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Abstract: A precise constitutive model is the foundation and key to finite element simulation in
material volume forming and the optimization of the hot working process. Hence, to build a
precise constitutive model, a method based on a genetic algorithm (GA) for the inverse optimization
identification of parameters is presented in this paper. The idea of this method is to continuously
adjust the model parameters through GA until the objective function reaches the minimum value. In
this study, hot compression experiments were performed on the Gleeble-1500D thermal simulator at
temperatures ranging from 800 ◦C to 1000 ◦C and strain rates of 0.01 s−1 to 1 s−1. The Arrhenius-type
(A-T) model considering strain compensation and the Johnson–Cook (JC) model considering the
coupling effects of strain, temperature and strain rate were constructed, respectively, by using the
regression method and the parameter inverse optimization identification method. For the purposes
of comparing and verifying the reliability of the predictions of the two established constitutive
models, the correlation coefficient (R), average absolute relative error (AARE), and relative error (RE)
were adopted. The results show that both the optimized A-T model and the optimized JC model
have high prediction accuracy. Compared to the optimized JC model, the optimized A-T model
demonstrated a higher correlation coefficient, by 0.003, and a lower average absolute relative error,
by 1.43%. Furthermore, the relative error distribution of the optimized A-T model was found to be
more concentrated than that of the optimized JC model. These results suggest that the A-T model is
more appropriate than the JC model for characterizing the high-temperature deformation behavior of
Ti6Al4V alloy.

Keywords: inverse optimization; genetic algorithm; Ti6Al4V alloy; strain compensation; coupling effect

1. Introduction

Because of the outstanding characteristics of high specific strength, corrosion resistance,
and biocompatibility, titanium alloys have found extensive applications in various fields
such as aerospace, the chemical industry, automobiles, and medical implants [1–3]. Among
all titanium alloys, Ti6Al4V alloy is the most frequently used high-strength duplex (α+β)
titanium alloy [4]. At room temperature, the Ti6Al4V alloy has poor formability due to
its densely packed hexagonal crystal structure, which has only three slip systems. This
makes it difficult to produce complex-shaped parts [5]. Thus, the hot formation of Ti6Al4V
alloy has always been the focus of research by scholars [6,7]. Different hot deformation
conditions will cause different microstructure evolutions of the Ti6Al4V alloy during hot
forming, resulting in a highly nonlinear relationship between stress and temperature, strain
rate, and strain at the macroscopic level [8]. Therefore, studying the hot deformation
behavior of metals and establishing constitutive models that precisely characterize the
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metal flow behavior are highly important for process designers to reasonably design hot
working process parameters, optimize the hot forming process of materials, and ultimately
improve the overall mechanical properties of products.

Currently, there are three broad categories of the constitutive models: phenomenologi-
cal, physics-based, and artificial neural network (ANN) models [9–11]. The phenomenolog-
ical constitutive model has a simple form, fewer parameters, and can be easily integrated
into the finite element software. The common ones are the Johnson–Cook (JC) model [12],
the Arrhenius-type (A-T) model [13], the Fields–Bachofen (FB) model [14], the Voce–Kocks
model [15], and the Hansel–Spittel model [16]. The most widely used constitutive models
of this type are the JC model and the A-T model. The traditional JC model neglected the
mutual influence of temperature softening, strain hardening, and strain rate hardening,
resulting in the low prediction accuracy of the model. Lin et al. [17] established a mod-
ified JC model. The initial yield and strain hardening parts, and the coupling effects of
temperature and strain rate on flow stress, were accounted for in the model. He [18] and
Long [19] predicted the high-temperature deformation behavior of 20CrMo alloy steel and
Al-Cu-Li alloy, respectively, through this modified model. The parameters of the original
A-T model are often determined based on experimental data at a given strain or peak stress.
The application of this model is limited. Lin et al. [20] considered the impact of strain
on material parameters and established an A-T model for 42CrMo alloy steel considering
strain compensation. Since then, this model has been employed by numerous researchers
to successfully reproduce the high-temperature deformation behavior of various mate-
rials such as the 2219-O aluminum alloy, the AZ91 magnesium alloy, and the GH4169
alloy [13,21,22].

Physics-based constitutive models are mainly derived from theories of thermody-
namics, thermally activated dislocation motion, and slip dynamics [11]; for example, the
Zerlil–Armstrong (ZA) model [23] and the Voyiadjis–Almasri (VA) model [24], etc. Owing
to the complex microstructure evolution of the Ti6Al4V alloy and the difficulty of using a
physics-based constitutive model in finite element simulation software, the application of
such constitutive models to Ti6Al4V alloys has been relatively limited, with few studies
conducted to date [14,25]. With the swift development of artificial intelligence technology
in recent years, the ANN has been considered to be the optimal method for describing and
solving highly nonlinear problems [26]. Although the ANN constitutive model has high
prediction accuracy, the accuracy of its prediction results is limited to the given parameter
range of the learning samples. Wen DX et al. [27] established an A-T model through the
NM simplex method and compared the prediction results with the ANN model. The results
revealed that the generalization ability of the latter was not as good as that of the former.
Therefore, this paper does not consider the ANN constitutive model of the Ti6Al4V alloy.

It is impossible for a single constitutive model to be suitable for all materials. Therefore,
numerous scholars have conducted comparative studies on the constitutive relationships
of different materials. Li T et al. [28] established the JC, A-T and ZA models of the SnSbCu
alloy and compared the prediction accuracy of the three constitutive models. Abbasi-
Bani [29] established the JC and A-T constitutive models of the Mg-6Al-1Zn alloy, and
found that the former model could not correctly predict the high-temperature deformation
behavior of the alloy. However, there are relatively few studies on the comparison of
constitutive models for the Ti6Al4V alloy. To find out the most suitable constitutive model
for the Ti6Al4V alloy, the A-T model, considering the strain compensation, and the JC
model, considering the coupling effects of temperature, strain rate and strain, were chosen
in this paper. The two models were compared and the model with the best predictive
performance was selected.

In addition, the accurate identification of model parameters is also an important
factor affecting the prediction accuracy of alloy flow behavior [30]. The parameters of the
constitutive model are often obtained using the regression method [31,32].
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As in the Hansel–Spittel constitutive model mentioned above,

σ = A·em1T ·εm2 · .εm3 ·e
m4
ε ·(1 + ε)m5T ·em7ε· .εm8T ·Tm9 (1)

For the solution of parameters m3 and m8, the temperature and strain are firstly
controlled to be constant. Then, the terms of the above formula for temperature and strain
are all constants, which are set as K. Equation (1) can be changed to:

σ =
.
ε

m3+m8T ·K (2)

Equation (2) can be transformed by taking the natural logarithm of both sides:

lnσ = (m3 + m8T)ln
.
ε + lnK (3)

From Equation (3) we can obtain:

m3 + m8T =
∂lnσ

∂ln
.
ε

(4)

The average slope of the fitted lines based on the relationship between lnσ and ln
.
ε

can be used to determine the value of m3 + m8T. Then, the relationship between m3 + m8T
and T can be linearly fitted. It can be clearly seen that the value of m8 is given by the
slope of the fitted line, while the value of m3 is given by the intercept. Likewise, the
remaining parameters of the Hansel–Spittel constitutive model can also be derived using
this approach, if the maximum and minimum values of the slope of the fitted straight
lines are quite different. At this time, the selected average value will cause a large error in
m3 + m8T. The same goes for other parameters. Finally, the accuracy of the model cannot
be guaranteed. The Hansel–Spittel model established by Chadha [31] had a maximum
error of 14% between the predicted values and experimental values, and at low strain rates
the model’s ability to predict the alloy’s softening behavior was limited. Consequently,
the constitutive models established through the regression method often fail to precisely
predict the flow behavior of alloys.

In recent years, the inverse analysis method has been widely used in the identification
process of parameters in various industries [33–36]. For example, Levasseur S [33] used
the inverse analysis method to identify the parameters of the soil constitutive model.
Gajewski T [34] quickly calibrated a complete set of parameters for concrete using an
inverse analysis method. Among them, the genetic algorithm (GA) is a widely used
global optimization algorithm. It seeks the optimal solution to a problem by imitating the
phenomena of replication, crossover, and mutation in natural selection and heredity. The
main method of using GA to solve the optimal solution of parameters is through iterative
operation. Some optimization algorithms are prone to become trapped in local minima
and can exhibit the “dead loop” phenomenon, but GA can overcome this shortcoming
very well. Compared with traditional optimization methods (enumeration, heuristic, etc.),
GA has less calculation time and characteristics of good convergence and robustness.
Both Wu [37] and Chen W [38] employed the genetic algorithm (GA) to perform inverse
optimization of the material parameters in the A-T model. It was found that the A-T
model’s forecasting accuracy greatly increased. Through investigation, it was found that
there are few studies on the optimization of constitutive model parameters for the Ti6Al4V
alloy. Therefore, a parameter inverse optimization identification method based on GA to
develop the constitutive model of Ti6Al4V alloy was chosen in this paper.

This paper aims to develop a precise constitutive model and lay the foundation for the
subsequent reasonable design of Ti6Al4V thermal processing parameters and finite element
simulation. The Ti6Al4V alloy’s hot deformation characteristics were analyzed using the
Gleeble-1500D thermal simulator. In order to accurately identify the parameters of the
constitutive model, a parameter inverse optimization identification method based on the
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genetic algorithm was proposed in this paper. The objective function was the accumulated
error between the stress calculated by the constitutive model and the experimental stress.
This method iteratively adjusts the parameters of the constitutive model through the
genetic algorithm until the objective function reaches the minimum value, and the output
parameters are the optimal solution of the parameters of the constitutive model. Finally,
the prediction accuracy of the two models was quantitatively evaluated using standard
statistical parameters, and the constitutive model with the highest prediction accuracy
was selected.

2. Experimental Method and Result Analysis
2.1. Experimental Method

The chemical composition of the Ti6Al4V alloy can be seen in Table 1. To investigate
the hot deformation characteristics of the Ti6Al4V alloy and establish its constitutive model,
thermal compression tests were carried out on the Gleeble-1500D thermal simulator. The
size of the compression samples was φ8 mm × 12 mm. To make the deformation of
the samples uniform and mitigate or eliminate the impact of the frictional forces on the
experimental results, graphite was uniformly applied to both ends of the cylinder in contact
with the indenter of the testing machine. The deformation temperatures were 800 ◦C,
850 ◦C, 900 ◦C, 950 ◦C, and 1000 ◦C; the strain rates were 0.01 s−1, 0.1 s−1, and 1 s−1. The
thermal compression experiment process is shown in Figure 1. Firstly, a heating rate of
10 ◦C per second was applied to each cylindrical sample. After reaching the predetermined
temperature, it was kept warm for 180 s to remove the internal temperature gradient of
the samples. Lastly, compression tests were conducted and each sample was compressed
by 50%.

Table 1. Chemical composition of the Ti6Al4V alloy (mass percentage: wt.%).

Ti Al V Fe O C N H

Bal. 6.11 3.93 0.131 0.113 0.016 <0.005 <0.001
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2.2. Analysis of Experimental Results of the Ti6Al4V Alloy

The true stress–strain curves of the Ti6Al4V alloy under different deformation con-
ditions can be observed in Figure 2. Holding the strain rate constant, an increase in
temperature resulted in a decrease in flow stress. From Figure 2c, it can be observed that
the material’s peak stress decreased from 336.95 MPa at 800 ◦C to 71.09 MPa at 1000 ◦C.
This was because the thermal activation energy of the alloy increased with an increase in
deformation temperature, leading to a more pronounced softening effect. At a constant
temperature, the flow stress rose with an increase in the strain rate. According to Figure 2d,
the peak stress of the material increased from 72.26 MPa at 0.01 s−1 to 165.47 MPa at
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1 s−1.This is because the strain rate was too fast, and dislocations accumulated rapidly,
resulting in the obvious work hardening effect of the Ti6Al4V alloy.
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In addition, since the temperature was below 850 ◦C, the main microstructure of
the Ti6Al4V alloy was α phase. The α phase is a hexagonal close-packed structure with
low stacking fault energy, which makes it relatively easy for dislocations to move in the
crystal, and dynamic recrystallization occurs easily. Therefore, the dynamic recrystallization
softening phenomenon could be clearly observed at 800–900 ◦C. At the 800 ◦C/0.1 s−1

deformation condition, the flow stress decreased by 82.98 MPa from its peak value, as
shown in Figure 2b. The dynamic recovery phenomenon appeared under the deformation
condition of 900 ◦C/1 s−1, as shown in Figure 2c. This is because the recrystallization time
was relatively short at high strain rates, so the stress rose slowly to 165.47 MPa after quickly
reaching 152.03 MPa.

The α phase will gradually transform into the β phase above 850 ◦C. In contrast to
the α phase, the β phase is a body-centered cubic structure with high stacking fault energy
and many slip systems, resulting in insufficient deformation energy to provide the driving
force for dynamic recrystallization. Therefore, above 950 ◦C, dynamic recovery is the main
softening mechanism of the alloy, and the stress has no obvious downward trend.

3. Two Modified Constitutive Models of the Ti6Al4V Alloy and the Identification
Method of Parameter Inverse Optimization
3.1. Parameter Inverse Optimization Identification Method Based on GA

The idea of the parameter inverse optimization identification method is to contin-
uously adjust the parameters of the constitutive model through GA. When the objec-
tive function approaches zero infinitely, the output parameters are the optimal solution.
Figure 3 shows the logical flowchart of this method. Firstly, input the data obtained from
thermal compression experiments and the expression for the constitutive model. After
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that, the GA is invoked. Finally, set the initial value and iteration range of the constitutive
model parameters.
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Figure 3. Flowchart of parameter inverse optimization identification method.

The material parameters obtained by the regression method were set as the initial
values of the GA iteration. Sections 3.2 and 3.3 describe how to determine constitutive
model parameters using the regression method. The setting of the model parameters’
iteration range refers to the initial values. In this paper, the cumulative error between the
stress predicted by the Ti6Al4V alloy constitutive model and the experimentally measured
stress is set as the objective function, as shown in Formula (5):

O( f ) =

n
∑
i

(
σi

exp − σi
cal
)2

n
∑
i
(σi

exp)2
(5)

where σi
exp is the i-th stress measured experimentally and σi

cal is the stress of the i-th data
calculated by the constitutive model.

3.2. Establishment of A-T Constitutive Model for the Ti6Al4V Alloy

An exponential equation that includes the Zener–Hollomon (Z) parameter is com-
monly used to describe the effect of temperature and strain rate on the thermal deformation
behavior of metal materials [39]:

Z =
.
ε exp

(
Q
RT

)
(6)

Furthermore, the Z parameter can be described by various functions in distinct stress
ranges [40]. The expressions for each range are provided below:

Z = AF(σ) (7)

F(σ) =


σn′ ασ < 0.8

exp(βσ) ασ > 1.2
[sinh(ασ)n] f or all σ

(8)
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The characters in Formulas (6)–(8) are explained in Table 2. The solution formula of
flow stress can be obtained by combining Equations (6) and (7) and the third equation in
Equation (8), and the expression is as follows:

σ =
1
α

ln

(Z
A

)1/n
+

((
Z
A

)2/n
+ 1

)1/2
 (9)

Table 2. Description of each character in Formulas (6)–(8).

Parameters Description

R Universal gas constant
(8.314 J·mol−1·K−1)

T Absolute temperature (K)
Q Activation energy (J·mol−1)
.
ε Strain rate (s−1)
σ True stress (MPa)

A, n, α, β, and n′ Material parameters

Furthermore, combining Equations (6)–(8), the following relationship can be derived:
.
ε = Aσn′ exp(− Q

RT ).
ε = A exp(βσ) exp(− Q

RT )
.
ε = A[sinh(ασ)]n exp

(
− Q

RT

) (10)

The natural logarithm of both sides of the three equations in Formula (10) can be taken
to yield: 

ln σ = ln
.
ε

n′ −
ln B
n′

σ = ln
.
ε

β −
ln C

β

ln(sinh(ασ)) = Q
nRT −

ln A
n + ln

.
ε

n

(11)

In the equations, B and C are material parameters.
The impact of strain was factored in when determining the values of material parame-

ters. In this paper, the relationship between strain and material parameters was constructed
using polynomial regression. The material parameters were determined using experimental
data within the true strain range of 0.05–0.65. The sampling interval of strain was 0.05.
Here, the process for determining the material parameters is illustrated using the example
of a strain of 0.1.

When the strain is 0.1, the experimental data are substituted into the first two equations
of Equation (11). The material parameters β and n′ can be determined using a linear
regression approach. In Figure 4a,b, were parameters are determined by computing the
inverse of the slope of the fitted lines. The data analysis revealed that the two parameters
had average values of 0.062997 MPa−1 and 5.938013, respectively. The material parameter
α could be derived as 0.010609 MPa−1 using the equation α = β/n′.

Similarly, using the results of fitting straight lines in Figure 5a,b, the parameters n, Q, and
ln A were calculated to have values of 3.839814, 630,040.1 J·mol−1, and 60.44771 s−1, respectively.

Likewise, parameters under other strains were determined in the same way. The
results can be found in Table 3.
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Table 3. Material parameters for various strains determined using the regression method.

True Strain lnA n α (MPa−1) Q (J·mol−1)

0.05 62.59874 3.997360 0.010820 651,391.9
0.10 60.44771 3.839814 0.010609 630,040.1
0.15 58.22757 3.730126 0.010536 607,614.3
0.20 55.38215 3.598379 0.010586 578,947.0
0.25 52.00925 3.447356 0.010697 544,882.9
0.30 48.65197 3.298253 0.010841 510,931.3
0.35 45.41233 3.152317 0.010990 478,161.1
0.40 42.57605 3.014204 0.011182 449,493.6
0.45 40.12852 2.890635 0.011393 424,775.1
0.50 38.16642 2.772139 0.011700 405,096.2
0.55 36.94857 2.679515 0.012090 393,049.2
0.60 36.20739 2.605249 0.012536 385,921.8
0.65 35.72397 2.547709 0.012989 381,367.5

Using the parameter values at 0.1 strain in Table 3 as the initial values for the GA
iteration and executing the flowchart in Section 3.1, under this strain, the change of the
objective function value of the A-T model with the number of iterations is shown in Figure 6.
As the iterations proceeded, the objective function value eventually converged to around
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0.00289. The output of the logic diagram was the optimal solution of the constitutive model
parameters under the strain. Similarly, using the same method, the optimal solutions of
material parameters under other strains are shown in Table 4.
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Table 4. Material parameters under different strains obtained by the parameter inverse optimization
identification method.

True Strain lnA n α (MPa−1) Q (J·mol−1)

0.05 58.12871 4.23524 0.00779 587,663.1875
0.10 57.33795 4.28375 0.00696 574,962.7500
0.15 55.88721 4.21043 0.00687 560,393.4375
0.20 53.43388 4.07124 0.00694 536,722.6250
0.25 50.26610 3.88292 0.00714 506,615.8125
0.30 46.97851 3.68291 0.00741 475,486.5000
0.35 43.79500 3.48414 0.00771 445,391.3750
0.40 40.98165 3.29625 0.00802 418,717.09375
0.45 38.53254 3.12380 0.00837 395,618.4375
0.50 36.47949 2.98140 0.00862 375,677.59375
0.55 35.02670 2.87397 0.00879 361,163
0.60 33.98806 2.80240 0.00878 349,939.09375
0.65 33.11206 2.77945 0.00851 339,260.21875

To improve the accuracy of polynomial regression, sixth-order polynomial regression
was performed on the material parameters and true strain:

α(ε) = B0 + B1ε + B2ε2 + B3ε3 + B4ε4 + B5ε5 + B6ε6

n(ε) = C0 + C1ε + C2ε2 + C3ε3 + C4ε4 + C5ε5 + C6ε6

Q(ε) = D0 + D1ε + D2ε2 + D3ε3 + D4ε4 + D5ε5 + D6ε6

ln A(ε) = E0 + E1ε + E2ε2 + E3ε3 + E4ε4 + E5ε5 + E6ε6

(12)

The relationship between true strain and material parameters is depicted in Figure 7.
The four parameters changed greatly after optimization. tables 5 and 6 are the sixth-
order polynomial coefficient values of the unoptimized A-T model and the optimized A-T
model, respectively.
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Figure 7. The variation of A-T model parameters with true strain. (a) α − ε; (b) n − ε; (c) Q − ε;
(d) ln A− ε.

Table 5. Parameter values for the unoptimized A-T model.

Polynomial
Order α(ε) n(ε) Q(ε) lnA(ε)

0 0.01121 4.24446 673,570.20699 64.88817
1 −0.00938 −6.71438 −530,642.20922 −55.43134
2 0.02978 44.36086 2,495,163.15361 272.19777
3 0.08099 −215.56526 −1.91346 × 107 −2008.70089
4 −0.53248 506.28031 5.01289 × 107 5245.6406
5 0.94031 −569.67117 −5.47281 × 107 −5772.14165
6 −0.54365 249.93973 2.19473 × 107 2345.23846

Table 6. Parameter values for the optimized A-T model.

Polynomial
Order α(ε) n(ε) Q(ε) lnA(ε)

0 0.00985 4.00538 601,356.55463 58.22586
1 −0.06046 6.93251 −391,942.19605 −1.45882
2 0.4586 −52.6009 3,447,384.32426 51.5667
3 −1.717 126.12082 −2.73235 × 107 −1642.34849
4 3.55327 −166.1522 7.46826 × 107 5241.01491
5 −3.75706 124.05828 −8.76861 × 107 −6406.99498
6 1.55652 −38.17755 3.82251 × 107 2823.42712
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3.3. Establishment of the JC Constitutive Model for the Ti6Al4V Alloy

Apart from the A-T model, the JC model is also extensively employed during metal
forming processes owing to its few parameters and simple fitting process [41]. In this paper,
a modified JC constitutive model is proposed. Its expression is:

σ = A(ε) ·
(

1 + B(ε) ln
.
ε
∗) · exp

((
C(ε) + D(ε) ln

.
ε
∗)T∗

)
A(ε) = A0 + A1ε + A2ε2 + A3ε3

B(ε) = B0 + B1ε + B2ε2 + B3ε3

C(ε) = C0 + C1ε + C2ε2 + C3ε3

D(ε) = D0 + D1ε + D2ε2 + D3ε3

(13)

The meanings expressed by each character in Formula (13) are listed in Table 7. In this
paper,

.
εre f is equivalent to 0.01 s−1 and Tre f is denoted as 800 ◦C. The melting point of the

Ti6Al4V alloy is 1660 ◦C [42].

Table 7. Description of parameters in the JC model.

Parameters Description Parameters Description

T∗ T−Tre f
Tm−Tre f

.
ε
∗ .

ε.
εre f

Tre f
Reference

temperature (◦C)
.
εre f

Reference strain
rate (s−1)

σ True stress (MPa) ε True strain
T Temperature (◦C)

.
ε Strain rate (s−1)

Tm
Melting point of

Ti6Al4V alloy
A(ε), B(ε),
C(ε), D(ε)

Third-order
polynomial

functions on strain
Ai, Bi, Ci, Di
(i = 0, 1, 2, 3)

Polynomial
coefficients

The flowchart for determining the material parameters of the JC model is presented in
Figure 8. Firstly, under the condition of 800 ◦C/0.01 s−1, the relationship between ε and σ is
fitted by a polynomial. The polynomial coefficients correspond to the values of parameters
A0, A1, A2, and A3, consecutively.

Then, the relationship between σ/A(ε) and ln
.
ε
∗ was fitted linearly at 800 ◦C, and the

values of B(ε) at different strains could be determined by the slopes of the fitted lines. Then,
fit the relationship between B(ε) and ε through the third-order polynomial. Similar to the
previous scenario, the coefficients of the third-order polynomial are indicative of the values
of parameters B0, B1, B2, and B3, in that order.

Finally, a linear fit was made to the relationship between ln σ
A(ε)(1+B(ε) ln

.
ε
∗)

and T
∗
. The

values of C(ε) + D(ε) ln
.
ε
∗ corresponded to the slopes of the fitted lines. When the strain

rate was fixed at 0.1 s−1, determining the value of parameters C(ε) at various strains was a
simple task, and calculating parameters D(ε) was also possible. Likewise, by employing
identical third-order polynomial regression, the parameters C0 − C3 and D0 − D3 could
be determined.

In summary, the JC model’s parameters are listed in Table 8. These parameters were
employed as the initial values for the GA iteration. Figure 9 is the optimization curve
of the objective function of the JC model. The value of the objective function gradually
decreased with the number of iterations, and finally tended to be around 0.00373. At this
stage, the output results represent the optimal solution for the JC model parameters, as
listed in Table 9.
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Table 8. The values of third-order polynomial coefficients for the unoptimized JC model.

Polynomial
Order A(ε) B(ε) C(ε) D(ε)

0 183.52348 0.1621 −8.52844 0.26029
1 −20.72312 0.25494 2.8761 1.85946
2 −411.73526 0.09378 −3.67844 −0.78508
3 401.93831 0.00401 1.8396 −1.6864
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Table 9. The coefficient value of the third-order polynomial obtained by the parameter inverse
optimization identification method.

Polynomial
Order A(ε) B(ε) C(ε) D(ε)

0 186.51511 0.17328 −8.124 0.24784
1 13.67602 0.17068 2.19076 0.0565
2 −481.34012 0.24383 −3.65103 0.7116
3 420.43158 −0.04438 0.01 0.1

4. Verification and Comparison of Prediction Accuracy of Two Constitutive Models for
the Ti6Al4V Alloy

The predicted values of the constitutive models established in the previous section
were compared to the experimental values. The results are depicted in Figure 10. For
the A-T model, the optimization effect was evident at 800 ◦C. For the JC model, the
optimization effect was more pronounced under the three deformation conditions of
900 ◦C/1 s−1, 950 ◦C/1 s−1, and 1000 ◦C/1 s−1, as depicted in Figure 10f. Furthermore,
since 800 ◦C/0.01 s−1 was the reference condition of the JC model, therefore the JC model
exhibited higher predictive reliability than the A-T model under this deformation condition.
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To quantitatively assess the reliability of the above two models, R and AARE were
introduced. Their formulas can be expressed as:

R =
∑N

i=1
(
σi

e − σe
)(

σi
cal − σcal

)√
∑N

i=1
(
σi

e − σe
)2
√

∑N
i=1
(
σi

cal − σcal
)2

(14)

AARE =
1
N

N

∑
i=1

∣∣∣∣∣σi
e − σi

cal
σi

e

∣∣∣∣∣× 100% (15)

In the formula, σe is the experimentally measured stress, σcal is the stress calculated by
the model, σe is the average of all σe measured in the experiment, and σcal is the average of
all σcal .

The value of R indicates the degree of correlation between the predicted values and
the experimental values. However, because R does not consider bias, higher R values do
not always mean a better predictiveness of the constitutive model. AARE is an unbiased
statistical parameter used to measure the predictiveness of a model or equation. The smaller
the AARE value, the higher the predictiveness of the model.

It can be seen from Figure 11 that the optimized A-T model has an R value of 0.9977
and an AARE value of 4.92%. The R value of the optimized A-T model is 0.0086 greater
than that of the unoptimized A-T model, and the AARE value of the optimized A-T model
is 2.98% lower than that of the unoptimized A-T model. The optimized JC model has
an R value of 0.9947 and an AARE value of 6.35%. Similarly, the optimized JC model
showed an increase in R value and a decrease in AARE value, with an increase of 0.0172
and a decrease of 4.81%, respectively. This shows that the proposed parameter inverse
optimization identification method is feasible.
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Figure 11. The correlation between the calculated values from the established models and the
experimental values of hot compression: (a) optimized A-T model; (b) unoptimized A-T model;
(c) optimized JC model; and (d) unoptimized JC model.

As shown in Figure 11a,c, after optimization, both the A-T model and the JC model
had high predictability for the Ti6Al4V alloy. After comparing the A-T model and the JC
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model, it was found that the R value of the former was 0.003 higher than that of the latter,
while the AARE value of the former was 1.43% lower than that of the latter. It was shown
that, after optimization, the A-T model was better suited than the JC model for describing
the high-temperature deformation behavior of the Ti6Al4V Alloy.

For the purpose of further assessing the prediction accuracy of the two optimized
models, the RE between experimental stress and model-calculated stress was analyzed.
The formula for RE is as follows:

RE =
σi

e − σi
cal

σi
e
× 100% (16)

In the formula, the definitions of σe and σcal are the same as in the previous formulas.
Figure 12 shows the RE distributions of the optimized A-T model and the optimized

JC model. It can be seen from Figure 12 that the RE fluctuation range of the optimized A-T
model was between −20% and 20%, while the maximum RE of the optimized JC model
reached −35%. The mathematical expectation and standard deviation of the optimized
A-T model RE were 0.67406 and 6.34041, respectively, and those of the optimized JC model
were −2.36206 and 9.77954, respectively, as determined by calculation. This indicates that
the RE distribution of the optimized A-T model was more concentrated and tended to
a smaller RE value. This further confirms that the A-T model had a greater predictive
accuracy compared to the JC model.
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5. Conclusions

In this paper, the thermal deformation behavior of Ti6Al4V alloy was analyzed. The
A-T model and the JC model were, respectively, established by using the parameter inverse
optimization identification method. Finally, the accuracy of the two models’ predictions
was quantitatively compared by introducing standard statistical parameters. The specific
conclusions obtained are:

(1) The true stress of Ti6Al4V alloy increases with the increase of strain rate and decreases
with the increase of temperature. Below 850 ◦C, the Ti6Al4V alloy will show obvious
dynamic recrystallization characteristics. Since the α phase will gradually transform
into the β phase above 850 ◦C, and the β phase has high stacking fault energy, the
flow stress shows a dynamic recovery phenomenon above 950 ◦C.

(2) The A-T model and JC model established by the inverse optimization identification
method both exhibit higher R values and smaller AARE values, demonstrating the
feasibility of the method proposed in this paper.

(3) After parameter inverse optimization, both the A-T constitutive model and the JC
constitutive model showed high prediction accuracy. In contrast, the optimized A-T
model exhibited higher R values and lower AARE values. And the distribution of the
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A-T model RE is more concentrated and tends to a smaller value. This shows that the
optimized A-T constitutive model is more suitable for describing the high-temperature
deformation behavior of the Ti6Al4V alloy.
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