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Abstract: High-temperature forming behaviors of a 7046-aluminum alloy were investigated by hot
compression experiments. The microstructural evolution features with the changes in deformation
parameters were dissected. Results indicated the formation of massive dislocation clusters/cells and
subgrains through the intense DRV mechanism at low compression temperature. With an increase
in deformation temperature, the annihilation of dislocations and the coarsening of subgrains/DRX
grains became prominent, due to the collaborative effects of the DRV and DRX mechanisms. However,
the growth of subgrains and DRX grains displayed the weakening trend at high strain rates. Moreover,
two constitutive models involving a physically based (PB) model and a gate recurrent unit (GRU)
model were proposed for predicting the hot compression features. By validation analysis, the
predicted values of true stress perfectly fit with the experimental data, indicating that both the
proposed PB model and the GRU model can accurately predict the hot compression behaviors of
7046-aluminum alloys.

Keywords: high-temperature compression behaviors; 7046-aluminum alloys; constitutive models;
microstructure evolution

1. Introduction

Aluminum alloys have attracted considerable attention for military aircraft, auto-
mobiles and weapons because of their preeminent mechanical properties and corrosion
resistance [1–6]. Due to the addition of numerous alloying elements, the aluminum alloys
are frequently subjected to various microstructural evolution mechanisms [7,8], which
results in the appearance of complicated hot flow features [9–12]. Hence, further research
into the flow characteristics and microstructural evolution features of aluminum alloys in
hot deforming is essential.

Researchers have systematically investigated how these microstructure evolution character-
istics were conducive to regulating the hot flow features of aluminum alloys [13–15]. First, the
evolution of dislocations and the coarsening behaviors of subgrains were deeply revealed
in numerous studies [16–18]. Moreover, the development features in dynamic recrystal-
lization (DRX) grains and the extension of grain boundaries in aluminum alloys were
researched [19–22]. In addition, the precipitation behaviors and the dissolution features of
phase were dissected [23,24].

Recently, many constitutive models were established or improved to capture the hot
tensile/compression flow features of alloys [25–31]. For instance, the evolution features
of flow behaviors with the Zener–Hollomon (Z) parameters were explored, and various
phenomenological equations were constructed for depicting hot deforming features in
aluminum alloys [32–34]. Meanwhile, numerous physically based (PB) equations were
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constructed to predict the hot flow stress and microstructures for aluminum alloys [35–38],
Ni-based alloys [39] and ultrahigh-strength steels [40,41]. In addition, various artificial
neural network (ANN) models [42–44] containing BP models [45–47] and long short-term
memory (LSTM) models [48,49] have been used to predict hot flow behaviors in aluminum
alloys. Another preferred LSTM model, called a gate recurrent unit (GRU) neural net-
work, was developed from ANN models. The GRU model contains fewer parameters
than the LSTM model, thus boosting its computing efficiency while simultaneously im-
proving the prediction accuracy [50,51]. Nowadays, as GRU theory continues to advance,
GRU models are extensively used in various domains, including data modeling [52], text
classification [53] and electric power load forecasting [54].

Although numerous investigations have focused on exploring hot deforming behav-
iors in aluminum alloys, the complicated microstructure evolution mechanisms and hot
flow behaviors need to be further explored. In this investigation, the evolution characteris-
tics of true stress and microstructures for the 7046-aluminum alloy are explored. Especially,
the evolution features of dislocation clusters/subgrains and DRX nucleating mechanisms
are revealed. Additionally, both a PB model and a GRU model were set up for describing the
hot compression stress–strain characteristics in the 7046-aluminum alloy. Simultaneously,
the reconstitution capacity of each constitutive model was verified.

2. Materials and Experimental Approach

In the present investigation, a commercial 7046-aluminum alloy with the chemical
components (wt.%) of 6.6Zn-1.7Mg-0.25Cu-0.15Zr-Al (Bal) was used. Normal cylindrical
specimens (φ8 mm × 12 mm) were fabricated from the 7046-aluminum alloy plate. Hot
compression experiments were executed on a Gleeble-3500 device (Poestenkill, NY, USA).
The details of the hot compression process are revealed in Figure 1. The specimens were
heated to setting forming temperature (T) and then held 360 s. The hot compression of
each sample was implemented at a constant value of T and strain rate (

.
ε). The values of T

were selected to be from 300 ◦C to 450 ◦C with intervals of 50 ◦C. Moreover, the values of
.
ε

were set as 0.001–1 s−1, and the final strain was 0.92. When the final strain was reached,
the test specimens were quickly cooled by water.
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Figure 1. The hot forming steps for a 7046-aluminum alloy.

Backscattering electron microscopy (EBSD) (Velocity Super, EDAX-Ametek, Pleasan-
ton, CA, USA) was utilized to examine the initial microstructure of the investigated
7046-aluminum alloy. In order to analyze the microstructural evolution features in hot com-
pression, optical microscopy (OM) (Olympus DSX500, Tokyo, Japan) and a transmission
electron microscope (TEM) (Tecnai G2 F20, FEI Company, USA) were used. Specimens
for OM observations were first mechanically ground and polished, followed by etching
with a Keller reagent [4]. For the TEM and EBSD observations, the pieces were mechanized
along the axial direction of hot compressed samples and substantially polished in a solution
(15 mL HClO4 and 135 mL CH3CH2OH).
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Figure 2 displays the EBSD images of the initial microstructure. Obviously, some
equiaxed grains can be detected (Figure 2a). Moreover, almost all the grains are covered
with the color blue, which demonstrates that few substructures remained (Figure 2b).
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3. High-Temperature Compression Characteristics
3.1. Analysis of Hot Compression Flow Curves

Figure 3 reveals the flow behaviors of the 7046-aluminum alloy in hot compression.
The similar evolution tendency in all the curves revealed that true stresses swiftly increase
because of the acute work hardening (WH) effect correlated with the evolution of sub-
structures [18]. When the hot compression continues, a decrease in true stress occurs due
to the cooperation effects of the dynamic recovery (DRV) and dynamic recrystallization
(DRX) [22]. Furthermore, it was revealed that true stresses are reduced with the decreasing
strain rate (

.
ε), as seen in Figure 3a. This is because an extended deformation time is pro-

vided to the development of subgrains and DRX grains with the decrease in
.
ε. Thus, the

softening effects associated with the mechanisms of DRV and DRX are enhanced, resulting
in the decrease of true stresses. Moreover, the true stresses display the decreasing trend with
the increase of deformation temperature (T), as seen in Figure 3b. One cause is that the DRV
mechanism connected with the annihilation of dislocation clusters and the development of
subgrains is improved at higher T. Moreover, the progression of DRX features also displays
the reinforcing effect with the elevated T. Hence, the decrease of the true stress emerges.
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3.2. Microstructure Evolution Mechanisms

The typical evolution features of dislocations and subgrains with the variation of
compressed parameters were explored by TEM observation (Figure 4). Clearly, some
dislocations are generated and accumulated to form the dislocation networks/cells at
300 ◦C/0.001 s−1, as seen in Figure 4a. Concurrently, many subgrains can also be observed.
With the increase of T, the DRX grains become apparently coarsening and the annihila-
tion of substructures are enhanced (Figure 4b). It is because that the diffusion of alloy
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atoms/vacancies are sensibly reinforced at higher T [15], which enhances the consumption
of substructures through the intense DRV mechanism. Furthermore, the expansion rate
of grain boundaries is becoming strengthened with the increase of T [19], and then the
coarsening capacity of DRX grains is significantly enhanced. With the

.
ε increasing to

1 s−1, the nucleation of high-density substructures containing dislocation clusters/arrays
and subgrains can be observed (Figure 4c). Simultaneously, almost all DRX grains at
400 ◦C/0.001 s−1 become coarsening, compared to that seen at 400 ◦C/1 s−1. The predomi-
nant cause is that the shorter deforming time for the dislocations’ climbing/interaction and
the propagation of grain boundaries can be ensured at higher

.
ε [29,39].
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Figure 5 reveals the typical evolution features of grain morphology under different
forming conditions. Clearly, the almost original grains reveal elongated characteristics
at 400 ◦C/1 s−1, and several fine DRX grains gather near them (Figure 5a). With the
T increasing to 450 ◦C, the nucleation and coarsening behaviors of DRX grains become
apparent (Figure 5b). The main cause is that the significant development of substructures
appears at high T, which promotes the formation of DRX nucleus. Meanwhile, the pinning
effect for the grain boundaries becomes weakened due to the annihilation of high-density
substructures, which is beneficial for DRX grain coarsening. Moreover, the DRX grains
also display the coarsening tendency with the decrease of

.
ε (Figure 5c,d). That is because

the deforming time for the consumption of substructures through the annihilation of
dislocations and the diffusion of vacancies is extended, which reduces the resistance to the
grain boundary migration. Thus, the DRX grains reflect the outstanding growth behaviors
at lower

.
ε.
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4. Constitutive Models for Predicting High-Temperature Compression Behavior
4.1. A Proposed PB Model
4.1.1. Modeling the Flow Stress Induced by Work Hardening and Dynamic Recovery

Due to the interaction of WH and DRV mechanisms, the flow stress in the initial period
of hot compression displays a sharply increasing tendency (Figure 3), and its evolution
behavior can be described utilizing the Estrin–Mecking model [55],

σrec =
[
σ2

sat +
(

σ2
y − σ2

sat

)
exp(−2ψε)

]1/2
(1)

where σrec is flow stresses, σy is the yield stress, σsat is the saturation stress, ε is strain, and
ψ is the material constant.

Commonly, the evolution characteristics of σy and σsat for alloys in hot deforming
are tightly associated with the Zener–Hollomon (Z) parameter [55]. Accordingly, the Z
parameter is usually ascertained as [32],

Z =
.
ε exp

(
Q

RT

)
(2)

.
ε =


A[sinh(ασ)]n exp

(
− Q

RT

)
, for all σ

Bσn′ exp
(
− Q

RT

)
, ασ < 0.8

C exp(βσ) exp
(
− Q

RT

)
, ασ > 1.2

(3)

where the Q is the deforming activated energy, R is the gas constant (8.314 J/mol/K), and
A, B, C, n, n′ and β are material constants.
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The peak stress (σp) is commonly used to evaluate the material constants in n [56]. The
σp is substituted into Equation (3) and it is given as [57],{ .

ε = B′σn′
p , ασp < 0.8

.
ε = C′ exp(βσp), ασp > 1.2

(4)

where B′ and C′ are material constants.
According to Equation (4), the values of n′ and β are identified by the correlations

of ln
.
ε − ln σp and ln

.
ε − σp, respectively. For the researched 7046-aluminum alloy, the

variation characteristics of ln
.
ε − ln σp and ln

.
ε − σp are revealed in Figure 6. Then, the

mean values of n′ and β are identified as 11.239 and 0.146, respectively. Accordingly, the
α = β/n′ = 0.0130 MPa−1.
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.
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.
ε− σp.

Moreover, the Q in Equation (3) is identified by [58],

Q = R

{
∂ ln

.
ε

∂ ln
[
sinh

(
ασp
)]}

T

·
{

∂ ln
[
sinh

(
ασp
)]

∂(1/T)

}
.
ε

(5)

Figure 7 reveals the variation characteristics of ln
.
ε− ln[sinh(ασp)] and ln[sinh(ασp)]−

1/T. Through the linear-fitting computation, the Q is estimated as 170.260 kJ/mol, which
is similar to that of other Al-Zn-Mg-Cu alloys [27].
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In addition, the values of σsat for alloys in hot deforming are usually determined by
the θ = dσ/dε and σ curve [59]. Figure 8 reveals the variations in σsat and σy with the Z
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parameters. As revealed in Figure 8a, the correlation of σsat and lnZ exhibits nonlinear
characteristics. Concurrently, the evolution characteristics of σy over the Z parameter are
revealed in Figure 8b. Based on the polynomial fitting method, the variations in σsat and σy
with lnZ are identified, respectively, as listed in Equations (6) and (7).

σsat = 369.837− 41.726 ln Z + 1.595(ln Z)2 − 0.017(ln Z)3 (6)

σy = 422.452− 59.247 ln Z + 2.244(ln Z)2 − 0.027(ln Z)3 (7)
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Furthermore, the material constant of ψ in Equation (1) can be determined by

ψ =
1
2ε

ln

(
σ2

sat − σ2
y

σ2
sat − σ2

rec

)
(8)

Using the experimental data, the relations of lnψ and lnZ can be determined, as
revealed in Figure 9. Clearly, the variation feature of lnψ and lnZ displays the linear
correlation. Hence, the ψ is identified as

ψ = 1998.2Z−0.164 (9)
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4.1.2. Modeling the Flow Stress Induced by Work Hardening and DRX

As the DRX is excited, the flow stress descends notably due to the mutual influences
of DRX and DRV [22]. Normally, the DRX fraction (X) is identified as [60],

X =
σrec − σdrx
σsat − σss

(10)

where σss is steady-state stress.
Moreover, the X is intimately influenced by the critical strain (εc) and can be identified

as [60],
X = 1− exp

[
−c1(ε− εc)

c2
]

(11)

where c1 and c2 are material constants.
Using Equations (1) and (11), the σdrx is determined as [55],

σdrx = σrec −
{

1− exp
[
−c1(ε− εc)

c2
]}

(σrec − σss), ε ≥ εc (12)

Clearly, the values of σdrx are primarily associated with the four factors (c1, c2, εc, σss).
Figure 10 reveals the variations in σss with the Z parameters. Using the polynomial fitting
analysis, the σss can be ascertained as

σss = 626.56− 68.729 ln Z + 2.542(ln Z)2 − 0.029(ln Z)3 (13)

Figure 10. Relation between σss and lnZ.

In addition, for alloys in hot deforming, the correlation between εc and peak strain
(εp) is commonly identified as [61],

εc = Scεp (14)

where Sc is the material constant. For Al-Zn-Mg-Cu alloys in hot deforming, the scopes of
Sc are often chosen as 0.6~0.8 [61]. Here, the value of Sc is selected as 0.8.

Figure 11 reveals the changes of εp with Z parameters. Using the linear-fitting calcula-
tion, the εp is determined as

εp = 44.964Z5.462 (15)
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Figure 11. Relation between ln εp and lnZ.

Based on Equation (11), the values of two material constants (c1 and c2) can be iden-
tified utilizing linear regression analysis of the ln(− ln(1− X)) − ln(ε − εc) plots. The
changes of the material constants (c1 and c2) with the Z parameters are indicated in
Figure 12a,b. Then, c1 and c2 can be determined as

c1 = 36.162Z−0.179 (16)

c2 = 0.078Z0.068 (17)
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According to the above analysis, the constituted PB model can be summarized as

σrec =
[
σ2

sat +
(

σ2
y − σ2

sat

)
exp(−2ψε)

]1/2

σ = σrec −
{

1− exp
[
−c1(ε− εc)

c2
]}

(σrec − σss), ε ≥ εc

σsat = 369.837− 41.726 ln Z + 1.595(ln Z)2 − 0.017(ln Z)3

σy = 422.452− 59.247 ln Z + 2.244(ln Z)2 − 0.027(ln Z)3

σss = 626.56− 68.729 ln Z + 2.542(ln Z)2 − 0.029(ln Z)3

ψ = 1998.2Z−0.164

c1 = 36.162Z−0.179

c2 = 0.078Z0.068

Z =
.
ε exp

(
170260

RT

)
εp = 44.964Z5.462

εc = 0.8εp

(18)
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In addition, the values of the material constants in Equation (18) are listed in Table 1.

Table 1. The material constants of the 7046-aluminum alloy.

Number Notation Values Note

1 Q 170.260 kJ/mol deforming activated energy
2 R 8.314 J/mol/K gas constant
3 n′ 11.239 material constant
4 β 0.146 material constant
5 α 0.0130 MPa−1 material constant
6 Sc 0.8 material constant

4.2. The GRU Machine Learning Model

As analyzed in Section 3.1, the changes in true stress with forming parameters
(T,

.
ε and ε) indicate the typical nonlinear characteristics. Due to its superior data-driven per-

formance for modeling multi-factor coupled data, a GRU model was proposed to capture
the hot compression features of the researched aluminum alloy.

Figure 13 depicts the typical architecture of the GRU model. Commonly, the GRU
model can dynamically update the implied state of the following cell in real time based
on the historical data of the preceding GRU cell. Generally, the cyclic essence of the GRU
model is reflected in the fact that model inputs (xt) and the previous output hidden state
(yt−1) are transferred to the next GRU cell. Hot compression parameters containing T,

.
ε

and ε are introduced to the network structure as the inputs, and the calculated results of
the GRU cells are σ.
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Figure 13. Schematic diagram of GRU cells.

Normally, GRU cells internally incorporate sophisticated and flexible structures, called
gate connections, as shown in Figure 13. The gate connections, predominantly both reset
gates (rt) and update gates (zt), are responsible for the learning and computational processes
of the input data in the GRU model.

Primarily, the reset gates (rt) regulate how much state information from the previous
state will be ignored in the hidden layer vector [52].

Normally, the equation of rt can be expressed as [52],

rt = σ
(
Wxrxt + Wyryt−1 + be

)
(19)
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where Wxr and Wyr are neuron connection weights of the reset gate, be is the bias of the
reset gate, and σ(t) is the sigmoid activation function, which can be indicated as

σ(t) =
1

1 + e−t (20)

where t indicates input elements.
Next, the update gate (zt) modulates how much state information from the previous

implicit layer is maintained to the candidate hidden state. The update gate (zt) can be
expressed as [51],

zt = σ
(
Wxzxt + Wyzyt−1 + bd

)
(21)

where Wxz and Wyz are neuron connection weights of the update gate, and bd is the bias of
the update gate.

The candidate hidden state (ỹt) contains the most recent time step information, and
can be updated as follows [50]:

ỹt = tanh
(
Wxs · xt + Wys · (rt � yt−1) + bs

)
(22)

where the symbol� is multiplication of elements. tanh(t) is the hyperbolic tangent function,
which can be represented as

tanh(t) =
et − e−t

et + e−t (23)

In conclusion, the final update gets the hidden state of the current time step and can
be expressed as [53],

yt = (1− zt)� yt−1 + zt � ỹt (24)

Prior to training the GRU model, the input data is normalized and the normalization
expression can be revealed as

X′ in =
Xin − X(min)

in

X(max)
in − X(min)

in

(25)

where X′ in is the normalized data, Xin is the original data, and X(max)
in and X(min)

in are the
maximum and minimum values of Xin, respectively. After the normalization of input data,
the corresponding values (T′,

.
ε
′, ε′) are collapsed into sequences as training inputs. Here,

the experimental data utilization was split at random into 80% for model training and the
remaining 20% for model testing and validation.

Commonly, the excellent predictive accuracy and rapid response of the GRU model
are impacted by the diverse hyperparameters. The numbers of hidden layers and neurons
in the hidden layers, the initial learning rate and the batch size are the main alterable
hyperparameters of the GRU model. Various hidden layers can promote model accuracy,
but it has been demonstrated that too many hidden layers will lead to overfitting [51]. In
this paper, the number of hidden layers was set to three, balancing accuracy and overfitting.
Additionally, the number of neurons in the hidden layers was set to decrease layer by
layer. The learning rate and the batch size of the GRU model play the critical roles [62].
A higher initial learning rate or batch size allows for quicker training but may lead to a
less accurate and unstable training. For further probing the connection between the three
hyperparameters and the forecast results, an orthogonal experiment table with three factors
and four levels was devised, as shown in Table 2. Based on that orthogonal experiment
table, the calculated results of L16(34) are shown in Table 3. Here, the model accuracy is
assessed by the validation loss, which is characterized using the mean squared error (MSE).
The MSE equation is,

MSE =
1
N

N

∑
i=1

(Ei − Pi)
2 (26)
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where N is the number of values, Ei is the experimental stress, and Pi is the predicted stress.

Table 2. Orthogonal experiment table.

Levels
Alterable Hyperparameters

Initial Learning Rate Batch Size Numbers of Neurons in Hidden Layers

Case1 0.0001 8 120/100/80
Case2 0.001 16 100/80/60
Case3 0.01 32 80/60/40
Case4 0.1 64 60/40/20

Table 3. Results of orthogonal devised list.

Experimental Serial Number
Alterable Hyperparameters

MSE
Computing

Time(s)Initial Learning Rate Batch Size Numbers of Neurons in
Hidden Layers

1 0.0001 8 120/100/80 6.404 486.50
2 0.0001 16 100/80/60 9.975 246.07
3 0.0001 32 80/60/40 11.514 115.57
4 0.0001 64 60/40/20 13.563 75.64
5 0.001 8 100/80/60 2.279 434.68
6 0.001 16 120/100/80 6.227 274.20
7 0.001 32 60/40/20 6.829 110.30
8 0.001 64 80/60/40 6.406 286.22
9 0.01 8 80/60/40 2.798 496.59

10 0.01 16 60/40/20 3.151 237.23
11 0.01 32 120/100/80 2.254 263.03
12 0.01 64 100/80/60 1.955 124.73
13 0.1 8 60/40/20 32.259 458.46
14 0.1 16 80/60/40 52.799 217.19
15 0.1 32 100/80/60 44.525 149.15
16 0.1 64 120/100/80 45.622 139.82

Figure 14 describes the variations of MSE and computing time under different hyper-
parameters. On the one hand, the MSE of the GRU model decreases to a minimal value
when the initial learning rate increases from 0.001 to 0.01. On the other hand, the MSE
value begins to violently fluctuate as the initial learning rate ascends or declines; thus,
the perfect learning rate can be set at 0.01. Meanwhile, as the batch size increases, the
computation time can be effectively reduced without affecting the accuracy of the GRU
model. Hence, the batch size was determined as 64. Summarily, the values of the initial
learn rate, batch size and numbers of neurons in hidden layers were selected as 0.01, 64
and 100/80/60, respectively.
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between the tested compression stresses and the predicted ones utilized by the PB model 
was discovered at 300 °C (Figure 15a). However, the compression stresses preeminently 
fit the forecasting results as the T  reached 350 °C or above (Figure 15c,d). The primary 
reason for these phenomena was that the microstructural evolution mechanisms are inti-
mately connected with the compression parameters [23]. The DRV behavior acts as the 
predominant softening mechanism in the hot deforming process of a 7046-aluminum al-
loy when the T  is less than 350 °C. Nevertheless, the DRX characteristics are activated 
when the T  reaches 350 °C or above, and they evolve into the predominant softening 
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4.3. Comparison and Validation

Based on the proposed PB and GRU models, the hot compression stress–strain features
for the 7046-aluminum alloy are reconstituted. Figure 15 depicts the comparison analysis
of the flow stress predicting ability of the proposed PB and GRU models. Clearly, the
tested hot compression stresses match very well with the values predicted by the GRU
model. The primary reason was that the GRU model has an outstanding ability to describe
nonlinear correlations between input values and output results [54]. Moreover, a disparity
between the tested compression stresses and the predicted ones utilized by the PB model
was discovered at 300 ◦C (Figure 15a). However, the compression stresses preeminently fit
the forecasting results as the T reached 350 ◦C or above (Figure 15c,d). The primary reason
for these phenomena was that the microstructural evolution mechanisms are intimately
connected with the compression parameters [23]. The DRV behavior acts as the predomi-
nant softening mechanism in the hot deforming process of a 7046-aluminum alloy when
the T is less than 350 ◦C. Nevertheless, the DRX characteristics are activated when the T
reaches 350 ◦C or above, and they evolve into the predominant softening mechanism for
the 7046-aluminum alloy. Because of the appearance of varying microstructural evolution
mechanisms, the variations in compression stresses over deforming parameters exhibit
complicated and non-linear features. Thus, the forecasting accuracy of the PB model is
relatively lower than that of the GRU model.
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In addition, the average absolute relative error (AARE) and the correlation coefficient
(CC) were calculated to further estimate the forecasting ability of the PB model and the
GRU model. The values of AARE and CC are determined as

AARE(%) =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100% (27)

CC =

N
∑

i=1

(
Ei − E

)(
Pi − P

)
√

N
∑

i=1

(
Ei − E

)2 N
∑

i=1

(
Pi − P

)2
(28)

where N is the number of the data; Ei and Pi are the testing stresses and forecasting ones,
respectively; and E and P are the mean values of Ei and Pi, respectively.

The further correlation analyses of the tested stresses and the results forecast by the
constructed PB and GRU models are shown in Figure 16. The values of the AARE for the
PB model and the GRU model are determined to be 4.681% and 2.065%, respectively, which
are less than 5.0%. Concurrently, the CC values for the PB model and the GRU model are
determined as 0.9989 and 0.9996, respectively. The relatively small AARE and large CC
show that both the PB model and the GRU model enjoy sufficient precision to capture the
hot compression characteristics. Additionally, it can also be inferred that the proposed
GRU model possesses better forecasting ability for the hot compression behaviors of a
7046-aluminum alloy than that of the PB model.
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Similar research on the hot tensile characteristics of the 7046-aluminum alloy can be
found in the authors’ previous study [48]. An improved Hensel–Spittel–Carofalo (HSC)
model and a long short-term memory (LSTM) model are established to reconstruct the
high-temperature tensile features. The CC and AARE values of all four models are listed in
Table 4. Comparing the four constitutive models, it is clear that the ANN models, including
the LSTM model and the GRU model, had better forecast performance than the PB model
and the HSC model. However, the PB model has the superior capability for predicting the
hot forming behaviors for the 7046-aluminum alloy.



Materials 2023, 16, 6412 15 of 18

Table 4. The evaluation indicators of constitutive models.

Constitutive Model
Evaluation Indicators

CC AARE

PB model 0.9989 4.681%
GRU model 0.9996 2.065%

Improved HSC model [48] 0.989 4.58%
LSTM model [48] 0.998 2.16%

5. Conclusions

Hot compression characteristics and microstructural evolution mechanisms for
the 7046-aluminum alloy were revealed. Some prominent conclusions of this study are
as follows:

(1) Hot flow characteristics of a 7046-aluminum alloy are intimately associated with
compression parameters. As compression temperature ascends or the strain rate
descends, the flow stresses display the dominant reducing characteristic.

(2) Microstructural evolution characteristics are intensely influenced by the compression
parameters. The formation/interaction of substructures exhibits the intensified trend,
while the extension of DRX grain boundaries becomes inhibited at a high strain rate
or low compression temperature.

(3) A PB model and a GRU model were proposed to describe the hot compression
behaviors of the 7046-aluminum alloy. The relatively smaller AARE and larger CC
demonstrated that both the proposed PB model and the GRU model can precisely
achieve the reconstitution of hot compression behaviors in the 7046-aluminum alloy.
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