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Abstract: Mo-Re pre-alloyed powders are crucial raw materials in fabricating Mo-Re alloys, and their
properties can significantly impact the properties of the resulting alloys. The powders are usually
produced by the co-reduction of a mixture of Mo and Re oxides. However, it remains unclear if
the overall characteristics of the produced Mo-Re powders rely on the different combinations of
the Mo and Re oxide precursors. Therefore, in this work, a comparative study is conducted on the
co-reduction processes of different Mo oxides together with NH4ReO4, along with its influence on the
size distribution and phase composition of the resulting Mo-10Re pre-alloyed powders. The results
show that MoO3 is more promising than MoO2 as a precursor material. The powders fabricated using
MoO3, when compared to MoO2, have a much more uniform size distribution, with a primary particle
size ranging from 0.5–4 µm. In addition, it is also beneficial to achieve atomic-scale homogeneous
mixing with Mo and Re elements and the formation of a solely Mo(Re) solid solution if MoO3 is used
as a precursor oxide. In contrast, such desirable features were not identified when using the MoO2

route. The reason for this discrepancy may relate to whether Mo-O-Re metallurgical bonding has
formed during the co-reduction process.

Keywords: co-reduction; Mo-10Re alloys; pre-alloyed powders; alloying mechanism

1. Introduction

Refractory metal molybdenum possesses several characteristics, such as a high melting
point, excellent mechanical properties at elevated temperatures, and impressive thermal
conductivity, which make it highly suitable for applications in extremely harsh environ-
ments such as high-temperature, corrosive, and heavily irradiated conditions. Additionally,
molybdenum demonstrates exceptional resistance to radiation-induced swelling and good
compatibility with liquid alkali metals. Consequently, it emerges as a promising candidate
for structural materials in advanced nuclear reactors, including the Space fast neutron
reactor and fusion reactors [1–5]. However, the inherent brittleness at room temperature,
as well as poor workability and welding performance, restrict the wide application of
molybdenum. Nevertheless, when molybdenum is alloyed with rhenium (Re), it signif-
icantly enhances the ductility and tensile strength of the base metal due to the so-called
“rhenium effect”. This improvement in mechanical properties persists even when the
material is subjected to elevated temperatures that are higher than the recrystallization
temperature [6–8]. Consequently, the former Soviet Union considered applying it to the
preparation of cladding materials for the Bouk reactor [9]. In recent years, the Prometheus
space reactor, the Idaho catalog gas-cooled reactor, and the RAPID-L fast reactor have
adopted or are planning to adopt Mo-47.5Re as the cladding material and cooling circuit
material for the core [10–12].
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Mo-Re alloy is a solid-solution alloy that exhibits enhanced plasticity and workability
due to the “rhenium effect.” Extensive research has been conducted to investigate the
underlying mechanisms, summarized as follows: (1) The addition of rhenium to molyb-
denum results in the formation of an alloy that undergoes deformation not only through
dislocations but also through twinning at room temperature. (2) The inclusion of rhenium
induces a “solid-solution softening” effect, which reduces the hindrance to dislocation slip
within the alloy. (3) Rhenium also increases the solid solubility of oxygen in the alloy and
facilitates the formation of specific oxides. This overcomes the challenge of oxide segrega-
tion at the grain boundaries observed in pure Mo alloys, enhances grain boundary strength,
and improves room temperature plasticity [13–15]. However, to fully utilize the merits
of Mo-Re alloys, it is crucial to achieve a sufficient solid solution between rhenium and
the matrix molybdenum. The phase diagram of the Mo-Re alloy (Figure 1) [16], illustrates
that rhenium has a maximum solubility of 39 wt.% in molybdenum at room temperature.
Above this solubility limit, the intermediate σ- and χ-phase phases form in the alloys,
significantly reducing the mechanical properties of the material [17]. As a result, controlling
the precipitation of these intermediate phases during material preparation, deformation
processes, and material service becomes essential in fully harnessing the desirable merits
of Mo-Re alloys [18,19].
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Currently, Mo-Re alloys in the industry are prepared using powder metallurgy tech-
niques. This involves the mixing of Mo powder and Re powder, followed by pressing,
sintering, and deformation processes to obtain the final Mo-Re products. During these
procedures, the alloying of Mo and Re elements primarily occurs through the thermal
diffusion of powder particles during sintering. However, the density of molybdenum
powder and rhenium powder differs significantly. Moreover, commercial molybdenum
powder and rhenium powder often possess distinct particle size distributions and powder
morphologies due to the variations in their reduction processes. Consequently, achieving
perfect homogeneity through conventional physical mixing becomes a big challenge in the
sintering process [20–22]. On the other hand, the micro-segregation of Re in the powder
stage may preserve and make it difficult to homogenize during the subsequent alloying
processes, such as sintering and heat treatment [22]. This, in turn, can lead to the formation
of undesired σ and χ phases, ultimately deteriorating the material’s properties.

In order to address the challenge of achieving a uniform distribution of Mo and Re
elements in traditional mixing processes, researchers have explored alternative methods
to improve the performance of Mo-Re alloys. One approach involves the preparation
of pre-alloyed powders by co-reduction, which involves mixing the oxides or precursor
materials of different components together and allowing them to undergo alloying during
the reduction process. For example, Lan [23] and Cheetham [24] employed ammonium
tungstate and ammonium molybdate solutions as their raw materials, mixing them in a
liquid–liquid phase, which was then spray-dried and calcined to obtain a highly uniform
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mixture of MoO3-WO3 hybrid powder. This powder was then co-reduced to prepare a
W-Mo pre-alloyed powder. Similar to W-Mo pre-alloyed powder, Małgorzata Osadnik [25]
added liquid NH4ReO4 to Mo powders to improve the uniformity of the precursor mixture.
A Re-coated Mo composite powder was obtained by co-reducing it at 900 ◦C. Liu [26] com-
pared the sintering properties of Mo-3Re alloy powders prepared by adding an ammonium
perrhenate solution and Re powder to Mo powder, respectively. After the co-reduction, they
found that the use of an ammonium perrhenate solution is more conducive to improving
the performance of a Mo-3Re alloy. It is well known that there are several types of oxide
materials (such as MoO3, MoO2, Mo, ReO2, NH4ReO4, etc.) that can be utilized for the
co-reduction of Mo and Re oxides. However, Currently, industry research has primarily
focused on improving the uniformity of mixing between Mo and Re oxide precursors. It
remains unclear if the overall characteristics of the produced Mo-Re powders depend on
the different combinations of the Mo and Re oxide precursors. Consequently, challenges
arise in selecting co-reducing oxide raw materials, determining suitable mixing methods,
and regulating co-reduction process parameters. Therefore, in this work, MoO3 and MoO2
are solid–solid mixed with NH4ReO4 individually and subjected to hydrogen co-reduction
at different temperatures. A comparative study is conducted on the co-reduction processes
of different Mo oxides, MoO2, or MoO3 together with NH4ReO4 and their influence on the
size distribution and phase composition of the resulting Mo-10Re pre-alloyed powders. The
insights gained from this research into the alloying mechanism could also offer guidance
for optimizing the co-reduction process of other pre-alloyed powders, such as Mo-W and
Mo-Ni alloys.

2. Materials and Methods
2.1. Raw Materials

The MoO3, MoO2, and NH4ReO4 powders used in this work were all provided by
Jinduicheng Molybdenum Industry Co., Ltd., Xi’an, China. MoO3 had an F.s.s.s particle
size of 5.2 µm in an agglomerated state and a purity of ≥99.95%. MoO2 had an F.s.s.s
particle size of 3.8 µm and a purity of ≥99.95%, which was prepared by the continuous
boat reduction of the selected MoO3 in a four-tube furnace at a temperature gradient of
300 ◦C/350 ◦C/400 ◦C/450 ◦C/550 ◦C. The NH4ReO4 was sieved by −80 mesh, with a
purity of ≥99.99%. The characteristics of the various raw materials are shown in Table 1.

Table 1. Characteristics of the raw materials used in this study.

Powder Purity F.s.s.s Size, µm Bulk Density, g/cm3

MoO3 ≥99.95% 5.2 1.42
MoO2 ≥99.95% 3.8 0.85

NH4ReO4 ≥99.99% ≥50 1.12
The particle size of NH4ReO4 powder is too large to be measured by a Fisher sub-sieve sizer.

2.2. Methods

The selected MoO3 and MoO2 were ball milled with NH4ReO4 powders according
to a metal Mo:Re ratio of 9:1 in those oxides. The milling time was 4 h (with ball) to a
powder-to-weight ratio of 1:1, and the rolling speed was 30 r/min. To avoid contamination,
the ball used for ball milling was a molybdenum ball with a diameter of 10 mm. The Mo-
10Re pre-alloyed powder was prepared by using a two-stage reduction of the ball-milled
mixtures in a single-tube reduction furnace. The first stage of reduction is the same as
the MoO2 reduction process and is carried out according to a temperature gradient of
300 ◦C/350 ◦C/400 ◦C/450 ◦C/550 ◦C. For every 1 h of reduction at those temperatures,
the material was taken out and characterized before the reduction at the next temperature.
The hydrogen flow for first-stage reduction was 4 m3/min. After the first stage of reduction,
the Mo-Re pre-alloyed powder was prepared by a subsequent second-stage reduction at
1000 ◦C for 4 h, and the hydrogen flow rate for that reduction was 6 m3/min. The flow
chart and reduction cycle are shown in Figure 2.
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2.3. Testing and Microstructure Characterization

The following instruments were used:
AutoChem II Automatic Chemisorption analyzer (TPR), Micromeritics, Chicago, USA;

Miniflex600 X-ray diffractometer (XRD), Rigaku, Japan; Gemini 500 Scanning electron
microscope (SEM), ZEISS, Oberkochen, Germany; FEI Titan3 Themis G2 scanning transmis-
sion electron microscope (TEM), FEI, Amsterdam, The Netherlands; Q600 Synchronous
Thermal Analysis (DSC/TG), TA, Houston, TX, USA; WL-209 Fisher Sub-sieve Sizer, Dan-
dong Aode Co., Ltd., Dandong, China; Single Tube Reduction Furnace, Xi’an Chenghang
Co., Ltd., Xi’an, China.

Analytical Methods:
TPR test: The temperature range of the TPR test is 100–900 ◦C with a heating rate of

10 ◦C/min. The atmosphere of TPR is 90%Ar + 10%H2 mixed gas with a gas flow rate
of 30.3 cm3/min. Degassing treatment was conducted at 100 ◦C for 15 min before the
programmed temperature rise to eliminate the influence of moisture on the TPR tests; the
weight of the sample test was 65.5 mg.

XRD detection: The light tube type was a Co target, ceramic X light tube. λ = 0.17889 nm,
the scan range was 10–90 degrees, and the scanning speed was 5 degrees/min.

STD detection: The gas atmosphere was H2 with a flow rate of 40 mL/min during the
test. The temperature range was 25 ◦C–500 ◦C, and the heating rate was 10 ◦C/min. The
mass of the sample test was 31.5060 mg.

The parameters of SEM: The electron acceleration voltage was 20.0 KV, the working
distance was 15 mm, and the magnification was 200–15,000 times.

The parameters of TEM: A high-angle annular dark field (HAADF) mode was em-
ployed to examine the powder morphology and elemental distribution. Prior to the mi-
crostructural examinations by STEM, the powders were first suspended in ethanol under
ultrasonic vibration for 10~20 min, followed by transferring a few droplets (taken from the
upper part of the suspension solution) to a 3 mm disc sample holder made of a copper grid
and then drying the sample holder under an infrared lamp. When working, the electron
acceleration voltage was 200 kV, and the magnification was 20,000~5,000,000 times.

3. Results
3.1. Powder Properties and Phase Composition

Figure 4 shows the SEM characterization of the mixed oxide powders after co-reduction.
It can be seen from Figure 4a that the mixture using MoO2 as the raw material after co-
reduction at 550 ◦C does not show significant changes in terms of morphology when
compared to the raw material (as shown in Figure 3d). The particle still shows a sheet
morphology. Nevertheless, a large number of dispersed, small particles appear on the
surface of the MoO2 particles (as indicated by the arrows in Figure 4a). This may be related
to the hydrogen reduction of NH4ReO4. The morphology of the powder after the second
reduction at 1000 ◦C is shown in Figure 4b,c. The powders consist of mainly primary
particles, some of which have a size of less than 1 µm and exhibit certain agglomeration.
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Additionally, there are solid particles with diameters ranging from approximately 3 µm to
5 µm.
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mixture after the first stage of reduction at 550 ◦C; (b,c) MoO2 + NH4ReO4 mixture after the second
stage of reduction at 1000 ◦C; (d) MoO3 + NH4ReO4 mixture after the first stage of reduction at
550 ◦C; (e,f) MoO3 + NH4ReO4 mixture after the second stage of reduction at 1000 ◦C.

After the first stage of reduction, the particles of the mixture using MoO3 as the
precursor are in the shape of long strips, and the particle size ranges from 1~3 µm (as
shown in Figure 4d), which is only half that of the MoO2 raw material particles. It is noted
that the MoO2 used in this test was prepared from MoO3 powder using the same first-stage
reduction process. However, after being mixed with NH4ReO4 powder, the particle size
of the powder obtained was significantly refined after the same reduction process, which
shows that the addition of NH4ReO4 inhibited the growth of powder particles during the
first-stage reduction process of MoO3. After the second stage of reduction at 1000 ◦C, the
morphology of the powder can be seen in Figure 4e,f. When compared to the second stage
of reduction of the MoO2 + NH4ReO4 mixture, the primary particles of the powder are
finer and more uniform; most of the particles in the powders are below 1 µm.

The EDS mapping of the powder after the first-stage reduction at 550 ◦C is shown
in Figure 5. In the powder co-reduced by the MoO3+ NH4ReO4 mixture, the distribution
of Re and Mo elements is relatively uniform, and there is no segregation of Re elements.
On the contrary, when MoO2 was used, there was some Re element aggregation (shown
as arrows in Figure 5b) in the powder produced by the same reduction process. The Re
agglomeration area can be observed under high magnification in Figure 5c and the EDS
mapping. It was found that Re was attached to the interlayer of MoO2, with particles of
about 0.5~0.8 µm in size. The oxygen content in the Re enrichment area is relatively low.
The above results show that under the same first-stage reduction process, using MoO3 as
raw material is more conducive to the uniform distribution of Re in the powder than MoO2.
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Figure 6 illustrates the XRD characterization and EDS mapping of the two powders
after the second-stage reduction at 1000 ◦C. In Figure 6b,d, the distribution of Mo and Re
elements indicates the presence of microsegregations in terms of the Re in the pre-alloyed
powder prepared using MoO2 as the precursor. However, when MoO3 is used as the
precursor, the distribution of Re appears more homogeneous. Figure 6c reveals that only
molybdenum diffraction peaks are observed in the XRD pattern of the pre-alloyed powder
prepared with MoO3 as the precursor. This suggests that Re exists primarily in the form
of a Mo (Re) solid solution within this powder. Conversely, in the XRD pattern of the
pre-alloyed powder using MoO2 as the precursor under the same reduction process, metal
Re peaks and χ phase (Mo23Re77) diffraction peaks are observed in addition to the Mo
peaks. This indicates that the Re is not completely dissolved in Mo, and the alloying of Mo
and Re in the powder is insufficient. Although the presence of the Re-enriched phase in
the pre-alloyed powder can be mitigated by employing higher sintering temperatures and
longer sintering times in subsequent processes, it may still pose challenges to the overall
sintering process and the performance of the alloy.
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after the second stage of reduction.

3.2. Alloying Mechanism and Phase Evolution

In order to compare the co-reduction process of the two mixed oxides used in this
experiment, namely MoO2 and MoO3, temperature-programmed reduction (TPR) tests
were conducted in a gas mixture of 90% Ar2 and 10% H2. The results are depicted in
Figure 7. The horizontal axis represents the temperature, and the vertical axis represents
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the detected TCD signal, which is correlated with the H2 content in the gas after the reaction.
Upon analyzing the H2-TPR curves, it is evident that the discrepancy between the two
powders mainly lies at a temperature below 600 ◦C. When MoO2 was employed as the
raw material, two reaction peaks appeared at 265 ◦C and 355 ◦C, respectively. On the
other hand, when MoO3 was used, a broad reaction peak appeared at 290 ◦C. According to
the reaction principles governing MoOx hydrogen reduction [27–29], it is improbable for
MoO3 and MoO2 to undergo hydrogen reaction conditions at temperatures below 360 ◦C.
Therefore, the corresponding reaction peaks below 360 ◦C can be attributed to the reduction
reaction of NH4ReO4 with H2. When MoO2 serves as the raw material, the two reaction
peaks at 265 ◦C and 355 ◦C likely correspond to the reduction of NH4ReO4 to ReOx and the
subsequent reduction of ReOx to Re metal, respectively. Conversely, when MoO3 is used,
the reaction peak becomes wider, and the number of peaks decreases. This suggests that the
hydrogen reduction process of NH4ReO4 may be influenced by MoO3, indicating a strong
interaction between Mo-O-Re during the hydrogen reduction process. Furthermore, in
both curves, the reaction peak appearing at 577 ◦C corresponds to the temperature at which
MoO3 is reduced to MoO2, and the reaction peak at 884 ◦C corresponds to the temperature
at which MoO2 is reduced to Mo by hydrogen.
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Figure 7. H2-TPR profiles of MoO2 + NH4ReO4 and MoO3 + NH4ReO4.

XRD patterns of the powder reduced by the MoO2 + NH4ReO4 mixture at 25~1000 ◦C
are shown in Figure 8. The NH4ReO4 + MoO2 mixed powder contains a small amount
of Mo4O11, which may originate from the insufficient reduction of MoO3 in the MoO2
preparation process. This type of oxide will be gradually reduced to MoO2 again in the H2
atmosphere. From the temperature-dependent transformation of the phase containing Re in
Figure 8, it is evident that, after reduction at 300 ◦C for 1 h, the diffraction peak of NH4ReO4
in the powder decreases. This indicates that NH4ReO4 begins to react with hydrogen gas
at this temperature. After reduction at 350 ◦C for 1 h, the diffraction peak of NH4ReO4
disappeared, but the diffraction peak of the Re-related phase did not appear. This may be
related to the partial overlap of the MoO2 peak or the incomplete crystallization of reduced
Re-containing particles. As the reduction temperature further increases to 400 ◦C, the metal
Re peak gradually appears. After reduction at 550 ◦C, the metal Re peak becomes clear
in the diffraction peaks. After reduction at 1000 ◦C for 4 h, in addition to the metal Re
diffraction peak, the Mo23Re77 diffraction peak also appears in the powder.
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The XRD diffraction of the MoO3 + NH4ReO4 mixture after co-reduction at different
temperatures is shown in Figure 9. Similar to the results in Figure 8, the diffraction
peak of NH4ReO4 gradually disappears between 300 ◦C and 350 ◦C. On the contrary,
the disappearance of the diffraction peak of NH4ReO4 does not introduce a Re-related
phase in the temperature range of 400–1000 ◦C. The reason for this phenomenon may be
the superposition of the main peak of a Re-containing oxide with the diffraction peak of
MoO3 or MoO2. Moreover, it may be related to the solid solution of ReOx in the lattice
of MoOx, which was also confirmed by the following TEM characterization. From the
temperature-dependent variation in the diffraction peak of the molybdenum-containing
phase in Figure 9, a diffraction peak of MoO2 appears at 400 ◦C. After the first stage of
reduction at 550 ◦C, the MoO2 content in the powder increases, but there is still a large
amount of MoO3 in the powders. When using the same process to reduce MoO3, the
powders were almost completely reduced to MoO2. This indicates that the addition of
NH4ReO4 has a certain delaying effect on the reduction of MoO3. After reduction at
1000 ◦C, there is only a Mo peak in the powder XRD analysis, and MoOX totally transforms
into metallic Mo.
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In order to determine the existing form of Re in the reduction process, spherical
aberration TEM was used to characterize the MoO3 + NH4ReO4 mixed powder after
hydrogen reduction at 450 ◦C, as shown in Figure 10. Figure 10a shows that the particle
morphology of the powder monomer still retains the irregular particle morphology of
MoO3. There are some finer particles about to be separated with a particle size less than
1 µm (as indicated by the arrow in Figure 10a). The EDS mapping results show that the
distribution of Re in single particle is uniform, and there is no obvious aggregation in
the micro-region. The atomic image characterization of the B and C regions are shown
in Figure 10b,c, respectively. The FFT image and calibration results show that the phase
structure in region C is similar to monoclinic-structured MoO2, whereas the same in
region B looks like orthogonal-structured MoO3. This suggests that MoO3 is still the main
component in the powder particles and that some MoO2 particles are reduced, which is
consistent with the XRD results. Re is dissolved in the crystal lattice of MoO3 or MoO2,
showing a uniform distribution.

After reduction at 1000 ◦C, the powder particle size observed by TEM was about
0.6 µm, as shown in Figure 11a. The EDS mapping results show that the Re is uniformly
distributed in the molybdenum particles. HADFF atomic image observation was performed
on the thin region of region b, as shown in Figure 11b, and FFT conversion and phase
calibration were performed on it, which is close to the BCC-structured Mo phase. Therefore,
it can be further confirmed that Re exists in the Mo matrix as a solid solution after reduction
at 1000 ◦C, which is consistent with the XRD results.
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Figure 10. TEM analyses of MoO3 + NH4ReO4 powder reduction at 450 ◦C. (a) EDX mapping of the
particle; (b) atomic image of selected area b; (c) atomic image of selected area c.
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Figure 11. TEM analyses of MoO3 + NH4ReO4 powder reduction at 1000 ◦C. (a) EDX mapping of the
particle; (b) atomic image of select area b.

The TEM characteristics of the MoO2 + NH4ReO4 mixed powder after hydrogen
reduction at 450 ◦C are shown in Figure 12. The results show that the powder monomer
particles presented as layered shapes, with a particle size of about 4 µm. Unlike the results
in Figure 10a, the Re is not uniformly distributed within the powder particles but is, rather,
segregated on the surface of the particles. HADFF atomic imaging was used to characterize
area b and area c in terms of the particles, and the results are shown in Figure 12b,c,
respectively. After FFT conversion and calibration, it was found that the phase in the b
region of Figure 12b is like monoclinic-structured MoO2, whereas the phase in the c region
is similar to HCP-structured Re. This result implies that after the reduction at 450 ◦C, the
NH4ReO4 in the powder was reduced to Re. The reduced Re is concentrated on the surface
of the MoO2 particles.
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The TEM characterization of the mixed powder MoO2 + NH4ReO4 after reduction
at 1000 ◦C is shown in Figure 13. The observed powder particles are nearly spherical and
exhibit some agglomeration. The EDX mapping shows that there are scattered intercalated
Re particles in the agglomerated molybdenum particles. The atomic phase captured at
the Re aggregation area is shown in Figure 13b. After FFT conversion and calibration, it
was found that the Re in the b region is close to the HCP structure. This indicates that the
aggregation phenomenon of Re after the first-stage reduction at 450 ◦C was inherited into
the second-stage reduction at 1000 ◦C. In this powder, the particle size of Re agglomeration
is around 200 nm, and it is connected to the surrounding Mo particles. The further away
from the area of the Re aggregation particles, the higher the Mo content and the lower the
Re content. Consequently, it is possible for Re to exist in the form of aggregated elemental
Re, as well as (ReMox) intermediate phases or Mo (Re) solid solutions at the interfaces
between the Mo and Re particles. This explains why the XRD analysis revealed the presence
of various phases, such as Re and Re23Mo77, within the powder, indicating the complex
nature of Re distribution within the alloy.
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4. Discussion

In the industrial production process, NH4ReO4, MoO3, and MoO2 are commonly
employed as raw materials for the reduction of metal Re and Mo powder, respectively.
Each of these materials follows their own reaction rules during reduction in a hydrogen
atmosphere.

The reduction of NH4ReO4 typically undergoes a series of reactions, as per (1) to (6):

NH4ReO4(s) = HReO4(s) + NH3(g) (1)

2HReO4(s) = Re2O7(s) + H2O(g) (2)

Re2O7(s) + H2(g) = 2ReO3(s) + H2O(g) (3)

ReO3(s) + H2(g) = ReO2(s) + H2O(g) (4)

Re2O7 + 3H2(g) = 2ReO2(s) + 3H2O(g) (5)

ReO2(s) + 2H2(g) = Re(s) + 2H2O(g) (6)
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The overall reaction formula is

2NH4ReO4(s) + 7H2(s) = 2Re(s) + 8H2O(g) + 2NH3(g) (7)

It is worth noting that the specific reaction sequence and temperatures may vary
depending on factors such as oxygen partial pressure, hydrogen dew point, and the particle
size of NH4ReO4 during the reaction process [30,31].

Figure 14 displays the DSC-TG curve of the NH4ReO4 used in this experiment, with
a hydrogen flow rate of 40 mL/min and a heating rate of 10 ◦C/min. The TG and DTG
curves in the figure reveal that the reduction temperature range of NH4ReO4 mainly falls
between 250 ◦C and 375 ◦C, with a peak reaction temperature at approximately 350 ◦C.
The remaining weight after the reaction is 69.63%, which is in line with the Re content of
NH4ReO4 (69.3 wt.%). This indicates that NH4ReO4 can be fully reduced to Re prior to
375 ◦C. Notably, the DSC curve exhibits exothermic peaks at 315 ◦C, 360 ◦C, and 372 ◦C,
corresponding to the reactions outlined in Formulas (1) to (6). According to a literature
report, oxides like Re2O7 and ReO3 have a high evaporation pressure (around 300 ◦C),
making them prone to form evaporated substances within the powder [32]. The volatile
nature of these process oxides, combined with the generation of H2O and NH3 during
the reaction, leads to the hydrogen reduction process of NH4ReO4 following a gas phase
migration model [31]. This gas phase migration model is preferable for achieving the
homogenization of Re in Mo during the reduction process.
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When MoO3 is reduced in a hydrogen atmosphere, it usually undergoes two stages of
reaction. The first stage is MoO3 reacting with H2 to generate MoO2 at 450~550 ◦C, and the
second stage is the MoO3 reaction with H2 to generate Mo at 850~900 ◦C [33]. The chemical
vapor transport mechanism (CVT) has been proven to be the dominant mechanism in the
first stage of reduction [34]. In this mechanism, MoO3 will form a vapor transition phase,
mainly composed of Mo-O-H with H2O vapor in the atmosphere, which will evaporate
and then deposit on the MoO2 core. However, the second stage of reduction has two
mechanisms working together, i.e., the pseudomorphic transformation mechanism at a low
dew point and chemical vapor migration at a high dew point. These two mechanisms have
been confirmed by many researchers [33,35–37].

When NH4ReO4 and MoOx are mixed together, if they can react with H2 gas at the
same temperature, the complex equilibrium of Mo-O-Re-H will form during the reaction
process. In addition, MoOx and ReOx follow the chemical vapor phase transport mech-
anism in the hydrogen reaction process, which may lead to the co-nucleation of Mo and
Re particles in the co-reduction process. These mechanisms will shorten the diffusion
path of Mo and Re and lead to the alloying of them in the powder stage. However, the
reaction temperature of NH4ReO4 in an H2 atmosphere is 250~400 ◦C, whereas that of
MoO3 is 450~550 ◦C, and MoO2 is much higher. It seems that there is no common reaction
temperature range between Re and Mo oxides.
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The results of this experiment show that when MoO2 is used as raw material in the
co-reduction process, the first stage of reduction is dominated by the reduction of NH4ReO4
to Re through a series of reactions. Although the NH4ReO4 particles are above 50 µm, the
fine particle size of Re (<1 µm) is reduced, nucleated, and grows on the surface of the MoO2
particles through gas phase transport in the reduction process. This gas phase migration
can improve the distribution of Re in the powder. Even so, after the completion of the
first stage reaction, no obvious metallurgical bonding between Re and Mo particles can be
detected in by TEM and XRD. During the second-stage reduction process of the powder
at 850~950 ◦C, the oxygen in MoO2 will be reduced by hydrogen, and the area contacted
by the MoO2 and Re particles will interdiffuse and form solid solution particles. However,
some of the larger Re particles are not completely diffused into Mo under this reduction
process, leading to the Re phase and Mo23re77 phase appearing in the powder. The alloying
of Mo and Re in the powder is not perfect.

When MoO3 is used as raw material, NH4ReO4 and MoO3 also do not have a common
co-reduction reaction temperature. It seems that NH4ReO4 and MoO3 will be carried out
alternately according to their reaction temperature with hydrogen. However, from the
comparative analysis results of TPR, it was found that the hydrogen reduction process of
NH4ReO4 is obviously affected by MoO3 particles (as shown in Figure 7). The TEM and
XRD analysis of the reduction products at 450 ◦C shows that there is a solid solution of
ReOx in the MoO3 particles. This means that the ReOX particles reduced from NH4ReO4
will dissolve into the lattice of MoO3 at this temperature, and an evenly distribution of
Mo and Re atoms is obtained. The reason for the solid solution may be related to the high
diffusion coefficient of Re in MoO3, or it might attributed to the fact that Re can capture
the O atom of MoO3 and form Mo-O-Re oxides. The specific reasons need to be further
studied. With a further increase in the reduction temperature, the oxygen element in MoO3
is gradually reduced by H2 to MoO2 and Mo particles. The gas phase transport mechanism
involved in this process will further make the distribution of Mo and Re elements more
uniform. There is only a single Mo (Re) solid solution phase in the powder after reduction
at 1000 ◦C, as confirmed by Figures 6b and 11.

The experimental findings presented above highlight the significance of the solid solu-
tion between Re and MoO3 in the alloying process of the Mo-Re-O system after reduction.
When employing oxide co-reduction for the preparation of Mo-Re pre-alloy powder, aside
from ensuring the uniform mixing of the oxides, maximizing the utilization of the interac-
tion between Mo-O-Re emerges as another crucial factor for obtaining a highly uniform
pre-alloy powder. Therefore, in addition to focusing on optimizing oxide mix uniformity, it
is highly recommended to explore and harness the potential interaction between Mo, O,
and Re.

5. Conclusions

This paper presents a comparative study of the powder characteristics and phase
composition of Mo-10Re pre-alloy powder co-reduced using MoO3 or MoO2 with NH4ReO4.
The main conclusions of the study are as follows:

(1) When MoO3 is used as the raw material for co-reduction, the resulting pre-alloy
powder exhibits a uniform size distribution with a primary particle size of less than 1 µm
and consists solely of the Mo (Re) solid solution phase. In contrast, when MoO2 is utilized
as the raw material, it yields pre-alloy powders with an uneven size distribution that ranges
from 0.5~4 µm and contains undesirable Re and Mo23Re77 phases in addition to the target
Mo (Re) solid solution phase.

(2) During the reduction process, NH4ReO4 was reduced to metallic Re at 300–450 ◦C
and attached to the surface of MoO2 particles, whereas MoO3 adsorbed the reduced ReOX
and formed Mo-O-Re metallurgical bonding, which led to more homogeneous elemental
mixing in the resulting Mo-10Re powders.

Based on these findings, MoO3 is considered a more promising oxide precursor than
MoO2 for producing Mo-Re pre-alloyed powders. Furthermore, the insights gained from
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this work suggest that the metallurgical bonding of oxides during the co-reduction process
can enhance the alloying effect of pre-alloyed powders.
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