) in
this area, which negatively affects the corrosion resistance. Additionally, the content of
Al in this alloy is quite high (5 at.%). Al can negatively affect the corrosion resistance of
the HEA due to the possibility of formation of thick, porous aluminum oxide film which
restricted the formation of the more passive Cr-oxide film, as reported by other works [6].
To confirm this, elemental mapping was performed as shown in Figures 10 and 11, and the
results showed that the elements distributed almost uniformly and homogenously after
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the electrochemical test. This proves that compact passive film was formed homogenously
on the surface of the alloys in both conditions even after the corrosion test. In general, the
Fe36Mn20Ni20Cr16Al5Si3 HEA in both cold-rolled and solution-treated conditions show a
better corrosion resistance than SS304, which has a Cr content of 18% more than that of
HEA. This is due to the fact that the Fe36Mn20Ni20Cr16Al5Si3 HEA has both aluminum and
chromium. The standard potential of chromium is −0.74 V, which is much higher than that
of aluminum (−1.66 V) [25]. In this case, Al can form passive oxide layer on the surface
faster than Cr, act as anode in the NaCl solution, and improve the corrosion resistance.
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Elements, at.%
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Solution-treated HEA 2.1 0.0 0.0 0.0 4.7 2.8 19.0 15.8 39.5 16.3
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3.2.2. Corrosion Resistance in in 0.6 M NaCl + 0.5 M H2SO4

When 0.5 M H2SO4 was added to 0.6 M NaCl solution, dramatic changes were ob-
served to the corrosion behavior of Fe36Mn20Ni20Cr16Al5Si3 HEA in both conditions. The
annealed, treated sample shows the best corrosion resistance in terms of both corrosion
current density and polarization resistance. It shows icorr of 178.8 µA/cm2, which is
almost half of that of the as-rolled condition (309.96 µA/cm2), which is almost three times
more resistance than that of as-rolled condition. Moreover, solution treatment condition
(5.5 kohm.cm2) has the best corrosion resistance of the cold-rolled (1.7 kohm.cm2) and
SS304 sample (0.402 kohm.cm2). Figure 12 show the SEM micrographs of the surface of the
Fe36Mn20Ni20Cr16Al5Si3 HEA samples after being subjected to corrosion test in 0.6 M NaCl
+ 0.5 M H2SO4 solution. A large amount of localized corrosion pits and products appeared
in the as-cold-rolled condition, as shown in Figure 12a. The elements of O, Cr, Fe, and
Ni were concentrated in these corrosion areas, as indicated in EDX patterns in Figure 13a.
Furthermore, these elements were heterogeneously distributed and concentrated in the
corroded area, as shown in EDX patterns in Figure 14 and Table 3. It indicates that some
kind of selective dissolution of these elements in the passive film occurred, resulting in
few/weak Cr-oxides on the surface, and less efficient corrosion resistance. In addition,
the stresses that were generated through the cold-rolling process can affect the corrosion
resistance at this severe corrosion resistance. On the other hand, the annealed, treated
condition sample shows a relatively smooth surface with small amount of corrosion pits
(Figure 12b), and its mapping showed homogenous elemental distributions (Figure 15),
indicating superior corrosion resistance at this condition. Generally, the nature of the
passive film that formed on the surface, plays an important role in the level of corrosion
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resistivity. For the cold-rolling sample, a passive film was already there, and protected the
surface due to the high content of Cr and Ni. When the sample was subjected to annealed
treatment, re-passivation can occur and form a more stable passive film. Although the an-
nealed treatment yields more BCC phases, it gives a chance for surface stress relaxation and
the elements to be homogenously distributed in the matrix. This may make the chemical
dissolution of the passive film in this severe corrosion condition more difficult resulting in
a more compact passive film being formed.
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3.2.3. Corrosion Resistance in in 0.6 M NaCl + 1 M H2SO4

Same trend was obtained when the concentration of H2SO4 became 1 M. The polar-
ization results of the cold-rolled sample showed a marked increase of corrosion current
density to be 563.1 µA/cm2 and its corrosion resistance was reduced to a small fraction
value of 0.024 kohm.cm2. On the contrary, the annealed, treated sample showed a more
positive corrosion resistance value, even better than that of lower concentration of H2SO4.
The current density reduced to 101.18 µA/cm2 and the resistivity increased to 9.44 µA/cm2

indicates superior corrosion resistance in sulfuric acid and sea water. On the other hand,
SS304 was in a very bad condition after being subjected to this severe environment. Its
corrosion current density jumped to 2715 µA/cm2, and its resistivity decrease to lower
fraction. These results were confirmed with the SEM micrographs of the corroded surface,
as shown in Figure 16, which shows that number of pits, which cover most of the surface,
in the as cold-rolled sample is more than that of the solution-treated ones. Additionally,
the cold-rolled HEA has a depletion of Cr and Mn elements more than that in the solution-
treated HEA, shown in the EDX analysis in Figure 17 and summarized in Table 4. This
makes a clear difference in corrosion rate as they are the main elements for passive layer
formation. The mapping of the corrosion surface of the as cold-rolled condition, as shown
in Figure 18, showed more Cl and O in the pit areas, while there was a depletion of Cr
and Mn in these areas. The same trend, but with a lower level, appears in Figure 19 for a
solution-treated condition sample.
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Table 4. EDX analysis of the corrosion products on the surface of cold-rolled and solution-treated
Fe36Mn20Ni20Cr16Al5Si3 HEA in 0.6 M NaCl with 1.0 M H2SO4.

Conditions
Elements, at.%

O Na Cl S Al Si Cr Mn Fe Ni

Cold-rolled HEA 56.5 0.0 9.5 0.0 6.0 1.2 2.1 5.9 6.1 12.7

Solution-treated HEA 52.0 0.2 8.3 0.1 3.8 1.0 5.7 8.1 9.7 10.9

4. Corrosion Mechanism

In the H2SO4 solution, the alloying elements affected the corrosion behavior of HEAs.
The high concentration of H+ influenced the properties of the oxide film, thus affecting
the corrosion behavior, and especially the general corrosion resistance. The effect of the
Al content on the corrosion behavior of the AlxCrFe1.5MnNi0.5 HEAs in 0.5 M H2SO4 was
investigated [1]. The chloride-containing solution with the absence of Cl− reduces the
possibility of the pitting potential [1]. Increasing the Al content, the Ecorr decreased, and
icorr and ipass increased, indicating the reduced general corrosion resistance in the H2SO4
solution. The adsorptive complexes formed in the acid medium were confirmed as the
production of the dissolution of Al in the HEAs by the following mechanism [1]:

Al + H2O = Al(OH)ad + H+ + e− (2)

Al(OH)ad + 5H2O + H+ = Al3+·6H2O + 2e− (3)

Therefore, the addition of the Al content causes the formation of the porous corrosion
product to cover the alloy, and the thickness of the adsorptive layer increases with the
amount of Al in the HEA. Moreover, the increased Al content leads to the increased volume
fraction of the Al-rich, Cr-depleted BCC phase, whose passive film is more porous and
less protective, resulting in the decreased corrosion resistance [1]. Signs of corrosion can
be observed in the Al-Ni-rich BCC phase, according to the surface morphology of the
alloys after the immersion tests. Iron corrodes in NaCl via its dissolution into ferrous and
ferric cations as in Equations (4) and (5) [26–30]. The iron surface develops oxide layers,
which slows down and partially protects it from being further attacked by the chloride
ions as has been confirmed by the ex and in situ Raman spectroscopy measurements
and according to Equations (6) and (7). The passive film is more compact when FeO
is present at higher concentrations, thus increasing its corrosion resistance [31]. The
FexOy constituted the final dense rust near the inner layer under the simulated seawater
environment. Equilibrium equations for the stable range of Fe3O4 during the corrosion
process were listed in Equations (8)–(10):

Fe = Fe2+ + 2e− (4)

Fe2+ = Fe3+ + e− (5)

Fe +
1
2

O2 + H2O = Fe(OH)2 (6)

3Fe(OH)2 +
1
2

O2 = Fe3O4 +3H2O (7)

3Fe2+ + 4H2O = Fe3O4 + 8H+ + 2e− (8)

3FeO + H2O = Fe3O4 + 2H+ + 2e− (9)

2Fe3O4 + H2O = 3Fe2O3 + 2H+ + 2e− (10)

The formation of Cr2O3 prevents Fe from oxidation as shown in Equation (11). Cr
concentration enhances HEAs’ capacity to passivate in aqueous solutions including chloride
and sulfuric acid, which increases the passive coating’s durability and pitting corrosion



Materials 2022, 15, 7319 18 of 21

resistance. On the other side, there were excessive Cr results in severe pitting corrosion
because of Cr segregation [32].

2Cr + 3H2O→ Cr2O3 + 6H+ + 6e− (11)

Mn can be used as a low-cost replacement component for alloys in mildly corrosive
aqueous solutions, but it has a negative impact on HEA corrosion in sulfuric acid and chloride-
containing aqueous solutions [21]. Mn might form Mn-rich compounds (oxides and hydrox-
ides) during the whole corrosion process as illustrated in Equations (12)–(15) [14–18].

Mn2+ + 2FeOOH = MnFe2O4 + 2H+ (12)

2Fe3O4 + 3Mn2+ + 4H2O = 3MnFe2O4 + 8H+ + 2e− (13)

3Mn(OH)3− + 2Fe3O4 + H+ = 3MnFe2O4 + 5H2O + 2e− (14)

3MnFe2O4 + 4H2O = 6FeOOH + Mn3O4 + 2H+ +2e− (15)

Ni is in a metallic form at the metal/oxide junction, which adds to the decline in
dissolution [32]. NiO and Ni(OH)2 are possible, as indicated in Equations (16) and (17).
Elemental segregation makes alloys more prone to pitting and diminishes their capacity to
passivate. On the other hand, the high entropy impact of HEAs promotes the uniform dis-
tribution of components needed by the permeation hypothesis, increasing HEAs’ capacity
for passivation. As a result, a compact and uniform passive coating has a propensity to
form on the surface of HEAs. It is important to note that the high entropy effect is not the
only factor contributing to the superior protection of passive films produced on HEAs [32].

Ni + H2O→ Ni(OH)2 + 2H+ + 2e− (16)

Ni(OH)2 → NiO + 2H+ + 2e− (17)

The corrosion behavior of the developed HEA greatly depends on the concentrations
and type of the corrosion medium. In 0.6 M NaCl, the corrosion produces pits through
the passive layer formed. With the addition of H2SO4 solution to 0.6 M NaCl, this led to a
breakdown of the passive film due to increasing the diffusivity of the chloride and sulfide
ions through microcracks [21,33].

The high concentration of Cr in the developed HEA may be advantageously predicted
for the material’s resistance to corrosion. The increased Ni content may also reduce the
total rates at which Fe and Cr dissolve. As the passive film generated in 1.0M H2SO4 is
very unstable, the obtained HEA has less corrosion resistance than SS304 [5,21].

In cooling water, the sulfuric acid is added with NaCl to increase the activity of chloride
ions and prevent the precipitation. The ability of the Cl− and SO4

2− anions to adsorb on
the passive film and create an electrostatic field across the film/electrolyte interface may be
related to pitting corrosion. When the field reaches a certain value, the adsorbed anions
penetrate the oxide film, particularly at flaws and defects. When the penetrated Cl− and
SO4

2− anions reach the metal surface, they promote local anodic dissolution, which results
in the formation of a pit nucleus. Following this, pit growth occurs rapidly as a result of an
increase in corrosive ion concentration caused by migration, increasing the acidity within
the pits [34].

Figure 20 indicates the difference between corrosion rates of cold-rolled HEA, solution-
treated HEA, and SS304 in different corrosion medium conditions. For cold-rolled Fe36Mn20
Ni20Cr16Al5Si3 HEA in 0.6 M NaCl with different concentrations of H2SO4, the corrosion
rate increases due to degradation of Cr and Mn. These elements are responsible for the
formation of the passive layer. Otherwise, the corrosion rate in 0.6 M NaCl is decreased due
to formation of the passive layer from Cr and Mn oxide, which appeared from EDX analysis
of the corroded HEA in different conditions. Solution treatment of investigated HEA was
responsible for increasing the corrosion resistance of it. It may be due to homogenization of
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the microstructure, new phase formation (BCC/B2 phase structure), and the stress relived,
as shown in Figures 1 and 4. Generally, the corrosion behavior of the different conditions
of developed HEA is better than corrosion behavior of SS304 in the examined corrosion
mediums as shown Figure 20.
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5. Conclusions

This newly designed Fe36Mn20Ni20Cr16Al5Si3 high entropy alloy is studied in cold-
rolled and solution-annealed at 900 ◦C for 30 min conditions. The microstructure and
corrosion behavior of cold-rolled and heat-treated Fe36Mn20Ni20Cr16Al5Si3 HEA compared
with SS304 was investigated in 0.6 M NaCl, 0.6 M NaCl with 0.5 M H2SO4, and 0.6 M NaCl
with 1 M H2SO4 solutions. The major results are summarized as the following:

• The Fe36Mn20Ni20Cr16Al5Si3 alloy was composed mainly of FCC phase in the cold-
rolled condition in addition to few amounts of the BCC/B2 phase and other inter-
metallics that were precipitated at the grain boundaries after subsequent solution
annealing.

• In 0.6 M NaCl solution, the corrosion resistance of the cold-rolled Fe36Mn20Ni20Cr16Al5Si3
HEA is higher compared with that of the solution annealed condition and the SS304
alloy.

• The addition of H2SO4 to the 0.6 M NaCl deplete the Cr and Mn of the as cold-rolled
condition and decrease the Fe36Mn20Ni20Cr16Al5Si3 alloy corrosion resistance. Under
these conditions, the solution annealed Fe36Mn20Ni20Cr16Al5Si3 HEA showed the best
corrosion resistance.

• The surface passive films provide the protection for the underlying HEA from further
dissolution which improve the corrosion resistance in H2SO4 solution.
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