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Abstract: Selective laser melting (SLM) of high-temperature alloys involves intricate interdependen-
cies among key process parameters, such as laser power and scanning speed, affecting properties
such as density and tensile strength. However, relying solely on experiential knowledge for pro-
cess parameter design often hampers the precise attainment of target requirements. To address
this challenge, we propose an innovative approach that integrates the analytic hierarchy process
(AHP) and weighted particle swarm optimization (WPSO) to recommend SLM process parameters
for high-temperature alloy fabrication. Our proposed AHP–WPSO model consists of three main
steps. First, a comprehensive historical database is established, capturing the process parameters
and performance metrics of high-temperature alloy SLM parts. Utilizing an AHP framework, we
compute the performance similarity between target and historical cases, applying rational thresholds
to identify analogous cases. When suitable analogs are elusive, the model seamlessly transitions to
the second step. Here, the WPSO model optimizes and recommends process parameters according
to target specifications. Lastly, our experimental validation of the GH4169 high-temperature alloy
through SLM experiments corroborates the effectiveness of our AHP–WPSO model in making pro-
cess parameter recommendations. The outcomes underscore the model’s high accuracy, attaining
a recommendation precision of 99.81% and 96.32% when historical analogs are present and absent,
respectively. This innovative approach offers a robust and reliable solution to the challenges posed in
SLM process parameter optimization for high-temperature alloy applications.

Keywords: selective laser melting; process recommendation; particle swarm optimization; analytic
hierarchy process; high-temperature alloy

1. Introduction

Additive manufacturing (AM), a revolutionary manufacturing technique, emerged in
the late 1980s and has gained widespread popularity [1]. Among additive manufacturing
technologies, selective laser melting (SLM) is one of the most important branches. The
fundamental principle of selective laser melting (SLM) involves slicing the structure of a
part using computer-aided design software, based on a digital model file. This process
utilizes powder metal, enabling the creation of objects through a “bottom-up” layer-by-layer
accumulation bonding approach. Due to its distinctive layered processing, this technique
is widely known as 3D printing [2–4].

SLM technology enables the manufacturing of fully dense parts and extremely com-
plex geometrical structures. Despite strict input processing requirements, which involve
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describing the characteristics of the metal powder to be used, SLM can process a variety
of metallic biomaterials, including commercially pure titanium (CP-Ti), 316 L stainless
steel, cobalt–chromium–molybdenum (Co-Cr-Mo), Ti-6-Al-4-V, AlSi10Mg, tantalum, and
nickel–titanium [5]. For solid, porous, and hybrid materials, processing factors and various
SLM production designs have an impact on the final mechanical characteristics of the
resulting products.

Currently, there exist certain challenges in the production of SLM, including issues
related to the non-standard recording of process information and the absence of crucial pro-
cess design standards. Consequently, production personnel frequently rely on experiential
approaches, resorting to repeated “trial and error” methods to establish new processes. This
practice significantly hampers the efficiency of process research and development, leading
to escalated production costs and equipment losses. As a result, there is a pressing need to
undertake research on SLM process recommendations, aiming to establish a dependable
foundation for subsequent SLM process designs and further enhance the efficiency of
process research and development.

The meta heuristic algorithm [6] is an improvement of the heuristic algorithm, which
is a combination of a random algorithm and a local search algorithm. Meta heuristic
algorithms are proposed to be comparable to optimization algorithms, which can provide
a feasible solution (though not necessarily an optimal one) to a problem at an acceptable
cost (referring to computational time and space). Khosravani M R [7] proposed a case-
based approach. The weight of different characteristics was determined by historical fault
data. Rintala L. [8] combined the case-based reasoning method to establish a metallurgical
process intelligent recommendation system, which can effectively guide process designs.
Mohanmmed MA [9] improved case-based reasoning technology based on a genetic algo-
rithm and applied it to the field of mobile phone fault detection, achieving a fault detection
accuracy of 98.7%. The determination of reusable process design information largely relies
on human experience and knowledge, requiring a large amount of manual participation,
resulting in problems such as strong regularity, low universality, and low efficiency [10].

Wang Wei [11] from Huazhong University of Science and Technology proposed a
case representation method of a mold NC process based on geometric semantic features
and combined it with the comprehensive weighted similarity measurement method to
form a recommendation for similar NC process cases. Feng Chao [12] from Northwestern
Polytechnical University proposed an improved particle swarm optimization algorithm for
feature weight determination and a similar case retrieval method based on an RBF neural
network which could quickly form judgements and recommend an emergency decision
method. Kejun Xiang [13] combined case-based reasoning with rule-based reasoning to
establish a high-speed cutting database system based on hybrid reasoning. Ding Xu [14]
from Nanjing University of Aeronautics and Astronautics formed process parameter rec-
ommendations and the multi-objective optimization of cutting parameters in micro-milling
based on the hybrid method of case-based reasoning and rule-based reasoning. Abroad,
Jiang [15] established a process planning model based on case-based reasoning for applica-
tion scenarios of product remanufacturing, combined with the rough set method to reduce
the dimensions of the case features, and effectively improved the product quality through
the resulting process recommendation. Tung Y H et al. [16] combined rule reasoning with
case-based reasoning to quickly diagnose problems in complex situations.

Most domestic and foreign scholars have conducted qualitative research on the SLM
process, and the empirical rules obtained have not been transformed into high-precision
quantitative models to guide subsequent process designs. As a result, the current SLM
process design still relies heavily on the experience of designers, and it is difficult to
accurately design SLM process schemes that meet the requirements with fewer instances of
“trial and error”. Therefore, we design a hybrid system for the recommendation of SLM
process parameters that can accurately recommend parameters in SLM process designs,
reduce our reliance on experience, and quickly meet design performance needs.
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2. SLM Processing Recommended Hybrid Model Construction

Selective laser melting (SLM) is a complex and dynamic high-speed process that is
influenced by a variety of factors, including mechanical conditions, material characteris-
tics, laser scanning methods, and external environmental conditions [17]. Among these
factors, the most crucial ones are the process parameters, such as the laser power, scanning
speed, scan spacing, and powder layer thickness. Additionally, SLM-formed parts have
stringent performance requirements, including tensile strength, yield strength, density,
stress distribution, and elemental composition. The stress and elemental distribution in
SLM-formed components have a significant impact on their mechanical properties, reli-
ability, and operational longevity [18,19]. However, due to the challenges in measuring
stress and elemental distribution and the complexities of optimizing models based on these
factors, this study employs indicators such as tensile strength, yield strength, density, and
post-fracture elongation to predict the performance of the formed components.

This paper introduces an AHP–WPSO hybrid model for recommending SLM pro-
cess parameters based on the existing SLM database, as shown in Figure 1. The hybrid
recommendation model combines the analytic hierarchy process (AHP) with weighted
particle swarm optimization (WPSO). The AHP model retrieves similar cases from the
SLM database for its recommendations, aiding in process optimization and reusability. In
cases in which similar target cases are absent, the WPSO model serves as a supplemen-
tary approach within the AHP framework for process optimization. This combination of
methodologies facilitates the rapid generation of SLM process plans.
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2.1. Analytic Hierarchy Process Model for Process Optimization

Case-based reasoning (CBR) is a new method of solving problems based on databases
in the field of artificial intelligence. It searches for similar questions in the past in the case’s
base problems and solutions to solve new problems. It is of great significance to improve
the accuracy of process recommendation results by considering the weight proportion
of each demand feature and combining the weight with case-based reasoning. Based on
this, a weighted case-based reasoning model combined with the analytic hierarchy process
(AHP) is established for the rapid optimization and reuse of process schemes. The analytic
hierarchy process is used to determine the feature weight.
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Firstly, the decision problem is transformed into a three-level model consisting of
the target layer, the criterion layer, and the scheme layer, serving as the basis for weight
allocation. For different materials, case retrieval is conducted by classifying the cases based
on the material type, with independent weight allocation within each material category.
Taking GH4169 as an example, the target layer represents the total weight and the criterion
layer includes the weights assigned to three factors influencing the selection of SLM process
schemes: the forming part characteristics, processing costs, and mechanical properties. The
scheme layer comprises specific case feature weights under these three factors, including
the structural features, structural size, forming time, density, tensile strength, yield strength,
and elongation at break. The established case feature hierarchy model is illustrated in
Figure 2.
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Figure 2. Schematic diagram of the case feature hierarchy model.

Since criterion layer elements and scheme layer feature weights cannot be allocated
across levels, judgment matrices need to be provided from top to bottom for the weight
distribution, until all the case feature weights in the scheme layer are determined. The
judgment matrices are constructed using a method on a scale from 1 to 9 to measure the
relative importance of the indicators within each layer, as shown in Table 1.

Table 1. Significance of the method’s scale from 1 to 9.

Scaling The Meaning of the Scale

1 The features on the horizontal axis of the judgment matrix are equally important
as the features on the vertical axis.

3 The features on the horizontal axis of the judgment matrix are slightly more
important than the features on the vertical axis.

5 The features on the horizontal axis of the judgment matrix are more important
than the features on the vertical axis.

7 The features on the horizontal axis of the judgment matrix are noticeably more
important than the features on the vertical axis.

9 The features on the horizontal axis of the judgment matrix are significantly more
important than the features on the vertical axis.

2, 4, 6, 8 Midpoint on the scale.

The form of the judgment matrix is Yk = (xij)n×n, where k is the index of the judgment
matrix, xij represents the importance scale of the pairwise performance input by the user,
and n is the order of the judgment matrix. The feature matrix is a positive reciprocal matrix,
meaning that xij = 1/xij. Thus, the feature matrix only needs to be filled in the diagonal
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upper/lower part, with scales from 1 to 1/9 corresponding to 1 to 9. The horizontal and
vertical coordinates of the feature importance ratio are inversely proportional.

According to the structure of the hierarchy model, there are three judgment matrices
in this study: the criterion layer judgment matrix Y1, the formed part feature judgment
matrix Y2, and the mechanical property judgment matrix Y3. Among them, Y2 contains
only two features, and based on empirical knowledge, it is known that the importance of
forming part structural features is nearly equal to that of the structural size for production.
Therefore, Y2’s internal scales are directly filled with 1. In the context of aerospace and
military applications, based on the practical production experience of technical personnel
from a certain military unit, the demand features selected in this model are ranked in order
of importance: the mechanical properties of formed parts are greater than the features of
formed parts, which are greater than the processing costs. Under the uncertainty of specific
service conditions for SLM formed parts, the density, tensile strength, yield strength, and
elongation after fracture are equally important. The forms of the three judgment matrices
are shown in Table 2, Table 3, and Table 4, respectively. After obtaining the judgment
matrices, it is necessary to test their consistency to prevent significant discrepancies in
the scales of the features within the same layer, which could lead to errors in the feature
weights. The current approach commonly uses the consistency index (CI) to measure the
degree of judgment matrix consistency, calculated as shown in Equation (1).

CI =
λmax − n

n− 1
(1)

Here, λmax represents the maximum eigenvalue of the judgment matrix, and n is the
order of the judgment matrix.

Table 2. Criterion layer judgment matrix.

Y1 Processing Cost Formed Part Features Mechanical Properties

Processing cost 1 0.5 0.2
Formed part features 2 1 0.25
Mechanical properties 5 4 1

Table 3. Formed part feature weight judgment matrix.

Y2 Structure Structure Size

Structure 1 1
Structure size 1 1

Table 4. Mechanical performance weight judgment matrix.

Y3 Density Tensile
Strength Yield Strength Elongation after

Break

Density 1 1 1 1
Tensile strength 1 1 1 1
Yield Strength 1 1 1 1

Elongation after break 1 1 1 1

A smaller consistency index indicates the better consistency of the judgment matrix.
When the CI is zero, the judgment matrix is completely consistent. The average random
consistency index (RI) is introduced as a reference control for matrix consistency. The RI for
the orders one to ten of the positive reciprocal matrices, obtained from 1000 calculations,
is shown in Table 5. When the matrix order is less than three, the judgment matrix is
considered to have perfect consistency; otherwise, the consistency of the judgment matrix
needs to be evaluated by comparing the consistency index (CI) with the average random
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consistency index (RI). Therefore, the random consistency ratio (CR) is introduced as the
final indicator of judgment matrix consistency, calculated as shown in Equation (2). When
the CR is less than 0.1, it is considered that the judgment matrices provided by the user
have acceptable consistency, and the feature vectors serve as the weights for each level.
Otherwise, the user needs to rescale the importance of the case features until passing
the consistency test. After the calculation, all three judgment matrices exhibit favorable
consistencies. Otherwise, users need to rescale the importance of the case features until the
consistency test is passed. Based on the importance scales in the judgment matrices, the
ratio of current demand feature weights is calculated using the analytic hierarchy process as
follows: the forming time to density to tensile strength to yield strength to elongation after
fracture to structural feature to structural size = 0.116:0.171:0.171:0.171:0.171:0.100:0.100.

CR =
CI
RI

(2)

Table 5. Average stochastic consistency index of judgment matrix of orders 1~10 [20].

Matrix Order 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

After calculating the weight size of the scheme layer, case retrieval and reuse are
carried out based on the case library. The essence of case retrieval is to retrieve the most
similar cases from the case library based on the similarity between new cases in demand
and existing cases in the case library and use the solutions of similar cases as a solution to
the demand. This article proposes a case retrieval method based on material classification
based on the fact that there is almost no reference between different materials in the process.
The main steps are as follows:

Step 1: Classify the cases in the case library by material grade. When inputting new
demand cases, first search the case library by material grade and select cases of the same
material to form an alternative case set;

Step 2: Based on the weighted nearest neighbor method [21], calculate the similarity
between the new case and the set of candidate cases. Essentially, after calculating the
local similarity for each case feature, combined with the feature weights, summarize the
weighted total similarity. The calculation formula is shown in Equation (3).

SIM(A, B) =
n

∑
i=1

sim(Ai, Bi)× wi/
n

∑
i=1

wi (3)

Among them, SIM(A,B) is the weighted total similarity between new case A and
existing case B, sim(Ai, Bi) is the local similarity between new case A and existing case B
in the ith case feature, w is the weight of the ith case feature determined by the analytic
hierarchy process, and n is the total number of case features.

From the above formula, it can be seen that the local similarity of different case features
has a direct impact on the weighted total similarity of cases. Therefore, using appropriate
methods to calculate the local similarity is a key step in case retrieval. The case features
involved in this article can be divided into two types of data: numerical and enumeration
data types. It is difficult to calculate the local similarity between numerical and enumerated
font features using a unified method. Therefore, this article adopts a hybrid local similarity
calculation method, as shown below:

(1) For the characteristics of numerical cases, the calculation formula [22] is shown in
Equations (4) and (5).

sim(Ai, Bi) = e
− d(Ai ,Bi)√

2×σi (4)

σi = σ× (imax − imin) (5)
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Among them, the d (Ai,Bi) for the new case A with existing case B; the absolute
distance between the case features is I; σi is the deflection point; and σ is a constant and its
value ranges from 0 to 1. In this paper, it is 0.4. imax and imin, respectively, represent the
maximum and minimum values of the ith numerical case features. Compared with the
local similarity calculation method based on absolute distance alone, the proposed method
can eliminate the influence of different feature dimensions to the greatest extent and make
the recommendation results more accurate.

(2) For enumerated case features, in this paper, the structural features of single finger
forming parts and the local similarity are given by technicians combined with production
experience. This article shows that structure characteristics are limited to eight types: ordi-
nary block type, complex sharp angle type, impeller structure type, interlayer runner type,
irregular pipe type, honeycomb structure type, complex shell type, and lattice structure
type. The local similarity matrix is shown in Figure 3 and Table 6. When calculating the
local similarity of structural features, please refer to the table.
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Figure 3. Physical diagram of typical structural features [23,24]: (a) Ordinary bulk block; (b) Complex
sharps; (c) Impeller Design; (d) Interlayer runner; (e) Irregular shaped pipe; (f) Honeycomb structure;
(g) Complex shell; (h) Lattice structure.

Table 6. Local similarity matrix of structural features.

Structure Block Angle Impeller Channel Pipe Honeycomb Shell Lattice

Block 1 0.2 0 0 0 0.4 0 0.1
Angle 0.2 1 0 0.1 0 0.6 0.1 0.2

Impeller 0 0 1 0.6 0.6 0.2 0 0.1
Channel 0 0.1 0.6 1 0.8 0 0.4 0.1

Pipe 0 0 0.6 0.8 1 0.2 0.5 0
Honeycomb 0.4 0.6 0.2 0 0.2 1 0.4 0.6

Shell 0 0.1 0 0.4 0.5 0.4 1 0.2
Lattice 0.1 0.2 0.1 0.1 0 0.6 0.2 1

After the similarity calculation, the case base sorts all the cases according to the size
of the similarity. At this time, it is necessary to conduct follow-up processing for the
recommended cases according to the similarity threshold S and feature weight threshold w.
According to the experimental simulation results, the similarity threshold S of this model is
0.85, and the feature weight threshold w is 0.15.
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2.2. Weighted Particle Swarm Model for Optimization of Process Parameters

Since the case itself remains unchanged, when the performance parameters required
by the target exceed the maximum reasoning range of the case base, the CBR model
cannot be used for process recommendations. Therefore, this paper proposes a weighted
particle swarm optimization model as a supplement to the weighted case-based reasoning
model, which can flexibly optimize the process parameters according to the performance
requirements of the target and output the optimized process plan.

Particle swarm optimization (PSO) is a meta-heuristic population optimization al-
gorithm for searching the global optimal solution of a problem. It was proposed by two
American scholars, James Kennedy and Russell Eberhart, in 1995. Compared with other
heuristic search algorithms, such as a genetic algorithm, it has the advantages of being
simple and easy to realize, having fewer super parameters, being easy to adjust, and
having a fast search speed and strong search ability, etc. It has achieved good results in
single-objective and multi-objective optimization in engineering [25].

Based on the standard particle swarm optimization algorithm, this paper proposes a
weighted particle swarm optimization model, as shown in Figure 4.
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The construction process of the weighted particle swarm model is as follows: firstly,
the optimization objective and optimization parameters are determined, then the weighted
multi-objective fitness function is constructed and the constraint conditions are determined,
then the particle crossing processing strategy is determined, then the superparameters are
determined, and finally the conditions are optimized.

(1) The optimization objective and optimization parameter determination. The opti-
mization objective is the input of the model, and the optimization parameter is the output
of the model. Therefore, the optimization objectives are density, tensile strength, yield
strength, and the elongation at break, and the optimization process parameters are the laser
power, scanning speed, scanning spacing, and powder layer thickness.

(2) The construction of weighted multi-objective fitness function and the determination
of constraint conditions. Since the optimization objective is multiple performance parame-
ters, based on the established optimal performance prediction model, this paper adopts
the weighted summation method to construct the fitness function, and the weight factor is
the characteristic weight determined according to target. At this time, the combination of
optimization process parameters is the particle position (four-dimensional coordinates),
and the output value of the weighted multi-objective fitness function is the particle fitness.
To eliminate the dimension influence of different process parameters, performance indi-
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cators, process parameters, the performance index of the model involving all normalized
processing, and the fitness function F(x) expression are as shown in Equation (6).

F(x) = k1D(x) + k2σb(x) + k3σs(x) + k4 A(x), x ∈ X (6)

x is the particle coordinates’ vector, containing (x1, x2, x3, x4), indicating the laser
power, scanning speed, scanning space, and spread powder process parameters with a
thick layer of normalized values; D(x), σb(x), σs(x), A(x) are the density, tensile strength,
yield strength, and break elongation of the normalized prediction model; k1, k2, k3, k4 are the
four performance indicators according to the target to determine the weight initialization
(when using the analytic hierarchy process (AHP) to determine the weight); and X is the
particles in the search space constraints, namely the particle four-coordinate normalization
process parameter value’s scope, which here are all [−1, 1].

(3) Determine the processing strategy of the particle crossing the boundary. The
particle speed (v)’s scope is [−0.1, 0.1], when the speed cross-border v is the closest to the
boundary value of the particle flying coordinate (xi)’s value in the range of [−1, 1] at the
position of the cross-border to prevent particles trapped in the local optimum, with the
coordinates xi calling back to 0.

(4) Determine the hyperparameters. The value range of learning factors c1 and c2 is
set to 2. The number of population N is set to 1000, and the diversity of the population is
increased to increase the global search ability. Because of the rapid convergence of the PSO,
the maximum number of updates T only needs to be 100. The inertia factor w(t) is updated
using linearly decreasing weights, making the global optimization strong at the beginning
of the search and with strong local optimization when approaching global optimum, as
shown in Equation (7) [25].

w(t) = (wini − wend)(T − t)/T + wend (7)

Among them, when the wini for the initial inertia factor is 0.9, the wend inertial factor
for the maximum update frequency is 0.4.

(5) End condition optimization. Usually the particle swarm optimization algorithm
takes the maximum number of updates T as the end condition, but it usually converges
before reaching the maximum number T. In order to accelerate the model optimization
process, this paper proposes a heuristic end strategy combining targets: when the global
optimal position of the particle swarm meets the target, the update iteration is considered
as having found the optimal position, and the update iteration is ended in advance. The
end condition of optimization can be expressed as follows:

t ≥ T
or

D(x) ≥ z and σb(x) ≥ l and σs(x) ≥ q and A(x) ≥ y
(8)

where t, z, l, q, and y are the density, tensile strength, yield strength, and elongation after
break required.

The optimization objectives are densities of 100%, a tensile strength of 1100 MPa,
a yield strength of 800 MPa, and a 30% elongation after break, and the optimization of
the process parameters is carried out simultaneously with the standard particle swarm
model using the weighted particle swarm model. Assuming a larger proportion of elon-
gation after fracture, the ratio of each performance feature in the weighted PSO model is
0.168:0.168:0.168:0.496 calculated by the hierarchical analysis method, while each perfor-
mance feature in the standard PSO model has an equal weight and is 0.25. As shown in
Figure 5, compared to the standard PSO, the WPSO model is able to perform a faster and
more accurate recommendation for SLM process parameters.
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3. Experimental Section

BLT-S210 was used as SLM experimental equipment, the laser power of the equipment
could reach 500 W, the scanning speed was 0~7 m/s, the lowest-forming layer thickness
could reach 15 µm, and the process parameters could be adjusted in a wide range. The
forming size of the device was 105 mm × 105 mm × 200 mm (excluding the substrate
thickness). The equipment is shown in Figure 6.
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Figure 6. BLT-S210 SLM forming equipment.

High-temperature alloy GH4169 was used as experimental material. GH4169 is a
precipitation-strengthened nickel-based high-temperature alloy with good comprehensive
properties in the temperature range of −253~650 ◦C. The main chemical compositions are
shown in Table 7. The particle size of the high-temperature alloy GH4169 powder used in
this experiment is normally distributed between 15 and 45 µm, and more than 90% of the
powder particle sizes are about 44 µm, as shown in Figure 7.
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Table 7. The main chemical composition of high-temperature alloy GH4169.

Composition Cr Ni Co Mo Nb C Fe

Request/% 17.0~21.0 50~55.0 ≤1.0 2.80~3.30 4.75~5.50 ≤0.08 Bal
Measurement/% 18.98 54.66 0.12 3.15 5.00 0.024 Bal
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The density was measured by drainage method. The measuring equipment was
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value was 0.1 mg. The measurement experiment diagram is shown in Figure 8.
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Figure 8. Schematic diagram of density measurement experiment: (a) Electronic balance to measure
dry weight of formed parts; (b) Electronic balance to measure drainage weight.

The measuring instrument for tensile mechanical properties is the AG-IC 100 kN
electronic universal testing machine produced by Shimadzu in Japan, as shown in Figure 9.

After the performance measurement was completed, combined with the results of
previous exploration experiments, a total of 58 data records were collected from the current
SLM process database for subsequent process knowledge base and process recommendation
research.
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4. Discussion

Upon inputting the target parameters, the weighted case-based reasoning model
is employed to retrieve historical process cases. If similar cases meeting the similarity
threshold and target criteria are identified, the corresponding case solution is output as
the recommended result of the model. In cases in which no such matches are found, the
weighted particle swarm optimization (WPSO) model engages in parameter optimization.
The output process plan generated after the optimization is then suggested by the model.
The accuracy of the process recommendation is defined as the level of correspondence
between the features of the target and those of the formed parts following experimental
machining based on the recommended process scheme. Given the multitude of features
and their diverse dimensions, a unified index is essential for holistic measurements. There-
fore, this paper proposes a method to calculate the process recommendation accuracy, as
indicated by Equation (9).

Ac =
n

∑
i=1

ωi Aci (9)

In this context, Ac denotes the accuracy of the process recommendation model, ωi
represents the normalized weight of the ith local feature, and Aci signifies the recommended
accuracy of the ith local feature.

As practical processing places greater emphasis on performance requirements com-
pared to other demands, this study confines the calculation of the model’s process rec-
ommendation accuracy to the performance requirement’s intrinsic characteristics. This
includes the density, tensile strength, yield strength, and elongation at break. The formula
for calculating the recommended accuracy of local features is presented in Equation (10).

Aci =

{ ni
Ni
× 100%, ni < Ni

100%, ni ≥ Ni
(10)

Here, Aci symbolizes the accuracy of the ith local feature, with ni indicating the mea-
sured value of the ith local feature after processing using the recommended technological
scheme and Ni representing the target parameter of the ith local feature. As all the local
features involved in the calculation are performance parameters, a measurement value ex-
ceeding the target is considered a complete match, yielding a local feature recommendation
accuracy of 100%. The experimental results are presented below.

Experiment 1: When the target is basically similar to cases in the case base.
We use a simulation to generate the target as the experimental scheme for the “basically

similar” case, and the target for Experiment 1 is shown in Table 8.
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Table 8. Target for Experiment 1.

Test
Number

Material
Grades

Structural
Features

Structure
Size/mm3

Forming
Time/min Densification/% Tensile

Strength/MPa
Yield

Strength/MPa
Elongation

after Break/%

1 GH4169 Dot matrix
structure 330 60 98.00 1100.00 750.00 25.00

2 GH4169 Shaped pipes 315 75 99.00 1100.00 800.00 25.00
3 GH4169 Impeller

structure 325 75 99.50 1000.00 700.00 23.00
4 GH4169 Common block 315 50 100.00 1000.00 750.00 15.00
5 GH4169 Honeycomb

structure 305 50 100.00 1050.00 750.00 25.00

When the target is similar to the cases in the case library, the AHP–WPSO model
searches for cases that meet the similarity threshold and match the target for the process
recommendation. The process solutions are shown in Table 9. Under the condition that
the similarity of all the recommended process solutions meets the threshold, the solution
of the case from the corresponding similar cases is extracted as the process solution for
the processing test, and the measured performance results after processing are shown in
Table 10.

Table 9. The process scheme recommended by the model in experiment 1.

Test
Number

Case
Number

Equipment
Name

Laser
Power/W

Scanning
Speed/mm/s

Scan
Spacing/µm

Powder Layer
Thickness/µm Scanning Method Similarity

1 Particle BLT-S210 150 900 60 40 Checkerboard shape 0.908
2 Particle BLT-S210 260 1300 110 20 Checkerboard shape 0.902
3 Particle BLT-S210 260 1300 110 20 Checkerboard shape 0.860
4 Particle BLT-S210 350 600 150 20 Checkerboard shape 0.861
5 Particle BLT-S210 290 1100 90 20 Checkerboard shape 0.908

Table 10. Performance results measured after processing tests using the recommended process
scheme in Experiment 1.

Test Number Densification/% Tensile
Strength/MPa

Yield
Strength/MPa

Elongation after
Break/% Accuracy Ac

#1 99.10 1085.35 766.34 25.90 99.67%
2 99.60 1109.85 819.14 24.60 99.60%
3 99.60 1109.85 819.14 24.60 100.0%
4 99.90 1040.18 777.74 17.90 99.98%
5 99.60 1082.46 784.80 24.90 99.80%

As shown in Figure 10, except for the recommended accuracy of test case No.3, which
is 100%, the recommended process accuracy of the remaining test cases is slightly lower
than 100%, but at a high level. By comparing this with the target in Table 8, it can be seen
that the tensile strength after the processing of the recommended process solution in case
No.1 is about 15 MPa lower than the target, the elongation after break after the processing
of the recommended process solution in No.2 is 0.4% lower than the target, the denseness
after the processing of the recommended process solution in No.4 is 0.1% lower than the
target, the denseness after the processing of the recommended process solution in No.5 is
0.4% lower than the target, and the elongation after break is 0.4% lower than the target.
The elongation is 0.1% lower than the target. The comparison results show that there
is an error in the recommendation results of the hybrid case reasoning/particle swarm
model for “basically similar” cases, but the error is controlled at a low level. Overall, the
average process recommendation accuracy of the hybrid case inference/particle swarm
model reaches 99.81% when there are cases in the case library that are similar to the target.
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Experiment 2: In order to ensure the authenticity and effectiveness of the experiment.
To ensure the real validity of the experiment, the targets for Experiment 2 were formed

by simulating the mechanical properties after extracting them from other papers [21,26,27],
for a total of five test cases, as shown in Table 11.

Table 11. Target for Experiment 2.

Test
Number

Material
Grades

Structural
Features

Structure
Size/mm3

Forming
Time/min Densification/% Tensile

Strength/MPa
Yield

Strength/MPa
Elongation

after Break/%

6 GH4169 Common block 1373.75 90 100.00 1279.00 927.90 18.40
7 GH4169 Common block 1373.75 90 100.00 979.30 671.10 31.72
8 GH4169 Common block 1373.75 90 100.00 1077.50 805.70 29.65
9 GH4169 Common block 1373.75 100 98.66 1084.80 820.20 17.60

10 GH4169 Common block 1373.75 150 99.50 1210.90 850.70 28.48

If there are no similar cases in the case library, the hybrid case reasoning/particle
swarm model generates process solutions through weighted particle swarm optimization
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and then recommends them. The process solutions recommended by the model are shown
in Table 12.

Table 12. The process scheme recommended by the model in experiment 2.

Test
Number

Case
Number

Equipment
Name

Laser
Power/W

Scanning
Speed/mm/s

Scan
Spacing/µm

Powder Layer
Thickness/µm Scanning Method Similarity

6 Particle BLT-S210 250 300 150 30 Checkerboard shape — —
7 Particle BLT-S210 150 420 60 30 Checkerboard shape — —
8 Particle BLT-S210 120 480 60 30 Checkerboard shape — —
9 Particle BLT-S210 120 370 60 30 Checkerboard shape — —

10 Particle BLT-S210 130 520 65 30 Checkerboard shape — —

Note: The weighted particle swarm model generates the process scheme, so there is no corresponding case number
and the similarity cannot be calculated.

As shown in Table 12 and Figure 11, it can be seen that the recommended accuracy
of the process of test cases No.7, No.8, No.9, and No.10 is at a high level, and only the
recommended accuracy of test case No. 6 is low compared to the target in Table 13. There
are differences from the targets in terms of densities, tensile strengths, yield strengths,
and post-break elongations in test case No.6. The tensile strengths and yield strengths
of the target are too high, which exceed the range of the weighted particle swarm model.
The post-break elongation of test case No.7 is 2.97% lower than the target, which may be
affected by the accuracy of the prediction model in the weighted particle swarm model;
test cases No.8 and No.9 have only a small difference between the densities and the target
after processing, and the recommended process solutions of test cases No.8 and No.9
can meet the target under the consideration of test errors. There is no case similar to the
target in the case library, and the average process recommendation accuracy of the case
inference/particle swarm hybrid model reaches 96.32%.

Table 13. Performance results measured after processing tests using the recommended process
scheme in Experiment 2.

Test Number Densification/% Tensile
Strength/MPa

Yield
Strength/MPa

Elongation after
Break/% Accuracy Ac

6 98.21 1101.56 829.00 11.92 84.62%
7 100.00 1227.00 872.63 28.75 97.66%
8 99.21 1212.99 854.92 29.11 99.35%
9 98.62 1236.43 859.93 29.42 99.99%

10 99.98 1220.16 866.24 28.55 100.00%

When applying the hybrid case reasoning/particle swarm model for selective laser
melting (SLM) process recommendations, our experimental tests and comparisons have
revealed the presence of certain levels of errors.

More specifically, by comparing the results, it is clear that the mixed case reason-
ing/particle swarm model exhibits a lower level of error in recommending solutions for
“basically similar” scenarios. Its error may appear in the testing process. However, these
errors are contained within a lower range. For instance, the densities, tensile strengths, yield
strengths, and elongation at break of the processed results for Test Case 6 show significant
deviations from the user’s requirements. This discrepancy may be attributed to excessively
high user demands for tensile and yield strengths, surpassing the optimization scope of the
weighted particle swarm model and leading to suboptimal outcomes. Test Case 7 shows an
elongation at break that is 2.97% lower than the user’s requirement, possibly influenced
by the precision of the predictive model within the weighted particle swarm model. In
contrast, Test Cases 8 and 9 exhibit minor discrepancies only in density compared to the
user requirements. Considering experimental errors, the recommended process schemes
for Test Cases 8 and 9 meet the user demands.
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5. Conclusions

This study introduces a novel SLM (selective laser melting) process recommendation
approach employing the AHP–WPSO (analytic hierarchy process–weighted particle swarm
optimization) model. The research aims to optimize four key process parameters in SLM
fabrication, including laser power, scanning speed, scanning spacing, and powder layer
thickness. The performance assessment criteria encompass compactness, tensile strength,
yield strength, and the post-fracture elongation of the fabricated components. The valida-
tion of the proposed approach is conducted through experiments, leading to the following
significant conclusions:

• The integration of the AHP–WPSO model effectively facilitates precise SLM pro-
cess solution recommendations, incorporating essential parameters such as tensile
strength, post-fracture elongation, and density. Despite minor variations observed in
specific scenarios, the model consistently demonstrates a high level of accuracy in its
recommendations, contributing to advancing process design methodologies.
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• Our experimental results validate the robustness of the AHP–WPSO model, exhibiting
an impressive accuracy rate of 99.81% in scenarios with analogous process instances.
Moreover, the model achieves a commendable accuracy rate of 96.32% in cases in
which similar instances are lacking, highlighting its adaptability and reliability.

It is worth noting that while the AHP–WPSO methodology minimizes reliance on
existing process knowledge, it possesses limitations in interpreting qualitative knowledge
and handling qualitative data. Furthermore, the model has yet to address the challenges of
complex parameter optimization, such as achieving a uniform residual stress distribution
and an even distribution of alloy elements. Additionally, the metallurgical behavior of
metals is not taken into consideration during the forming process. Future research efforts
could enhance the model’s capabilities by integrating rule-based reasoning and expert
inference methods, while also incorporating thermodynamic principles to establish met-
allurgical process models [28]. This approach can effectively tackle these challenges and
further enhance the efficacy of the process recommendation framework.

The proposed AHP–WPSO model offers a robust and effective solution for SLM pro-
cess recommendations, contributing significantly to the precision of process optimization
and the overall enhancement of process design outcomes.
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