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Abstract: This study aimed to optimize machining parameters to obtain better surface roughness and
remnant depth ratio values under dry turning of NiTi-shape memory alloy (SMA). During the turning
experiments, various machining parameters were used, including three different cutting speeds vc

(105, 144, and 200 m/min), three different feed rates f (0.05, 0.1, and 0.15 mm/rev), and three different
depths of cut ap (0.1, 0.15, and 0.2 mm). The effects of machining parameters in turning experiments
were investigated on the response surface methodology (RSM) with Box–Behnken design (BBD) using
the Design Expert 11; how the cutting parameters affect the surface quality is discussed in detail. In
this context, the cutting parameters were successfully optimized using a genetic algorithm (GA). The
optimized processing parameters are vc = 126 m/min, f = 0.11 mm/rev, ap = 0.14 mm, resulting in
surface roughness and remnant depth ratio values of 0.489 µm and 64.13%, respectively.

Keywords: RSM; surface roughness; remnant depth ratio; multi-objective optimization; genetic algorithm

1. Introduction

Nickel-Titanium (NiTi) shape memory alloy (SMA) is widely used in aerospace, au-
tomotive, medical, and other fields because of its excellent performance [1]. The shape
memory effect and superelasticity are popular features of NiTi SMA [2]. Certain types of
shape memory alloys exhibit unique behaviors that result from mechanical or thermal ac-
tions [3]. The clamping devices, medical guidewire, and aerospace are made based on their
properties [4–8]. The higher shape adaptability of these products needs a fine surface finish,
which raises the requirements for machining NiTi SMA. As a common way in traditional
processing, turning is also an important processing means of NiTi SMA. Efficient and green
machining of NiTi SMA has always been the goal of researchers.

The transformation between the martensite and austenite phases results in its shape
memory effect and superelasticity [9]. During machining, this material experiences a
solid-state phase transformation. However, the different characteristics of martensite and
austenite phases also bring difficulties to machining NiTi SMA, such as tool wear, poor
surface quality, work hardening, etc. [10–12]. Different optimization methods have been
applied to improve the machinability of NiTi SMA. Weinert et al. [13] applied different
cutting tools to study the turning and drilling processes of different Nitinol materials.
Through the analysis of tool wear, the optimal parameters are put forward, and a process
for turning NiTiNb pipe joints on this basis was proposed. Biermann et al. [14] proposed a
simulation algorithm to optimize tool inclination angle in the micro-milling process based
on the geometric analysis of meshing conditions of cutting edges. And an optimization
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strategy was also proposed in the drilling process: the cutting speed (vc) should be less than
30 m/min, and the feed is 5 µm when the tool diameter is 1 mm. Kuppuswamy et al. [15]
designed the Taguchi experiment to provide optimal cutting conditions for Nitinol micro-
milling to minimize cutting force and burr size. The order of influence on reducing the
cutting force and burr size is cutting speed (vc), feed (f ), and depth of cut (ap). And
when the cutting speed is 15 m/min, the cutting force is low, and the burr size decreases.
Kowalczyk [16] used the Taguchi method to turn precision and micro-mill NiTi SMA. The
Signal-to-Noise Ratio (S/N), ANOVA, and Monte Carlo method were used to optimize the
cutting parameters to minimize surface roughness (Ra) [17], cutting temperature (CT) [18],
and cutting force (CF) [19], respectively. Moreover, the Monte Carlo method was also used
to turn NiTi alloy to establish the surface roughness model [20]. Wang et al. [21] designed
the orthogonal experiment for milling Ni50.8Ti SMA and obtained the optimal cutting
parameters for the minimum work hardening. And the influence of cutting parameters
on surface roughness, microhardness, and strain hardening was analyzed by statistics [22].
The cutting speed has the greatest influence on surface roughness and strain hardening.
Kabil et al. [23] used genetic algorithm (GA) to optimize the cutting parameters for NiTiHf
high-temperature SMA to obtain maximum tool life, minimum energy consumption, and
maximum surface quality. Kaynak et al. [24] used three different conditions to compare
the tool wear and surface quality for turning NiTiHf high-temperature SMA; the condition
greatly affects the machinability.

Determining the optimized cutting parameters is important in enhancing production
efficiency and the overall service performance of products. Previous studies have primarily
concentrated on optimizing machining parameters related to cutting force, cutting temper-
ature, surface roughness, and work hardening. The optimized parameters are suggested,
but a detailed assessment of superelasticity and shape memory effect is rarely mentioned.
Because the unique properties of SMA are the main reason they are widely used, the
superelasticity and shape memory effect should be checked after machining. And the level
of their indicators is also one of the important factors in the quality of processing.

Upon analyzing the relevant literature on the prediction and optimization of NiTi SMA
machining processes, it is evident that the current trend leans towards the utilization of
orthogonal experiment, GA, and Monte Carlo method. The response surface methodology
(RSM) establishes regression equations in fewer experiments and accurately analyzes and
identifies key factors affecting process or product performance. And visualized results
help engineers and decision makers better understand the process or product performance
characteristics and make effective decisions.

Considering the above literature comprehensively, this paper presents a multi-objective
optimization method to obtain minimizing surface roughness and maximizing supere-
lasticity. The superelasticity can be measured by the remnant depth ratio (ηp) [25], so
the regression equations of surface roughness and remnant depth ratio are established
by the turning experiment of NiTi SMA based on RSM. The optimized parameters are
cutting speed (126 m/min), feed rate (0.11 mm/rev), and depth of cut (0.14 mm). The
influence of machining parameters on superelasticity is analyzed for the first time. The
optimized parameters based on GA are not only for the surface roughness, but also for the
superelasticity, which has never been studied. This study provides valuable insights into
the optimization of the turning process for NiTi SMA, which can enhance the accuracy and
efficiency of the manufacturing process and improve the quality of SMA products.

2. Experimental Section
2.1. Materials

The material was a Ni50.8Ti SMA solid cylindrical bar with a size of Φ80 × 8 mm. In
order to unify the variables, a 2.5-mm-wide feed slot was cut into the pipe for the engage
motion first, and the cutting length of each test was 15 mm. The Netzsch DSC3500 Sirius,
Selb, Germany. was used to obtain the phase transition temperature. The austenite finish
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temperature (Af) is −2 ◦C, so it is the austenitic phase at room temperature. The emissivity
of the sample was 0.21 [26].

The experiment was carried out on a CDS6132 lathe, Dalian, China and the spindle
speed is 1600 r/min. The Ni50.8Ti SMA solid cylindrical bar is fixed to the lathe by the
tailstock. Based on previous experiments [26–28], a VNMG160408-SM1105 PVD insert
with TiAlN coating was used for turning NiTi SMA. The cutting speed (vc), feed rate
(f ), and depth of cut (ap) are input variables. After the prediction models of Ra and ηp
are established, the optimal processing parameters were determined by GA, as shown
in Figure 1b. A new insert was used for each test to avoid the effect of tool wear. The
schematic of the experimental setup is shown in Figure 1a.
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Figure 1. The schematic of the experiment (a) experimental setup and (b) flow chart of genetic algorithm.

2.2. Measurements

The cutting temperature is measured by FORTIC 226, and the cutting temperature
of the group 1 test during machining is shown in Figure 2. The cutting temperature is
between 500 ◦C and 1000 ◦C in all the tests. It is much higher than the martensitic transition
temperature [29]. There is no martensitic transformation occurring during machining. The
surface roughness was examined by the TR200 mobile surface roughness meter, which is
produced by Beijing Cap High Technology Co., Ltd. (Beijing, China). Three measurements
obtained the average surface roughness (Ra).

The remnant depth ratio quantified the superelasticity of NiTi SMA [25]. The nano-
indentation mechanics test system can measure it. The HYSITRON TI980 (Bruker, Billerica,
MA, USA) nano-indentation mechanics test system measures the force-displacement curve.
A sample of 5 × 5 × 5 mm3 was cut from the samples by electrical discharge machining
(EDM) for the nano-indentation test. Because the indenter of the nano-indentation test
is very small, the indenter may press the peak or valley of surface, which will make
a difference in the results of the nano-indentation. Only the lower surface position of
each group of samples was selected, as shown in Figure 3. The remnant depth ratio of
the as-received one was 67.23%, which is higher than that of other metals because of
its superelasticity.
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2.3. Design with Response Surface Methodology

In order to obtain more information from the smaller number of experiments, the
response surface method based on Box–Behnken design (BBD) was adopted to design
the machining parameters optimization experiment. For the purpose of avoiding the
martensitic phase that occurred during turning [28], the higher cutting speed and lower
depth of cut and feed are adopted. Each group of factors takes three levels, as shown in
Table 1. There are 15 groups of experiments.

Table 1. The factors and levels of RSM based on BBD.

Factor Parameter Unit
Level

−1 0 1

A Cutting speed m/min 105 144 200
B Feed mm/rev 0.05 0.1 0.15
C Depth of cut mm 0.1 0.15 0.2
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Based on polynomial regression analysis and the relationship between input variables
and output response, the mathematical relation defined by RSM can be calculated by the
following:

y(x) = b0 +
p

∑
i=1

bixi +
p

∑
i=1

biix2
i +

p

∑
i=1

p

∑
j=1,i<j

bijxixj (1)

where y(x) is the output variable, x is the input variables. b0 is the fixed term. bi, bii, and
bij are the coefficient of linear, quadratic, and cross-product terms, respectively.

The cutting speed, feed rate, and depth of cut are input variables. Since surface rough-
ness is an important factor of surface quality and the remnant depth ratio can represent
superelasticity, they are the output variables.

3. Results and Discussion
3.1. Prediction Model

The roughness and remnant depth ratio of the machined surface for each group are
shown in Table 2. The surface roughness values are between 0.323 µm and 0.736 µm. The
lower surface roughness can be obtained at high-speed cutting compared to low-speed
cutting. On one hand, the low cutting speed is easy to produce a built-up edge (BUE),
which increases friction and instability [30]. On the other hand, there is no martensitic
phase transition occurring during the cutting process, and due to the high ductility of the
martensite phase, the austenite phase is easier to cut [31]. The remnant depth ratio values
range from 53.87% to 64.18%. The remnant depth ratio of the machined surface is less than
the as-received one. This is because the material undergoes large plastic deformation and
produces more grain defects, which reduces the superelastic properties of the material and
makes the austenite phase tend to be mechanically stabilized [32,33].

Table 2. Box–Behnken design and results.

No.
Cutting Parameter Ra

(µm)
ηp
(%)Cutting Speed (m/min) Feed (mm/rev) Depth of Cut (mm)

1 144 0.05 0.1 0.498 53.87
2 105 0.1 0.2 0.532 64.18
3 144 0.1 0.15 0.476 61.25
4 144 0.1 0.15 0.466 61.24
5 200 0.05 0.15 0.368 56.22
6 105 0.15 0.15 0.610 58.48
7 144 0.15 0.2 0.645 58.16
8 105 0.05 0.15 0.323 60.15
9 200 0.15 0.15 0.662 60.73

10 105 0.1 0.1 0.473 58.49
11 200 0.1 0.1 0.629 58.61
12 144 0.15 0.1 0.736 57.05
13 200 0.1 0.2 0.425 59.27
14 144 0.05 0.2 0.327 58.48
15 144 0.1 0.15 0.462 60.96

Based on the results and Equation (2), the prediction models of the second-order
regression equation with the Ra and ηp as the response variables are:

Ra = 0.360 + 0.00508vc − 0.84 f − 4.32ap − 0.000003v2
c + 11.90 f 2 + 21.50ap

2

+0.0007vc f − 0.02630vcap + 8 f ap
(2)

ηp = 30.21 − 0.0621vc + 194.2 f + 321.7ap + 0.000199v2
c − 1101 f 2 − 603ap

2

+0.618vc f − 0.503vcap − 305 f ap
(3)
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Equation (3) is the prediction model of Ra. The S of the prediction model is 0.02088,
and it has a better prediction response effect from ANOVA and the calculation of the coded
coefficients in Table 3. When the p-value of the factor within the 95% confidence level is less
than 0.05, the effect of this factor on the response is more significant [34,35]. The significant
model terms are B, C, B2, C2, and AC, in which the p-value is less than 0.05. From the
coefficient, the feed has the greatest effect on the surface roughness, followed by the depth
of cut and cutting speed. The influence of processing parameters on Ra in the quadratic
effect is as follows: ap

2 > f 2 > vc
2. Among the processing parameters with interaction effects,

vc and ap have the largest effect on surface roughness, followed by f and ap, and vc and f
have a small effect on surface roughness, which can be ignored.

Table 3. The ANOVA and coded coefficients for the prediction model of the surface roughness.

Source F Value p Value Remarks Coefficient

Model 55.42 <0.0001 Significant
A 6.11 0.056 0.0182
B 370.42 <0.0001 Significant 0.1421
C 47.46 0.001 Significant −0.0508

A2 0.41 0.548 −0.007
B2 7.49 0.041 Significant 0.029
C2 24.45 0.004 Significant 0.053
AB 0.03 0.873 0.001
AC 39.64 0.001 Significant −0.065
BC 3.67 0.144 0.020

Equation (4) is the prediction model of ηp, and the ANOVA and the calculation of
the coded coefficients in Table 4. As can be seen from the table, except for the quadratic
term of cutting speed, other factors have a significant impact on the remnant depth ratio.
In general, all factors have an impact on the dependent variable. The depth of cut has
the greatest effect on the remnant depth ratio, followed by cutting speed and feed. In the
quadratic effect, f 2 has the greatest influence on ηp, and vc

2 has the least influence. The
influence of relevant processing parameters in interaction effect on the remnant depth ratio
from large to small is as follows: vc f > vcap > fap.

Table 4. The ANOVA and coded coefficients for the prediction model of the remnant depth ratio.

Source F Value p Value Remarks Coefficient

Model 35.14 0.001 Significant
A 6.11 0.007 Significant −0.809
B 370.42 0.011 Significant 0.712
C 47.46 <0.0001 Significant 1.509

A2 0.41 0.122 0.496
B2 7.49 <0.0001 Significant −2.751
C2 24.45 0.002 Significant −1.509
AB 0.03 0.002 Significant 1.545
AC 39.64 0.004 Significant −1.258
BC 3.67 0.019 Significant −0.875

3.2. Effect of Machining Parameters on Surface Roughness

Figure 4 shows the response surface plot of surface roughness with respect to the
cutting parameters. It can be seen from Figure 4a that vc and f have little influence on surface
roughness. At the same time, when the cutting speed is constant, the surface roughness
increases significantly with the increase in the feed. The results are the same with the one
at a lower cutting speed [36]. And the influence of feed on the surface roughness is greater
at a higher cutting speed.
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When the feed is constant, the surface roughness increases slowly with the increased
cutting speed. At high temperatures, the chipping or tribo-chemical wear at the tool-
workpiece interface increases the flank wear and increases the roughness [37].The effect of
cutting speed on surface roughness is not different with different feeds. The interaction
effect of vc and ap greatly influences the surface roughness, as shown in Figure 4b. When
the cutting speed is 100 m/min, the surface roughness decreases slightly and then increases
with the increase in depth of cut. With the increase in cutting speed, the surface roughness
gradually decreases with the increased depth of cut. When the depth of cut is 0.1 mm,
the surface roughness increases with the increased cutting speed. When the depth of cut
is 0.2 mm, the surface roughness decreases gradually with the increased cutting speed.
Figure 4c shows the effect of f and ap on surface roughness. When the feed is constant, the
surface roughness decreases first and then increases with the increased depth of cut. And
the surface roughness is greatly affected by the depth of cut when the feed is low. When the
depth of cut is constant, the surface roughness increases with the increased feed, and the
variation trend of surface roughness is the same at different depths of cut. Generally, the
feed has the greatest effect on the surface roughness within the range of this experiment. A
larger cutting speed, smaller feed, and depth of cut can obtain a lower surface roughness.

The half-normal probability plot presented in Figure 5a indicates that all effect factors
and interactions demonstrate significant absolute values in relation to the given grade [38,39].
This finding suggests that the selected variables have a noteworthy impact on the results
observed and warrants further investigation to better understand their influence. Schematic
representations of optimum conditions are given in Figure 5b. For achieving the best surface
roughness of 0.5493 µm, the recommended cutting speed is 167 mm/rev, feed rate is 0.132
mm/rev, and depth of cut is 0.13 mm.
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3.3. Effect of Machining Parameters on Remnant Depth Ratio

Figure 6 shows the response surface plot of the machining parameters to the remnant
depth ratio. Figure 6a presents the remnant depth ratio with respect to cutting speed and
feed. When the cutting speed is constant, the remnant depth ratio increases rapidly to
the highest point with the increased feed and then decreases slowly. And the influence
is greater when the cutting speed is high. When the feed is constant, the remnant depth
ratio decreases with the increased cutting speed. The results are the same with that in
the lower cutting speed [28]. Because of elastic energy relaxation and heterogeneous
microstructure formation, the severe deformed microstructure at high speed reduced the
superelasticity [36].
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The decreasing trend is larger when the feed is small. It can be seen from Figure 6b
that when the cutting speed is lower, the remnant depth ratio increases with the increased
depth of cut. When the cutting speed is higher, the remnant depth ratio decreases with the
increased depth of cut. When the depth of cut is small, the remnant depth ratio increases
slowly with the increase in cutting speed. When the depth of cut is big, the remnant depth
ratio decreases with the increased cutting speed. Figure 6c presents the response surface
plot of the remnant depth ratio with respect to the feed and depth of cut. When the feed
is 0.05 mm, the remnant depth ratio gradually increases with the increased depth of cut.
With the feed increase, the remnant depth ratio first increased and then decreased with
the increased depth of cut. When the depth of cut is constant, the remnant depth ratio
increases first and then decreases with the increase in the feed. In total, the linear effect and
the interaction effect have a greater impact on the remnant depth ratio.

The half-normal probability plot shown in Figure 7a indicates that all effect factors and
interactions exhibit significant absolute values with respect to the given grade. This result
suggests that the chosen variables have a substantial impact on the observed outcomes,
thus necessitating further investigation to gain a deeper understanding of their influence.
Schematic representations of optimum conditions are given in Figure 7b. To achieve a
remnant depth ratio of 61.21, it is recommended to use a cutting speed of 167 mm/rev, a
feed rate of 0.106 mm/rev, and a depth of cut of 0.1727 mm.

3.4. Multi-Objective Optimization Using Genetic Algorithm

The smaller the surface roughness, the better the surface quality. And the bigger the
remnant depth ratio, the better the performance of the superelasticity. Taking the minimum
surface roughness and the maximum remnant depth ratio as the objectives, multi-objective
optimization is carried out for the machining of Ni50.8Ti SMA. The optimal processing pa-
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rameters are obtained based on the genetic algorithm. The optimization objective function
based on the evaluation function method can be represented as the following:

M
(
vc, f , ap

)
=

2

∑
i=1

λi Mi
(
vc, f , ap

)
= λRF1 + ληpF2 (i = 1, 2) (4)

where λR and ληp are the weighting coefficients of the surface roughness and the remnant
depth ratio in the objective function, respectively. Since the surface roughness values in
this parameter range are between 0.323 µm and 0.736 µm, the surface roughness has less
effect on the objective function compared with the remnant depth ratio. λR is taken to be
0.3 and ληp to be 0.7.
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The flow chart of the genetic algorithm is shown in Figure 1b. After the optimized
objectives and constraints are determined, the parameters of the genetic algorithm are set
to generate the initial population. And then the fitness of individuals in the population
is calculated to judge whether the iteration times are reached. If the ending condition is
satisfied, the optimal solution is output. If the ending condition is not satisfied, the iteration
continues, and a new population is generated through selection, intersection, and mutation,
and the optimal solution is finally obtained.

According to the above process and Equation (4), the optimized model is:

M
(
vc, f , ap

)
= 0.3Ra

(
vc, f , ap

)
− 0.7ηp

(
vc, f , ap

)
(5)

And the constraint equation is:
100 m/min ≤ vc ≤ 200 m/min
0.05 mm/r ≤ f ≤ 0.15 mm/r

0.1 mm ≤ ap ≤ 0.2 mm
0 ≤ ηp ≤ 67.23
0 ≤ Ra ≤ 0.8

(6)

After several iterations, the fitness function tends to be gentle and reaches the con-
vergence state, and the optimal solution can be obtained as follows: vc = 126 m/min,
f = 0.11 mm/r, ap = 0.14 mm. Meanwhile, the surface roughness and remnant depth ratio
reach the optimal state, which is 0.489 µm and 64.13%, respectively. From Table 2, the
minimum value obtained by the experiment is 33.9%, which is smaller than that of the
optimal solution. And the remnant depth ratio of the optimal solution is close to the
maximum value of the experimental result.
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4. Conclusions

In this study, RSM designed experiments to test the high-speed turning of NiTi SMA.
The genetic algorithm was used to obtain the best machining parameters with multiple
objectives. Based on the results, the following conclusions can be drawn:

1. The prediction models of both surface roughness and the remnant depth ratio are
built, and the linear, quadratic, and cross-product terms all have a significant influence
on the response variables.

2. ANOVA reveals that the impact of the feed on the surface roughness is most apparent,
followed by the cutting speed and the depth of the cut. The remnant depth ratio also
takes into account the depth of the cut, feed, and the cutting speed.

3. Based on the genetic algorithm, taking the minimum surface roughness and the maxi-
mum remnant depth ratio as the objectives, the multi-objective optimized solution
can be obtained as follows: vc = 126 m/min, f = 0.11 mm/r, ap = 0.14 mm and the Ra
and remnant depth ratio reach was 0.489 µm and 64.13%, respectively.
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