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Abstract: The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the
addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively
cooled copper cylinder allowed to obtain a metallic material in the form of flakes, which were
then consolidated in the process of pressing and direct extrusion. The effect of refinement on
structural components after rapid solidification was determined. Rapidly solidified AlSi materials
are characterized by a comparable size of Si particles, regardless of the silicon content, and the shape
of these particles is close to spheroidal. Not only Si particles are fragmented, but also the Al-Si-Fe
phase, which also changed its shape from irregular with sharp edges to regular and spherical. The
melt-spinning process resulted in a fine-grained structure compared to materials obtained by gravity-
casting and extrusion. The influence of the high-temperature compression test on the mechanical
properties of rapidly solidified materials was analyzed, and the results were compared with those of
gravity-cast materials. An increase in strength properties was found in the case of the AlSi5 RS alloy
by 20%, in the case of AlSi11RS by 25%, and in the case of the alloy containing 20% Si by as much
as 86% (tensile test). On the basis of the homogeneity of the particle distribution determined by the
SEM method, it was found that rapid solidification is an effective method of increasing the strength
properties and improving the plastic properties of Al-Si alloys.

Keywords: Al-Si aluminum alloy; melt-spinning; shape factor; mechanical properties

1. Introduction

Research on the ways of refining grains of metals and alloys led to the application
in industrial practice of methods that ensure grain diameters of several micrometers.
Experimental studies indicate a significant improvement in strength properties as a result
of grain size reduction [1–3].

Materials with a submicron structure show high stability, and grain growth is ob-
served in them at a relatively high temperature, often exceeding 0.4–0.5 of the melting
point, despite the increased diffusivity observed when grain size decreases [4–6]. It is
hypothesized that the stability of such a structure may be determined by a large number of
triple boundary points. They have an inhibiting effect on the migration of boundaries or
the precipitation process related to the decrease in the solubility of alloy additions during
grain growth [7,8].

In the case of non-ferrous metals, efforts are still being made to improve their properties
through fine-grained refinement. The advantages of aluminum as a construction material,
together with its lightness, are still a strong incentive to search for effective and economically
effective methods of improving its strength properties. The goal of this research is also to
obtain materials with a grain size of less than one micrometer [9–11].

Increasing the strength properties can be effectively obtained by SPD (Severe Plastic
Deformation) methods. These methods assume a very high degree of plastic deformation of
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the material while limiting the possibility of spontaneous recrystallization. These methods
consist of introducing a large number of defects into the material as a result of plastic
deformation, which, after spatial reorganization and mutual reaction, are able to create a
large number of grain boundaries and, thus, grain refining. SPD methods are based on
plastic deformation with a very high proportion of the compressive hydrostatic stress state,
which aims to prevent loss of material cohesion [12–15].

One of the methods of producing fine-grained materials is the method of rapid so-
lidification (RS). With a properly selected chemical composition and a sufficiently high
cooling rate, an amorphous material (metallic glass) can be obtained [16,17]. Therefore, in
this type of material, the rapid solidification method is used mainly to refine the structural
components, which leads to a significant increase in strength properties. In the RS method,
the speed of heat dissipation during cooling and the heat released during crystallization
significantly affect the speed of crystallization. Therefore, it is best to use thin ribbons cast
on an intensively cooled copper cylinder. Another solution is to use metallic powders that
can be obtained by spraying liquid metal. During the process, these powders are cooled in
a shield of inert gas, e.g., argon. In the case of the Spray Deposition method, it is important
that the liquid droplets do not crystallize before they hit the surface of the drum [18–21].

The melt spinning method can be used to obtain high-strength, corrosion-resistant
aluminum alloys. The use of this method in the case of AA 5083 alloy resulted in an increase
in the tensile strength by 65%, the yield strength by 45%, and the elongation by 14% [22].
The RS process leads to the grain refinement of various materials. It is thought that the RS
contributes to the grain refinement of the AZ91 alloy [23]. Rapid-solidification technology
can significantly refine Al-Zn-Mg-Cu alloy grains. After extrusion, the tensile strength
and elongation of the extruded bar were 466 MPa and 12.9%, respectively. After T6 heat
treatment, the tensile strength of the alloy reached 636 MPa, while elongation decreased to
10.5% [24].

Al-Si alloys are among the most commonly used aluminum alloys in automotive ap-
plications (e.g., engine components). Silicon significantly affects the strength of Al-Si alloys
by transferring the load from the Al matrix to the hard (rigid) Si phase in the microstructure
(load capacity). Casting parameters (i.e., solidification rate, element segregation), as well
as the size and distribution of microstructural components in Al-Si alloys (i.e., Si particle
morphology, intermetallic compounds, spacing between secondary dendrites) have a direct
impact on the microstructure, mechanical properties, and behavior of the material in case
of failure (or cracking) [25–29].

This paper presents an analysis of cast Al alloys with different silicon contents (5%,
11%, and 20%), which were obtained by two methods: gravity-casting and extrusion, as
well as rapid solidification and plastic consolidation in the extrusion process. The choice of
methods was dictated by the discrepancies in properties that arise during the production of
materials by these methods. These differences result directly from the rapid solidification
process. The literature lacks information on the comparison of the properties of this type of
alloy and the impact of the melt spinning method on the fragmentation of the silicon phase
and obtaining a morphology close to spherical.

2. Materials and Methods

Aluminum alloys with different silicon contents were used for the tests. The chemical
composition of the starting materials is shown in Table 1. First, these materials (Table 1)
were gravity-cast into an ingot with a diameter of 38.2 mm and a height of 60 mm. The
charges were extruded at a temperature of 375 ◦C using an extrusion speed of 1 mm/s and
processing λ = 25 to form rods with a diameter of 8 mm. A 100 T press manufactured by
HYDROMET (Bytom, Poland) was used for extrusion.

The second set was cast in the process of rapid solidification (RS) using the melt
spinning method, pressed, and hot extruded. The materials were inductively melted in a
graphite crucible in an argon protective atmosphere and then cast onto a copper rotating
cylinder rotating at a circumferential speed of 10 m/s. This technique allows for an alloy
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cooling rate of 106 K/s. Rapidly solidified ribbons with a thickness of 30–70 µm and a width
of about 2.5 mm were compacted into a briquette with a diameter of 38 mm and a height of
10 mm. The rapid solidified ribbons and briquette for AlSi5 RS is shown in Figure 1.

Table 1. Chemical composition of the Al-Si alloy.

Element Al Si Fe Cu Mg Mn Other

AlSi5 94.28 5.23 0.17 0.03 0.07 0.02 0.20

AlSi11 88.26 11.41 0.16 0.01 0.02 0.03 0.13

AlSi20 79.37 20.21 0.17 0.02 0.04 0.03 0.16
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Figure 1. AlSi5 RS: ribbons (a) and briquette (b).

RS compaction of the ribbons was carried out at ambient temperature on the KHPES
100 Georg KIRSTEN D-54427 Kello press under a pressure of 100 bar. Six briquettes were
made for each rapid-solidified material, which constituted the charge for the extrusion
process. The extrusion process was carried out with the above-mentioned parameters.

Samples were taken from the extruded rods, and microsections were prepared for mi-
crostructure observation. The samples were ground on abrasive papers using 240–800 grits
(paper grits) and then polished with diamond pastes (DP-Suspension P from Struers) with
grits of 9, 3, and 1 µm. Finishing polishing was carried out using a colloidal suspension of
silica OP-S from Struers. Grinding and polishing were performed on a RotoPol 11 device
(manufactured by Struers, Copenhagen, Denmark). Microstructure observations were
performed using an Olympus GX51 light microscope (Olympus Inverted Metallurgical
Microscope, Olympus, Tokyo, Japan) and a Hitachi SU-70 scanning electron microscope
(Hitachi High-Technologies Corporation, Tokyo, Japan). EDS spectroscopy was used for the
study of an element’s distribution. The shape ratio was calculated using ImageJ (Rockville,
Bethesda, MD, USA). Circularity was used as the shape factor. The static tensile test was
carried out at an ambient temperature in accordance with PN-EN ISO 6892-1:2020-05 [30]
using a Zwick Roel Z050 testing machine (manufactured by ZwickRoell Group, Ulm, Ger-
many). From the beginning, middle, and end of each rod, cylindrical samples were taken
and made in order to determine the mechanical properties in the tensile test. Samples with
a diameter of 6 mm and a length of the measuring base of 30 mm were deformed at a
speed of 8 × 10−3 s−1. The high-temperature compression test was carried out using the
MTS 880 testing machine (MTS Systems Corporation, Eden Prairie, MN, USA). Samples
with dimensions of 8 mm in diameter and 11 mm in length were used for the compression
test. The samples were cut directly from the rod after the extrusion process. The Vickers
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hardness measurement was carried out with a load of 19.61 N using a Shimadzu HMV-2 T
device microhardness tester (Shimadzu Corporation, Kyoto, Japan).

3. Results and Discussion

Traditional foundry methods of grinding grains of metallic materials, unfortunately,
do not allow for sufficient particle and grain size. Figure 2 shows a longitudinal section of
ribbons with different silicon contents. All ribbons are approximately 40 µm thick. There
are visible differences in the microstructure on the side of the cylinder (bottom of the
picture) and on the side of the air (top of the picture). From the side of the cylinder, crystals
of a solid solution of aluminum are visible, arranged orthogonally to the direction of heat
dissipation, with precipitates of phases that are rich in silicon. From the air side, a typical
dendritic structure can be seen, which indicates a slower heat dissipation from this side.
Similar results can be found in the literature [22,31] In addition, from the observation of
the microstructures of the strips, it can be seen that, depending on the amount of silicon,
the zones of orthogonally growing crystals have different sizes. In the case of the AlSi5 RS
material, this zone was 20 µm; for the AlSi11 RS material, it was 11 µm; and in the case of
the AlSi20 RS material, this zone was only 6 µm. In addition, in the zone on the air side, an
increase in grain size can be seen with increasing silicon content in the material.

Materials 2023, 16, x FOR PEER REVIEW  5  of  15 
 

 

 

Figure 2. The microstructure of the ribbons after the melt spinning process: (A) AlSi5 RS,   

(B) AlSi11 RS, and (C) AlSi20 RS. 

Long acicular silicon crystals with sharp corners and edges irregularly occurring in 

the Al-Si alloys (Figure 3A,C,E) have a very negative effect on the mechanical properties 

and sometimes completely degrade  the mechanical workability of  these materials. The 

use of rapid solidification (RS) and plastic consolidation technology radically changes the 

type of grain structure of the material. The products of this technology are materials with 

a very fine, equiaxed structure of primary silicon, with grain sizes of several micrometers 

(Figure 3B,D,F). 

Figure 2. Cont.



Materials 2023, 16, 5223 5 of 14

Materials 2023, 16, x FOR PEER REVIEW  5  of  15 
 

 

 

Figure 2. The microstructure of the ribbons after the melt spinning process: (A) AlSi5 RS,   

(B) AlSi11 RS, and (C) AlSi20 RS. 

Long acicular silicon crystals with sharp corners and edges irregularly occurring in 

the Al-Si alloys (Figure 3A,C,E) have a very negative effect on the mechanical properties 

and sometimes completely degrade  the mechanical workability of  these materials. The 

use of rapid solidification (RS) and plastic consolidation technology radically changes the 

type of grain structure of the material. The products of this technology are materials with 

a very fine, equiaxed structure of primary silicon, with grain sizes of several micrometers 

(Figure 3B,D,F). 

Figure 2. The microstructure of the ribbons after the melt spinning process: (A) AlSi5 RS, (B) AlSi11
RS, and (C) AlSi20 RS.

Long acicular silicon crystals with sharp corners and edges irregularly occurring in
the Al-Si alloys (Figure 3A,C,E) have a very negative effect on the mechanical properties
and sometimes completely degrade the mechanical workability of these materials. The
use of rapid solidification (RS) and plastic consolidation technology radically changes the
type of grain structure of the material. The products of this technology are materials with a
very fine, equiaxed structure of primary silicon, with grain sizes of several micrometers
(Figure 3B,D,F).
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The analysis of the size and shape factors of silicon particles in the tested materials
is shown in Figures 4 and 5. The average silicon particle size increases significantly with
increasing Si content. A significant discrepancy in the Si particle size for AlSi20 can also be
seen, which is also confirmed by the determined shape factor for this material (Figure 5).
However, in the case of materials produced by rapid solidification, we observe a comparable
size of Si particles for all RS materials (Figure 4), and the shape of these particles is close to
spheroidal (Figure 5).
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Particle refinement after the RS process is well presented in the element distribution
map (Figure 6, Tables 2–4). Figure 7A–C show the microstructures of materials with 5%, 11%,
and 20% silicon content. In the figures, silicon particles with a size of several nanometers
to about 2 µm can be seen. These particles are evenly distributed in the material. Not
only the Si particles are refined, but also the Al-Si-Fe phase, which also changed its shape
from irregular with sharp edges to regular and spherical. In the case of rapid solidification
materials, silicon crystals, without a noticeable separation into primary and eutectic silicon
crystals, surround grains of the aluminum-rich phase with a size of 1 to 4 µm (Figure 7).
Table 5 presents the results of grain size measurements for the tested materials. The material
containing 20% Si has the largest grain. For the AlSi20 sample, the grain size is 9.87 µm,
and after the rapid solidification process (AlSi20 RS), the grain was reduced to 3.78 µm.
The smallest grain size is characterized by a sample with a silicon content of 5% (for AlSi5,
it was 5.9 um, while after the rapid solidification process (AlSi5 RS), it is fine-grained at
1.38 µm). In general, the results of the microstructure tests show that the rapidly solidified
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and plastically consolidated material has a refinement structure that is thermally stable and
does not undergo significant changes during high-temperature deformation (hot extrusion).
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Table 2. Results of X-ray chemical analysis (EDS) for *1, *2, and *3 marked in Figure 6 (AlSi5).

AlSi5 Mg-K Al-K Si-K Mn-K Fe-K Cu-K

1 0.00 97.00 2.99 0.00 0.10 0.00
2 0.00 8.96 91.04 0.00 0.00 0.00
3 0.00 55.32 28.60 0.16 15.92 0.00

Table 3. Results of X-ray chemical analysis (EDS) for *1, *2, and *3 marked in Figure 6 (AlSi11).

AlSi11 Mg-K Al-K Si-K Mn-K Fe-K Cu-K

1 0.00 97.89 2.01 0.00 0.10 0.00
2 0.00 7.86 92.14 0.00 0.00 0.00
3 0.00 54.32 29.80 1.16 14.72 0.00

Table 4. Results of X-ray chemical analysis (EDS) for *1, *2, and *3 marked in Figure 6 (AlSi20).

AlSi20 Mg-K Al-K Si-K Mn-K Fe-K Cu-K

1 0.00 97.91 1.99 0.00 0.10 0.00
2 0.00 8.76 91.24 0.00 0.00 0.00
3 0.00 56.32 28.70 0.16 14.82 0.00
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Table 5. Average grain diameter of the researched materials.

Average Grain Diameter Standard Deviation

AlSi5 5.90 0.73

AlSi5 RS 1.38 0.15

AlSi11 6.16 0.64

AlSi11 RS 1.67 0.22

AlSi20 9.87 1.37

AlSi20 RS 3.78 0.16
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It is worth emphasizing that the temperature of plastic consolidation of rapidly crys-
tallized strips significantly affects the maintenance of fragmentation of microstructure
components. Too low a temperature hinders diffusion processes and limits plastic consoli-
dation to the mechanical joining of metallic particles. Then the strength properties are low
compared to those expected as a result of the fragmentation of the microstructure. On the
other hand, too high a consolidation temperature causes significant grain growth and leads
to undesirable coagulation of precipitates and changes in particle morphology. During
extrusion in the plastic flow zone, cracking of the external oxide coatings on the surface of
rapidly solidified ribbons occurs, which leads to the exposure of the proper surface of the
material. This facilitates the adhesive connection of particles and increases the efficiency of
diffusion through the boundaries of particle joining [32–34].

Figure 8 and Table 6 show the results of the tensile test at room temperature for rapid
solidification materials. The results were compared with the properties of gravity-cast and
hot-extruded materials. The rapid solidification process significantly increases the strength
properties of all tested materials. The highest YTS value was obtained for AlSi20RS, and it
is an almost two-fold increase in strength properties (Table 6). A similar trend is observed
for hardness measurements using the Vickers method (HV2). The lowest hardness value is
obtained by AlSi5 RS (HV2 48), and with the increase in the silicon content and the increase
in the amount of crushed particles, the hardness of the consolidated materials increases
(Table 6). It is worth emphasizing, however, that all alloys, hypoeutectic (AlSi5 RS), eutectic
(AlSi11 RS), and hypereutectic (AlSi20 RS), are also characterized by higher elongation
compared to gravity-cast and extruded materials. Table 6 also shows the density results
of all tested samples. In the case of the alloy with 5 and 11% silicon, the density of rapid
solidified samples is the same as that of gravity-cast samples. For these materials, no
porosity was observed during microstructural observations. The density of AlSi20 RS is
slightly higher than that of AlSi20. This is due to the fact that in the case of the gravity-cast
AlSi20 alloy, porosity could be seen in the material, which appeared in the vicinity of large
Si particles that probably cracked during the extrusion process. In the case of AlSi20 RS, the
Si particles were refined during the melt spinning process, and we do not observe porosity
in the extruded material.
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Table 6. Properties of Al-Si alloys.

Element UTS, MPa YS, MPa Elongation,
%

Hardness,
HV2

Density,
g/cm3

AlSi5 131 81 17.1 35 2.67

AlSi5 RS 155 108 15.2 48 2.67

AlSi11 162 90 11.1 45 2.64

AlSi11 RS 203 132 12.6 64 2.64

AlSi20 148 94 4.1 50 2.56

AlSi20 RS 276 168 6.2 86 2.61

Figure 9 shows the fractures of the samples after the tensile test. The observations
indicate that in the case of gravity-cast and extruded materials, the lower elongation values
are due to the presence of large silicon particles, which are marked with arrows in Figure 9.
In addition, smaller particles located at the bottom of the microwells can be noticed. Sharp
edges testify to the initiation of the cracking process on these particles. The samples after
the rapid solidification process have a significantly different fracture morphology. Fractures
in these samples, regardless of the amount of silicon, have the character of plastic cracking,
which is confirmed by the elongation values obtained in the tensile test. Numerous micro
holes with very fine particles of the second phase are located on the entire surface of the
fracture. The micro holes created after the tensile test are, in most cases, spherical in shape
and of similar size throughout the fracture. The second-phase particles are much smaller in
the RS material compared to the fractures obtained after gravity-casting and extrusion.
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Examples of the effects of increased temperature on the mechanical properties of
rapidly solidified AlSi alloys are shown in Figure 10. The mechanical properties of extruded
samples were evaluated in the range 20–500 ◦C using compression tests. The rapidly
solidified materials are characterized by much higher strength parameters in comparison
to materials cast by gravity and plastically consolidated. These materials show a significant
ability to undergo plastic deformation at high temperatures.
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Deformation temperature is marked in the figure.

When designing alloys with a higher content of silicon, e.g., materials intended for
heavily loaded combustion engine pistons, special attention should be paid to the problems
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associated with the lack of a sufficiently effective method of modifying the morphol-
ogy and size of primary silicon crystals in alloys with hypereutectic composition [35–37].
Long, acicular silicon crystals have a very adverse effect on the mechanical properties,
can contribute to numerous cracks, and sometimes completely degrade the mechanical
workability. These types of materials can be modified, for example, with phosphorus,
which improves machinability in some hypereutectic materials but does not adequately
improve strength. The addition of Ni, Fe, or Cu improves the strength properties at high
temperatures but strongly deteriorates the casting properties. This leads to porosity and
cracking in castings and completely deprives such materials of the ability to undergo
plastic deformation [38–40]. Melt-spinning casting of such materials into thin ribbons gives
a chance to better adjust the properties of the material to the application, provided that the
process of plastic consolidation of dispersed alloy forms is effectively carried out.

Figure 11A shows the yield strength depending on the temperature for the gravita-
tionally cast and extruded material, while Figure 11B shows research for samples after
the melt spinning process. The addition of silicon to gravity-cast materials does not sig-
nificantly increase the yield point. A different situation can be observed in the case of
samples after rapid solidification. Strong fragmentation of silicon particles and grains
resulted in increased strength properties. As shown in Figure 7, in the samples after the
rapid solidification process, silicon particles have sizes ranging from several nanometers to
several micrometers. The hot pressing process causes the accumulation of defects in the ma-
terial, which results from the simultaneous impact of plastic deformation and temperature.
During the compression test, a recovery process is triggered, which leads to a reduction in
the internal energy in the material due to dislocation displacement by climbing and sliding.
The climb of dislocation often occurs in metals with high stacking fault energy, of which
aluminum is an example. This leads to pinning the dislocation by fine silicon particles
that prevent it from moving. Further recovery can occur through polygonization processes
consisting of the movement of dislocations and the formation of parallel rows in places of
greater stress. This leads to the formation of small-angle boundaries (subgrains). In the
material obtained by gravity-casting, the silicon particles are much larger and there are
much fewer of them, which means that the strength properties after the compression test
are much lower than in the case of samples after rapid solidification [41–43].
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Figure 11. Yield strength as a function of the temperature of the tested materials. (A) gravity casting
(B) RS alloys.

4. Conclusions

Rapid solidification by the melt-spinning method is an effective method of fragmen-
tating structural components in Al-Si alloys. The advantage of these materials is the
homogeneity and high stability of the morphology of the precipitates in a wide temperature
range, which allows the use of this type of material in the production of products that can
be used at elevated temperatures.

Rapidly solidified Al-Si materials are characterized by a comparable size of Si particles,
regardless of the silicon content, and the shape of these particles is close to spheroidal. Not
only Si particles are fragmented, but also the Al-Si-Fe phase, which also changed its shape
from irregular with sharp edges to regular and spherical.
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The mechanical properties of materials obtained by combining the technologies of
rapid crystallization and plastic consolidation in the extrusion process are significantly
higher in comparison to gravity-cast and extruded materials. An increase in strength
properties was found in the case of the AlSi5 RS alloy by 20%, in the case of AlSi11RS
by 25%, and in the case of the alloy containing 20% Si by as much as 86% in relation to
gravity-cast and extruded alloys.

Author Contributions: Conceptualization, P.N. and M.W.; methodology, P.N., T.S., M.W., and M.W.;
validation, P.N. and M.W.; formal analysis, P.N., T.S., and M.W.; investigation, P.N. and M.W.;
resources, P.N.; data curation, T.S., P.N., and M.W.; writing—original draft preparation, P.N. and T.S.;
writing—review and editing, M.W.; visualization, P.N.; supervision, T.S.; funding acquisition, P.N.
and M.W. All authors have read and agreed to the published version of the manuscript.

Funding: Financial support under contract 16.16.180.006 and grant POIR.01.01.01-00-0362/19 is
kindly acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Meyers, M.A.; Mishra, A.; Benson, D.D. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [CrossRef]
2. Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci.

2000, 45, 103–189. [CrossRef]
3. Edelstein, A.S.; Murday, J.S.; Rath, B.B. Challenges in nanomaterials design. Prog. Mater. Sci. 1997, 42, 5–21. [CrossRef]
4. Lu, K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng.

R Rep. 1996, 16, 161–221. [CrossRef]
5. Suryanarayana, C.; Froes, F.H. Production of nanostructure titanium-based alloys by mechanical alloying. Nanostruct. Mater.

1992, 1, 191–196. [CrossRef]
6. Inoue, A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 1998, 43, 365–520. [CrossRef]
7. Boylan, K.; Ostrander, D.; Erb, U.; Palumbo, G.; Aust, K.T. An in-situ tem study of the thermal stability of nanocrystalline Ni-P.

Scr. Metall. Mater. 1991, 25, 2711–2716. [CrossRef]
8. Palumbo, G.; Erb, U.; Aust, K.T. Triple line disclination effects on the mechanical behaviour of materials. Scr. Metall. Mater. 1990,

24, 2347–2350. [CrossRef]
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