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Abstract: Organic inorganic perovskite materials have received increasing attention in the optoelec-
tronic field because of their unique properties. The ultrafast dynamics of photogenerated carriers
determine photoelectric conversion efficiency, thus, it is feasible to influence the dynamics behavior
of photogenerated carriers by regulating A-site cations. This paper mainly used transient absorption
spectra (TAS) technology to study the photogenerated carriers relaxation processes of organic–
inorganic perovskite CsxMA1−xPbI3 materials at different x values. Three sets of time constants were
obtained by global fitting at different values of x. The experimental results showed that the crystal
structure of perovskite could be affected by adjusting the Cs+ doping amount, thereby regulating
the carrier dynamics. The appropriate amount of A-cation doping not only maintained the organic–
inorganic perovskite crystal phase, but also prolonged the photogenerated carrier’s lifetime. The
10% Cs+ doping CsxMA1−xPbI3 perovskite has potential for solar cell applications. We hope that
our research can provide dynamics support for the development of organic–inorganic perovskite in
solar cells.

Keywords: Cs+ doping MAPbI3 perovskite; transient absorption spectra; crystal structure; carri-
ers dynamics

1. Introduction

Organic–inorganic perovskite materials (ABX3) is a unique material; A+ represents
organic cations (usually MA+ = CH3NH3

+; FA = CH3(NH2)2
+, etc.; B2+ = Pb2+, Sn2+, Ge2+,

etc.; while X− represents isohalogen ions = Cl−, Br−, I−, etc.). The inorganic structure and
organic cations are connected by certain interaction forces; the inorganic structure is an
octahedral structure [BX6]4− formed by strong coordination bonds. In 2009, Kojima et al.
reported the first liquid dye-sensitized solar cells (DSSCs) prepared by organic–inorganic
hybrid perovskite (CH3NH3PbI3 or CH3NH3PbBr3); the DSSCs’ photoelectric conversion ef-
ficiency reached 3.8% [1]. In recent years, the perovskite photoelectric conversion efficiency
has rapidly improved. Recently, the King Abdullah University of Science and Technology,
Saudi Arabia, have produced a perovskite and silicon tandem solar cell with a photoelectric
conversion efficiency of more than 33% [2]. Organic–inorganic plumbum halide perovskite
has become one of the key photovoltaic materials and profits from its unique performance
properties which attract attention, such as the large absorption coefficient of perovskite and
the long carrier diffusion length; thus, it is mainly used in solar cell devices, light-emitting
diodes, laser technology, and other research fields [3–10]. Organic–inorganic perovskite is
unstable and usually degraded in light, humidity, and heat. The main cause of perovskite
decomposition is the high volatility of organic CH3NH3

+ cations [11]. To improve the
structural stability, organic–inorganic perovskite, formed by mixing cations, has attracted
scientists’ attention [12–15].

In order to improve the power conversion efficiency and the long-term stability of
the material, the composition regulation of the CH3NH3PbI3 material is an effective strat-
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egy [16,17]. Recently, the substitution of organic cations in organic–inorganic perovskite
materials has aroused much interest [18]. The choice of the A-site cation has important
effects on the regulation of perovskite photoelectric properties. The perovskite performance
of mixed A-cationic perovskite will improve relative to single-cationic perovskite [19]. In
most perovskite, the electronic state of the perovskite [BX6]4− octahedral structure deter-
mines the valence band maximum and conduction band minimum, and has an influence
on the perovskite optical absorption and carrier transport performance, while the A-site
cations are used to stabilize the perovskite octahedral structure [20]. Taya et al. demon-
strated that doping Cs+ in MAPbI3 will result in an octahedral tilt increase and a band gap
increase. The organic–inorganic perovskite, obtained by doping 12.5% of Cs+, is a potential
candidate material for solar cells [21]. Imran et al. demonstrated that Cs+ can promote the
organic–inorganic perovskite phase transition [22]. The perovskite crystal phase transition
results in a series of physical properties changes, such as thermal, mechanical, electrical,
optical, and other physical characteristics. The appropriate amount of Cs+ can stabilize the
perovskite structure and improve the perovskite photoelectric conversion efficiency [23,24].

To develop the application of organic–inorganic perovskite materials in the photo-
voltaic field, such as solar cells, it is very important to understand the microstructure
of perovskite and master the dynamic physical mechanism of photogenerated carriers.
Transient absorption spectra (TAS) are a common means of studying ultrafast physical pro-
cesses. In this paper, we study the ultrafast carrier dynamics of CsxMA1−xPbI3 perovskite
materials, mainly by using time-resolved transient absorption spectroscopy combined with
X-ray diffraction (XRD) and UV–Visible absorption spectra, and attempt to elucidate their
relaxation mechanism. The effects of different x-values (0%, 5%, 10%, 30%, 50%) on the
crystal structure of mixed perovskite are discussed, and the dynamic physical behaviors of
perovskite photogenerated carriers are analyzed. The transient absorption (TA) dynamics
results revealed two channel mechanisms of carrier relaxation; the recombination lifetime
of the 10% Cs+ doping perovskite was longer than that of pure MAPbI3. Three sets of
time components were obtained by global fitting of the transient absorption spectra: hot
carrier cooling, Auger recombination, and electron-hole recombination. The results showed
that the photogenerated carriers of perovskite with 10% Cs+ doping have the longest
relaxation time.

2. Experiment
2.1. Material Preparation

Cesium iodide (CsI), plumbum iodide (PbI2), and anhydrous N,N dimethylformamide
(DMF) were purchased from Aladdin and used without further purification. Methyl
ammonium iodide (CH3NH3I) was purchased from Shanghai MaterWin New Materials
Co., Ltd. (Shanghai, China).

2.2. Preparation of Perovskite Materials

The synthesis of Cs+ doped perovskite films followed the slightly altered route of
Choi, H. et al. [25]. Precursor solutions of CsxMA1−xPbI3 were prepared by dissolving
equimolar amounts of CsI: CH3NH3I and PbI2 in DMF at a concentration of 120 mg/mL.
Solutions were exposed to ultrasonic treatment at 70 ◦C for 15 min, and then annealed
for 10 min at 110 ◦C. Thus, the perovskite films were obtained. Preparation of samples:
MAPbI3, Cs0.05MA0.95PbI3, Cs0.1MA0.9PbI3, Cs0.3MA0.7PbI3, Cs0.5MA0.5PbI3.

2.3. Experimental Characterization

For XRD measurements, perovskite film diffractograms were collected using a PAN-
alytical B.V., Empyrean at a voltage of 40 kV and current of 30 mA. The scanning angle
range was 5–50◦(2θ) with a rate of 0.3◦/min. The UV–Vis absorption was measured using
a UV-3101PC UV-VIS NIR scanning spectrophotometer. The laser system for TAS was
a femtosecond titanium sapphire laser (Libra-USP-HE, Coherent Inc., Santa Clara, CA,
USA) with a wavelength of 800 nm, a repetition rate of 1 kHz, a pulse width of 50 fs and
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an Ultrafast Systems (Helios) UV-visible detection system. The light was separated into
pump (90%) and probe (10%) beams. The pump beam was directed through a Barium
Boron Oxide crystal and a chopper (500 Hz) to produce the 400 nm pump beam, and the
probe beam was passed through an optical delay rail and focused on a sapphire crystal to
produce a white light continuum. In our transient absorption measurement, 400 nm with
energy 3.1 eV was chosen as the pump excitation wavelength. Photoexcitation energy was
attenuated to 0.88 µJ/cm2. All the transient absorption measurements were performed at
room temperature. Figure 1 shows the setup of transient absorption.
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3. Results and Discussion
3.1. Materials Crystal Characterization

XRD was an effective method to study the microstructure of materials and could obtain
some changes in the CsxMA1−xPbI3 perovskite crystal phase at different x values. Figure 2
shows the X-ray diffraction scan map of CsxMA1−xPbI3 (x = 0%, 5%, 10%, 30%, 50%, 100%).
The pure MAPbI3 films exhibited diffraction peaks at 2θ values of 13.87◦, 19.611◦, 24.250◦,
28.161◦, 31.641◦, 40.111◦, and 42.871◦, corresponding to the (110), (112), (202), (220), (312),
(224) and (314) crystal planes of tetragonal perovskite, respectively [26–28]. For the pure
CsPbI3 films, we observed strong diffraction peaks at 9.924◦, 13.159◦, 21.801◦, 22.701◦,
26.471◦, and 27.530◦, corresponding to the (002), (102), (104), (203), (212), and (302) crystal
planes of the orthorhombic perovskite crystal structure [22,28–30]. Compared with the
pure MAPbI3 perovskite, Cs+ replaced the A-site of the MAPbI3 perovskite, the position of
the XRD diffraction peaks changed slightly with increasing x values in CsxMA1−xPbI3. The
lattice distortion and the lattice strain would cause changes in the position of diffraction
peaks [22]. The peak intensity of CsPbI3 increased with the increase in the Cs+ ratio in
CsxMA1-xPbI3. In our experiments, XRD did not exhibit other peaks at x = 0–10%, proving
that the tetragonal phase of MAPbI3 was maintained after Cs+ doping. When x = 30%, a
small diffraction peak appeared at 9.92◦, which corresponded to the orthorhombic phase
CsPbI3 crystal structure; the diffraction patterns clearly showed both MAPbI3 and CsPbI3
crystal phases, indicating the presence of phase segregation. For this phenomenon, we
believed that the both crystal phases existing in the CsxMA1−xPbI3 films were caused
by the excessive amount of Cs+ doping. It could also prove that Cs+ were successfully
doped. Changes in x would cause a crystalline phase transition in the perovskite. The
phase transition that was achieved depended on the [PbI6]4− octahedra tilt and rotation
in the lattice; meanwhile, the change in the [PbI6]4− octahedral structure would affect the
electronic orbital overlap state between Pb and I [31].
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3.2. The UV-Visible Absorption Spectra

The steady-state absorption spectrum could observe the change in the band gap.
Figure 3 shows the steady-state absorption spectrum of CsxMA1−xPbI3; the pure CsPbI3
absorption peaks appeared at 430 nm, the band gap value was 2.8 ev. The pure MAPbI3
shows two broad absorption peaks at 500 nm and 760 nm, and the band gap value was
1.62 ev, which also matched the numerical value obtained by theoretical calculations
of Taya, A. et al. and the band gap value obtained experimentally by Ayvazyan, G. Y.
et al. [21,32]. Subsequent Cs+ doping had little effect on the band, so the CsxMA1−xPbI3
absorption peak site did not change too much (band gap value was 1.62 ev for x = 5%; 1.63 ev
for x = 10%). Increasing the amount of Cs+ could increase the absorption at 430 nm and
decrease the absorption in the range of 500–760 nm. When x = 30%, the optical properties of
the CsxMA1−xPbI3 perovskite films began to reflect the absorption peaks properties in the
wavelength range of 400–450 nm, suggesting that the optical properties began to reflect the
peaks characteristics of the CsPbI3. This blue shift of the absorption peaks corresponded to
an increase in the band gap of perovskite (band gap value was 1.67 ev for x = 30%; 1.71 ev
for x = 50%). This result of the absorption peaks corresponded with that of the Choi, H.
et al. [25]. MA+ had a strong electrostatic attraction to I−, which led to the distortion of
the [PbI6]4− octahedron in the tetragonal phase of MAPbI3 perovskite. We considered
that doping a small amount of Cs+ could maintain the perovskite tetragonal phase when
x = 0%, 5%, 10%. When x = 30%, 50%, 100%, the peak occurred at 400–450 nm, where we
believed that because the CsPbI3 phase began to appear due to the increasing amount of
Cs+ doping, the perovskite crystal phase changed from tetragonal phase to orthorhombic
phase. After Cs+ doping, the H-bonding overall strength decreased somewhat, the [PbI6]4−

octahedron tilt increased, and there was enhanced coupling between the Pb-6s and the
I-5p [21]. Therefore, the band gap change in the perovskite, owing to the [PbI6]4− octahedral
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distortion, was caused by changes in the size of the A-site after Cs+ doping, rather than
directly participating in the electronic structure of perovskite [33]. Our discussion was
consistent with the results of X-ray diffraction (see Figure 2).
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3.3. Carriers Dynamics for Transient Absorption Spectra
3.3.1. Transient Absorption Spectra Characterization

The TAS technique is a powerful tool for studying excited-state relaxation dynamics.
We performed TAS to investigate the excited state properties of CsxMA1−xPbI3 perovskite
films with different Cs+ ratios, where x varied from 0 to 1. Figure 4a,b shows the TAS of
MAPbI3 and Cs0.1MA0.9PbI3 perovskite at different delay times, respectively. The TAS
showed two main characteristic spectra: transient photo-induced absorption signals in
the range of 520–700 nm; and a ground-state bleaching signal appearing around 750 nm,
corresponding to the absorption bands showed by the steady-state absorption (Figure 3).
After photoexcitation of perovskite, the photogenerated carriers occupied part of the
conduction band (valence band); these filled states led to the generation of the ground-
state bleaching signals. There was a consensus on the attribution of the ground-state
bleaching signals at 750 nm [34], attributed to laser-induced band edge transition. The
photo-induced absorption signals were accompanied by the ground-state bleaching signal.
Cs0.1MA0.9PbI3 (Figure 4b) had a wider absorption width in the same delay time compared
to MAPbI3. Furthermore, around 740 nm, a small spike was observed, which was due to
the Cs+ doping changing the position and shape of the characteristic peaks at ground-state
bleaching compared to MAPbI3.



Materials 2023, 16, 6064 6 of 13

Materials 2023, 16, x FOR PEER REVIEW 6 of 13 
 

 

  
(a) (b) 

Figure 4. TAS at different delay times after excitation at 400 nm. (a) MAPbI3 perovskite and (b) 
Cs0.1MA0.9PbI3 perovskite. 

3.3.2. Single-Wavelength Evolution Dynamics 
The carriers density at the band gap was reasonably explained by the ΔOD intensity 

at the ground-state bleaching; it played a major role in the photophysical properties. To 
follow the carriers dynamics of perovskite with Cs+ doping, we monitored the transient 
decay dynamics of CsxMA1−xPbI3 at the ground-state bleaching with different Cs+ doping 
amounts. Figure 5 shows the normalized transient decay response curve. Figure 6 shows 
the kinetic fit curve of CsxMA1−xPbI3 at the ground-state bleaching at x = 0%, 10%, 50%. 
The double exponential function fitting could well match the decay curves of the 
CsxMA1−xPbI3 perovskite, showing two recombination modes. Double exponential func-
tion: S(t) = eି(୲ି୲బ୲౦ )మ ∗ ൬Aଵeି୲ି୲బ୲భ + Aଶeି୲ି୲బ୲మ ൰ , t୮ = IRF2 ∙ ln 2 

where the IRF was the width of the instrument response function, t0 was the time zero, t1 
and t2 were the time constants, and A1 and A2 represented the weighted contribution of 
each exponential component to the overall kinetics. For the kinetic fitting, the “infinite 
lifetime” component was used, and the resulting kinetic fitting constants were summa-
rized in Table 1. 

The two sets of time constants were obtained from the kinetic double exponential 
fitting of Cs+ doping the CsxMA1−xPbI3 perovskite system. We attributed the faster decay 
process of carrier relaxation to Auger recombination. The slower decay carrier relaxation 
channel was attributed to electron-hole recombination. The carriers recombination 
strongly depended on the proportion of Cs+ doping. The CsxMA1−xPbI3 perovskite with x 
= 10% had the largest carrier lifetime, which meant the best performance. Compared with 
lower amount of Cs+ doping (x = 5%, 10%) and pure MAPbI3 perovskite, the recombination 
lifetime of the CsxMA1−xPbI3 perovskite with a high amount of Cs+ doping (x = 30%, 50%) 
was faster. The introduction of high concentrations of Cs+ accelerated the process of carrier 
recombination. However, the dynamics of the carriers extracted by the local fitting method 
at the ground-state bleaching might be relatively inaccurate; the global analysis tracked 
the evolution of the full spectrum. 

Figure 4. TAS at different delay times after excitation at 400 nm. (a) MAPbI3 perovskite and
(b) Cs0.1MA0.9PbI3 perovskite.

3.3.2. Single-Wavelength Evolution Dynamics

The carriers density at the band gap was reasonably explained by the ∆OD intensity
at the ground-state bleaching; it played a major role in the photophysical properties. To
follow the carriers dynamics of perovskite with Cs+ doping, we monitored the transient
decay dynamics of CsxMA1−xPbI3 at the ground-state bleaching with different Cs+ doping
amounts. Figure 5 shows the normalized transient decay response curve. Figure 6 shows
the kinetic fit curve of CsxMA1−xPbI3 at the ground-state bleaching at x = 0%, 10%, 50%. The
double exponential function fitting could well match the decay curves of the CsxMA1−xPbI3
perovskite, showing two recombination modes. Double exponential function:

S(t) = e
−(

t−t0
tp )

2

∗
(

A1e−
t−t0

t1 + A2e−
t−t0

t2

)
, tp =

IRF
2·ln 2

where the IRF was the width of the instrument response function, t0 was the time zero,
t1 and t2 were the time constants, and A1 and A2 represented the weighted contribution
of each exponential component to the overall kinetics. For the kinetic fitting, the “infinite
lifetime” component was used, and the resulting kinetic fitting constants were summarized
in Table 1.
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Table 1. Single-wavelength double exponential decay kinetic fit of Cs+ doping CsxMA1-xPbI3 perovskite.

Wavelength (nm) τ1 (ps) τ2 (ps)

MAPbI3 750 104.1 ± 14.7 (43%) 652.8 ± 131 (57%)

Cs0.05MA0.95PbI3 750 110.4 ± 18.4 (45%) 679.4 ± 174 (55%)

Cs0.1MA0.9PbI3 750 178.5 ± 15 (48%) 1502 ± 130 (52%)

Cs0.3MA0.7PbI3 736 84.11 ± 12 (44%) 512.7 ± 82 (56%)

Cs0.5MA0.5PbI3 720 80.1 ± 15 (49%) 424.5 ± 101 (51%)

The two sets of time constants were obtained from the kinetic double exponential
fitting of Cs+ doping the CsxMA1−xPbI3 perovskite system. We attributed the faster decay
process of carrier relaxation to Auger recombination. The slower decay carrier relaxation
channel was attributed to electron-hole recombination. The carriers recombination strongly
depended on the proportion of Cs+ doping. The CsxMA1−xPbI3 perovskite with x = 10%
had the largest carrier lifetime, which meant the best performance. Compared with lower
amount of Cs+ doping (x = 5%, 10%) and pure MAPbI3 perovskite, the recombination
lifetime of the CsxMA1−xPbI3 perovskite with a high amount of Cs+ doping (x = 30%, 50%)
was faster. The introduction of high concentrations of Cs+ accelerated the process of carrier
recombination. However, the dynamics of the carriers extracted by the local fitting method
at the ground-state bleaching might be relatively inaccurate; the global analysis tracked the
evolution of the full spectrum.

3.3.3. Full Spectrum Evolutionary Dynamics

The dynamic processes of CsxMA1−xPbI3 was mainly affected by carrier cooling and
recombination processes. CsxMA1−xPbI3 perovskite carriers absorbed the pump energy
and then jumped to higher energy states. Carrier instability in an excited state would
go back to the ground state through a series of relaxation processes. TAS contained very
complex components. In order to strip these independent carrier’s physical processes
and extract the corresponding physical information, taking pure MAPbI3 as an example,
we used the singular value decomposition (SVD) to isolate the major components of per-
ovskite [35] where independent observations of the temporal evolution of the complex
TA spectra became possible, and performed a global fitting operation to obtain three sets
of time constants: 550.3 fs, 71.9 ps, 521.9 ps. Restricted by the experimental instrument,
we found that the carriers did not attenuate completely in the measurement time range,
we added an infinite exponent in the global fitting process. Figure 7 shows the spectral
information obtained from the global fitting. In the early stage of photoexcitation, carrier
energy was redistributed (thermalized) on time scales on the order of femtosecond, satisfy-
ing the Fermi Dirac’s statistical law [36,37]. Temperature mismatch between hot carriers
and lattices, and hot carrier cooling was achieved by interaction with lattices. Hot carrier
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cooling relaxed to a quasi-thermal equilibrium state, mainly through scattering longitudinal
optical (LO) phonons; the process was usually very fast, as shown in the subpicosecond
time scales [38,39]. The hot optical phonons generated by the carrier relaxation process
would further collide and scatter with acoustic phonons, and thus re-establish the thermal
equilibrium state between the phonons [38]. During the cooling process of the carriers, the
carriers collide with the lattices and exchange energy; the lattice’s vibration in the crystal
was described by a quantized phonon. Therefore, the carrier cooling process could also
be understood as the process of a carriers–phonons interaction. Thus, the 550.3 fs was
assigned to the process of carrier cooling. Auger recombination and electron-hole recombi-
nation contributed to carrier recombination dynamics. Manser et al. suggested that carrier
recombination in MAPbI3 was mainly through electron-hole recombination [40]. Shen et al.
pointed out that the spin-orbit coupling of the Pb-based perovskite would induce spin
splitting in the degenerate energy level at the conduction band edge; MAPbI3 spin-splitting
energy only resonated with the band gap energy, which was responsible for the existence of
the Auger recombination of MAPbI3 [41]. The relevant processes appeared on different time
scales, with the Auger recombination process occurring on tens of picosecond scales [42].
The Auger recombination process was also an important source of carriers thermalization.
In the Auger recombination process, the excess energy would be transferred to the third
carrier, making the third carrier transition to a higher energy level, the resulting thermal
effect would also delay the carriers cooling process, so the recombination process was
also called the Auger heating process. We found that the spectral information obtained
from the global fitting (Figure 7), where the 72.5 ps time component signal overlapped to
varying degrees with the 545.3 fs cooling mechanism and the 524.1 ps time component
signal, was a good indication of the 72.5 ps Auger heating phenomenon. The Auger heating
phenomenon was involved in the cooling and recombination mechanisms [43]. Therefore,
the 72.5 ps was assigned as the Auger recombination process, and the 524.1 ps was assigned
as the result of electron-hole recombination. The model proposed by Jia et al. could help us
to better understand the carriers relaxation process [44].
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Figure 7. MAPbI3 decay correlation spectra obtained by global fitting.

In order to better develop the application of perovskite in solar cells, it was very
important to understand the hot carrier cooling process. In order to clearly understand the
influence of Cs+ doping on the cooling process of CsxMA1−xPbI3 carriers, Figure 8 showed
the trend of the hot carrier cooling time constant with different x values. The presence of
electrostatic attraction between MA+ and I− caused the distortion of [PbI6]4− octahedral
framework in the tetragonal phase MAPbI3. Cs+, as a cation with isotropic charges distri-
bution, formed stronger and more uniform electrostatic attraction with [PbI6]4− octahedra
to maintain the perovskite structure. A small amount of Cs+ doping could maintain the
perovskite phase. In x ≤ 10% interval, for the process of cooling time constant reduction,
we could understand the phenomenon; a smaller Cs+ radius caused stronger interactions
between the A-site cation and the [PbI6]4− octahedron in the perovskite, leading to a larger
LO phonons energy [45]. The larger LO phonons energy facilitated energy transfer from hot
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carriers to LO phonons through the hot carrier–LO phonons scattering process, and bound
organic cation MA+ was not conducive to acoustic phonon up-conversion efficiency [46],
resulting in a decrease in the cooling time constant. At x ≥ 10%, the CsPbI3 crystal‘s phase
features were displayed in the system. A small diffraction peak at x = 0.3 appeared at 9.28◦

for the XRD, measured by Imran, M. et al. [22], which also indicated that phase segregation
occurred at 10% Cs+ doping amount due to the severe [PbI6]4− distortion of octahedra,
which would favor the generation of large polaritons. The formation of polaritons in per-
ovskite was thought to effectively protect thermal carriers from scattering by phonons [47],
leading to an increase in cooling time.
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τ2 was the Auger recombination time constant. With the increase in x, the Auger
recombination time constant appeared to increase and then decrease (Figure 9); the turning
point occurred at x = 10%. The XRD of pure MAPbI3 indicated a tetragonal phase, where
structural symmetry was excellent, and no new diffraction peaks appeared at x < 10%,
which also indicated that a small amount of Cs+ doping did not change the crystal struc-
ture [48]. We speculated that it would affect the crystal symmetry, and the spin-orbit
coupling in MAPbI3 would lead to a splitting of the energy band, which was associated
with MAPbI3 structural instability, leading to a stronger Auger recombination [41]. A
small amount of Cs+ doping was able to maintain the crystal structure of MAPbI3, thus
inhibiting the lattice distortion, resulting in the Auger recombination time constant at 10%
Cs+ doping greater than MAPbI3. All of this led to slow the decay rate and increase the
recombination time. At x > 10%, we mentioned that the rise of the perovskite band gap
was caused by the [PbI6]4− octahedral structural distortion, which had a positive effect
on the Auger recombination, and could be traced in the work of Phuong et al. [49]. The
enhanced band splitting of the [PbI6]4− octahedral distortion also directly affected the
state distribution involved in the Auger process [41]. This was also a good reason why
the Auger recombination time constant at high Cs+ doping was lower than that of pure
MAPbI3. Therefore, the Auger recombination time constant decreased in this range.

For the τ3 electron-hole recombination process (Figure 10), it could be concluded that
the time constant of the perovskite system also appeared to increase and then decrease as x
increased; the turning point occurred at x = 10%. It had been proposed that a small amount
of Cs+ doping could passivate the defective state. The mismatch between the doped atoms
and the lattice caused an increase in defective states when the Cs+ doping amount was too
much [41]. The defective state was able to capture photogenerated carriers and stimulated
recombination at the defective site, thus accelerating the carriers recombination process [50].
At x < 10%, we considered that the defective state was passivated in perovskite, which
prevented the carriers from being trapped by the process, the electron-hole recombination
time constant increased. When Cs+ doping amount reached a certain degree, the crystal
structure changed. The CsPbI3 phase began to appear in the system, which introduced more
grain boundaries and defects [51–53], which leaded to a massive of carriers trapping by
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defective states, and there were unavoidable trap sites at these grain boundaries introduced
by increased Cs+, which could also serve as carrier recombination centers, thus electron-
hole recombination time decreased. Different experiments consistently showed that Cs+

doping could improve the uniformity of the CsxMA1−xPbI3 perovskite and maintain
the crystal phase of perovskite. When the Cs+ doping amount was too large, it began
to destroy the growth of internal grains [22,23,28,54]. Better crystal quality was also
responsible for the increased lifetime. Surprisingly, for the x = 10% Cs+ doping, the Auger
recombination lifetime and electron-hole recombination lifetime of the CsxMA1−xPbI3
perovskite exhibited a longer carrier lifetime than that of pure MAPbI3 perovskite, which
had potential applications in improving the photovoltaic conversion efficiency of solar cells.
Our results showed that CsxMA1−xPbI3 perovskite materials had the longest relaxation
time and performed the best in solar cells at x = 10%.

Materials 2023, 16, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 9. The Auger recombination time constant with different x values obtained from global fitting 
to the TAS of CsxMA1−xPbI3. 

For the τ3 electron-hole recombination process (Figure 10), it could be concluded that 
the time constant of the perovskite system also appeared to increase and then decrease as 
x increased; the turning point occurred at x = 10%. It had been proposed that a small 
amount of Cs+ doping could passivate the defective state. The mismatch between the 
doped atoms and the lattice caused an increase in defective states when the Cs+ doping 
amount was too much [41]. The defective state was able to capture photogenerated carri-
ers and stimulated recombination at the defective site, thus accelerating the carriers re-
combination process [50]. At x < 10%, we considered that the defective state was passivated 
in perovskite, which prevented the carriers from being trapped by the process, the elec-
tron-hole recombination time constant increased. When Cs+ doping amount reached a cer-
tain degree, the crystal structure changed. The CsPbI3 phase began to appear in the sys-
tem, which introduced more grain boundaries and defects [51–53], which leaded to a mas-
sive of carriers trapping by defective states, and there were unavoidable trap sites at these 
grain boundaries introduced by increased Cs+, which could also serve as carrier recombi-
nation centers, thus electron-hole recombination time decreased. Different experiments 
consistently showed that Cs+ doping could improve the uniformity of the CsxMA1−xPbI3 
perovskite and maintain the crystal phase of perovskite. When the Cs+ doping amount 
was too large, it began to destroy the growth of internal grains [22,23,28,54]. Better crystal 
quality was also responsible for the increased lifetime. Surprisingly, for the x = 10% Cs+ 
doping, the Auger recombination lifetime and electron-hole recombination lifetime of the 
CsxMA1−xPbI3 perovskite exhibited a longer carrier lifetime than that of pure MAPbI3 per-
ovskite, which had potential applications in improving the photovoltaic conversion effi-
ciency of solar cells. Our results showed that CsxMA1−xPbI3 perovskite materials had the 
longest relaxation time and performed the best in solar cells at x = 10%. 

Figure 9. The Auger recombination time constant with different x values obtained from global fitting
to the TAS of CsxMA1−xPbI3.

Materials 2023, 16, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 10. The electron-hole recombination time constant with different x values obtained from 
global fitting to the TAS of CsxMA1−xPbI3. 

4. Conclusions 
Applying TAS to elucidate the free carrier dynamics of pure the MAPbI3 perovskite 

and mixed cation perovskites uncovered the underlying reasons for their excellent perfor-
mance and high stability. The dynamics at ground-state bleaching revealed two channel 
mechanisms of carriers relaxation: Auger recombination and electron-hole recombination, 
with a time constants of 80–179 ps and 425–1502 ps, respectively. Three sets of time con-
stants were obtained by SVD and global fitting: hot carrier cooling, Auger recombination 
and electron-hole recombination. A small amount of Cs+ doping could maintain the per-
ovskite structural crystal phase. When Cs+ doping was performed in excess, it would 
change the MAPbI3 crystal phase, which originated in [PbI6]4− octahedral structural dis-
tortion caused by Cs+ doping, then the photogenerated carrier’s lifetimes were affected. 
Our results showed that CsxMA1−xPbI3 perovskite had superior photophysical properties 
at 10% Cs+ doping, and were candidates for highly efficient solar cell applications. Our 
experiments provided an experimental basis for the application of MAPbI3, and we expect 
to further explore the application of perovskite materials. 

Author Contributions: Conceptualization, M.D. and L.D.; data curation, M.D. and P.Z.; funding 
acquisition, L.D. and Y.W.; investigation, M.D., Y.W. and P.Z.; supervision, L.D. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Natural Science Foundation of China (grant 11974139); 
the international (regional) cooperation and exchange projects of the Natural Science Foundation of 
China (grant 12111540158); the Natural Science Foundation of China (grant 11674125); and the Sci-
entific and Technological Developing Scheme of Ji Lin Province (grant 20210201087GX). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic 

cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. 
2. Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (version 62). Prog. 

Photovolt Res. Appl. 2023, 31, 651–663. 
3. Green, M.A.; Bein, T. Perovskite cells charge forward. Nat. Mater. 2015, 14, 559–561. 
4. Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–

402. 

Figure 10. The electron-hole recombination time constant with different x values obtained from
global fitting to the TAS of CsxMA1−xPbI3.

4. Conclusions

Applying TAS to elucidate the free carrier dynamics of pure the MAPbI3 perovskite
and mixed cation perovskites uncovered the underlying reasons for their excellent perfor-
mance and high stability. The dynamics at ground-state bleaching revealed two channel
mechanisms of carriers relaxation: Auger recombination and electron-hole recombina-
tion, with a time constants of 80–179 ps and 425–1502 ps, respectively. Three sets of time
constants were obtained by SVD and global fitting: hot carrier cooling, Auger recombi-
nation and electron-hole recombination. A small amount of Cs+ doping could maintain
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the perovskite structural crystal phase. When Cs+ doping was performed in excess, it
would change the MAPbI3 crystal phase, which originated in [PbI6]4− octahedral structural
distortion caused by Cs+ doping, then the photogenerated carrier’s lifetimes were affected.
Our results showed that CsxMA1−xPbI3 perovskite had superior photophysical properties
at 10% Cs+ doping, and were candidates for highly efficient solar cell applications. Our
experiments provided an experimental basis for the application of MAPbI3, and we expect
to further explore the application of perovskite materials.
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