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Abstract: The development of techniques to improve the welding of super duplex steels is necessary
in order to ensure that the phase balance and properties of the material are not affected during this
process. Hybrid arc-laser welding is a perfect combination of the advantages of both processes,
producing deeper weld beads with more balanced phases than the pulsed laser process. Here,
the objective was to improve the corrosion resistance of UNS S32750 weld beads by increasing
the volumetric austenite percentage in the fusion zone (FZ) with a hybrid process of GTAW (gas
tungsten arc welding) and pulsed laser Nd-YAG (neodymium-doped yttrium aluminum garnet).
Welds were performed in bead on plate conditions with fixed laser parameters and a varying heat
input introduced through the GTAW process. Additionally, welds within a nitrogen atmosphere
were performed. After base metal characterization, an analysis of the FZ and heat affected zone were
performed with optical microscopy, scanning electron microscopy and critical pitting tests (CPT).
The synergy between the thermal input provided by the hybrid process and austenite-promoting
characteristic of nitrogen led to a balanced volumetric austenite/ferrite fraction. Consequently, the
results obtained in CPT tests were better than conventional welding processes, such as laser or
GTAW solely.

Keywords: super duplex; pulsed laser; GTAW; hybrid welding; UNS S32750; austenite

1. Introduction

Super duplex stainless steels have characteristics that combine good mechanical prop-
erties and corrosion resistance, as they consist of a two-phase structure with 50% ferrite (δ)
and 50% austenite (γ) volumetric fractions. Therefore, the development of techniques to
maintain the properties of super duplex steels is necessary to ensure that the phase balance
and material properties are not severely impaired in this process.

The welding process leads to microstructural changes, unbalancing the phase fractions
in the welded joint and surrounding areas, reducing the mechanical and corrosion resistance
in these regions. Moreover, cracks may occur due to the thermal cycles involved in the
welding process, with localized heating and cooling, and expansion and contraction [1].
Welding processes, such as GTAW (gas tungsten arc welding) and pulsed Nd-YAG Laser
(neodymium-doped yttrium aluminum garnet), can be applied in super duplex plates, as
long as welding parameters that promote phase balance are used. Previous studies showed
that the use of these processes, controlling only the heat input, produce microstructures
with a higher percentage of ferrite [2,3]. The reason is the very high cooling rate, avoiding
the transformation of primary ferrite into austenite [4,5]. Increasing the amount of δ in the
welded joint is detrimental to the corrosion resistance characteristics for several reasons.
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Ferrite has lower pitting resistance equivalent numbers (PREN) than austenite, as it
has lower levels of N, favoring the pitting corrosion and also promoting lower values in
critical pitting temperature (CPT) tests [6–8].

The possible existence of depleted Cr regions due to the precipitation of Cr nitrides
close to the δ grain boundaries is critical for corrosion properties as well. Furthermore, δ is
rich in ferritizing elements (Cr, Mo, Si) and its formation during the welding cycle can lead
to a decrease in the Cr content in adjacent metal phases, which justifies the lower corrosion
resistance when there is more ferrite than austenite in the fusion zone (FZ) [6]. Another
reason for ferrite to be controlled at the welded joint is that it reduces toughness at low
temperatures [7].

As shown in the Cr–Ni–68%Fe pseudobinary diagram (Figure 1), the solidification
of super duplex steels starts with primary ferrite, which turns into austenite [3,7–9]. The
addition of nitrogen in the molten pool favors the formation of austenite because it acts
by displacing the solvus line of the Cr–Ni–68%Fe pseudobinary diagram [10], increasing
(hatched region) the biphasic area (austenite (γ) + ferrite (δ)) in Figure 1.
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Figure 1. Cr–Ni–68%Fe pseudobinary diagram adapted by the authors [11]. The addition of N2

expands the biphasic δ + γ field.

In other words, the addition of nitrogen in the FZ of the material provides more time
for the ferrite (δ) to become austenite (γ), increasing the volumetric percentage of γ present
in the weld bead.

A previous study [1] constructed the temperature profile during laser welding on a
duplex steel sheet, concluding that the material cools down quickly, inhibiting the formation
of austenite in the welded joint, as the FZ reaches 300 ◦C in less than 1 s after welding, being
far from the austenite formation temperatures shown in Figure 1. In this sense, the graphs
in Figure 2 demonstrate the effects of nitrogen in increasing the time for γ formation during
Nd-YAG pulsed laser welding, hybrid GTAW–pulsed laser and hybrid GTAW–pulsed laser
with nitrogen addition. Furthermore, the increase in heat input ensures a greater absorption
of nitrogen in the FZ [12].

When comparing the graphs in Figure 2, we conclude that adding nitrogen to the
hybrid GTAW pulsed laser process can be an excellent solution: with the heat input from
the GTAW process, which already promotes the formation of austenite, there will be a
longer time and more energy for nitrogen absorption, promoting a higher percentage of
austenite in the FZ, improving its resistance to corrosion and, at the same time, obtaining a
deeper penetration with the pulsed laser process.
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Then, the objective was to obtain, through the hybrid GTAW (gas tungsten arc weld-
ing)/pulsed Nd-YAG (neodymium-doped yttrium aluminum garnet) laser welding process,
a volumetric fraction of at least 50% austenite in the FZ and, consequently, better results in
critical pitting temperature (CPT) tests than the single pulsed laser welding in the super
duplex stainless steel UNS S32750.

The novelty of this work is to demonstrate the viability of hybrid GTAW laser welding
to control the volumetric fraction of the ferrite/austenite phases in the FZ, revealing that
it is possible to obtain balanced phases in super duplex steel sheets with a continuous
welding process.

2. Materials and Methods

The base material was a UNS S32750 super duplex stainless steel sheet of 3.0 mm
thickness with nominal chemical composition shown in Table 1.

Table 1. Chemical composition of UNS S32750 super duplex steel.

Composition (%) C Cr Cu Mo Mn N Ni P S Si

Max 0.030 26.0 0.5 5.0 1.2 0.32 8.0 0.035 0.02 0.8

Min - 24.0 - 3.0 - 0.24 6.0 - - -

The weld beads were made with a Nd-YAG pulsed laser (neodymium-doped yt-
trium aluminum garnet) process (LA and LN), and a hybrid GTAW (gas tungsten arc
welding)/Nd-YAG pulsed laser (H20, H40, H20N and H40N) process, all in bead on plate
conditions (“N” indicates samples with nitrogen addition). To perform the hybrid welding,
a GTAW torch from a rectifier source was assembled with the laser turret and N2 nozzle.
They worked simultaneously according to the parameters set out in Table 2. The process
was automated through a holder that fixed the plate to be welded, moving it under the
GTAW torch, N2 nozzle and laser aim in a linear movement at a constant and controlled
speed, as shown in Figure 3a. The laser aim was focused on the surface and directed
immediately after the GTAW torch, so that it shot after formation and into the GTAW
molten pool in the metal, providing greater and deeper heating of the sheet and increasing
N2 absorption. The working distance was 2 mm (Figure 3b).

The required conditions for the pulsed laser process were defined as the parameters
that obtained an approximate depth of 1.5 mm (half the thickness of the UNS S32750 steel
plate). In this way, it was possible to reach a minimum penetration for the sheet to be joined
on both sides through the proposed process. These parameters were reached experimentally,
controlling the frequency, temporal width and peak power, so that weld bead depths of
1.5 mm in the plate were obtained at a rate of 70% overlap. Furthermore, previous works
were considered to establish the parameters of the welding processes [13–17]. The GTAW
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setup was an AWS EWTh2 tungsten electrode with 2.0 mm diameter, 45◦ angle, 2 mm arc
length and direct current. While welding, the voltage was around 10 V and the heat input
from GTAW process was considered with a 75% efficiency [18]. Table 2 shows the welding
conditions for all samples.

Table 2. Welding parameters.

Weld Bead Welding
Speed (mm/s)

Pulsed Laser Parameters GTAW Parameter
Total Heat

Input (J/mm)

Gas Flow Rate (L/min)

Frequency
(Hz)

Peak Energy
(kW)

Time
Width (ms) Current (A) Ar N2

LA 2 6 2.5 10 - 75 15 0
LN 2 6 2.5 10 - 75 0 18
H20 2 6 2.5 10 20 150 15 0
H40 2 6 2.5 10 40 225 15 0

H20N 2 6 2.5 10 20 150 15 18
H40N 2 6 2.5 10 40 225 15 18
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Then, each weld bead was cut into three sections, which were metallographically
prepared using sanding and polishing, providing three samples of each welding condition.
The analysis of the base metal, fusion zone and heat affected zone (HAZ) was performed
using optical microscopy (OM) and scanning electron microscopy (SEM), after etching
these samples with Beraha’s reagent for 10 s [19]. The phase balance in volumetric fraction
percentage (%V) was evaluated with the software ImageJ, with the average and standard
deviation of the three sections of each condition obtained. In the same way, their geometry
was measured and calculated. In sequence, the top surface of each weld bead was cleaned
and protected with a heat resistant varnish, leaving a delimited area of 1 cm2 exposed for
critical pitting temperature (CPT) tests. Finally, the CPT tests were performed according to
ASTM G150 standards [20] on the surfaces of each weld bead.

3. Results and Discussion
3.1. Base Metal

The characterization of the base metal as received was carried out by analyzing the
volumetric fraction of ferrite (δ) and austenite (γ). Observations using MO and SEM
revealed a volumetric fraction of each phase of around 50% and a typical microstructure of
super duplex stainless steel (Table 3), consisting of a ferrite matrix with elongated austenite
islands in the lamination direction (Figure 4), as obtained by previous authors [21,22]. The
CPT test (Figure 5a) obtained a value of 92 ◦C (Figure 5b), which was compatible with the
literature [23–25]. Thus, the base metal was in perfect condition for the proposed study.
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Table 3. Base metal phase balance.

Austenite (%V) Ferrite (%V) Standard Deviation CPT (◦C)

49.9 50.1 ±0.3 92
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microstructure, with elongated geometry due to the lamination process; (b) Detail of austenite in
high relief and ferrite in low relief due to Beraha etching.
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Figure 5. (a) Base metal surface after the CPT test. Arrows indicate pitting corrosion. (b) CPT test
graph of the base metal, showing the current reaching 100 µA at a temperature of 92 ◦C.

3.2. Weld Beads

All weld beads presented a good surface finish without visual defects, but the weld
beads with nitrogen addition (LN, H20N and H40N) had a lighter and brighter surface
(Figure 6). In Table 4, there is a summary of the results obtained, while Figure 7 shows the
cross sections of each weld bead.

Comparing the weld beads geometries, the hybrid process was able to produce joints
with a higher depth when compared to the single laser process, allowing the welding
of thicker plates (Table 4). The microstructure in the FZ of weld beads LA and LN was
composed of primary ferrite (δ), whose orientation followed the cooling direction dur-
ing welding (Figure 7). These characteristics were in accordance with the descriptions
of previous authors [26,27], who claimed that in materials with a high Cr/Ni ratio the
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solidification in FZ firstly produces only ferrite, followed by nucleation of austenite at the
grain boundaries of the already solidified ferrite, in a solid-state transformation (Figure 8a).
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Table 4. Weld bead phase balance in percentage of volumetric fraction (%V); geometry obtained, with
all values followed by the standard deviation (±); and CPT results.

Weld Bead Austenite (%V) Depth (mm) Width (mm) CPT (◦C)

LA 7.3 ± 1.0 1.75 ± 0.03 1.38 ± 0.04 26
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H40N 51.3 ± 7.7 2.67 ± 0.02 3.54 ± 0.05 74

The pulsed laser conditions for super duplex steels are known for producing a weld
bead with a low content of austenite [2] and a FZ microstructure based on a ferritic matrix
and much less austenite than the base metal. In addition, Figure 8b (LA) shows intragran-
ular austenite bands due to overlapping laser pulses, which provided more energy for
their nucleation inside the grains [28]. The heat input and the short time of the laser pulse
did not keep the material at the required temperature for long enough for the large scale
transformation of ferrite to austenite. Some regions of the FZ did not even show visible
austenite grains in OM (Figure 9a). Comparing LA and LN conditions (Table 4), there
was no significant difference in the austenite %V results, because in the LN condition, the
short laser pulse time and the low heat input were not sufficient to allow the N2 to interact
with the welding pool. Thus, in all the weld beads formed with pulsed laser only, the %V
of austenite, considering also specific regions of the FZ, varied from 0.01 to 8%, which
corroborated findings from previous studies that showed a decrease in austenite %V in the
FZ in processes with low heat inputs and fast cooling rates [13–17].

In Figure 9b the HAZ was very small, being imperceptible, and it was not possible to
delimit it. Therefore, we confirmed that the pulsed Nd-YAG laser welding on UNS S32750
steel produced unbalanced joints. The high volumetric fraction of ferrite found in the FZ
(Table 4 and Figure 7) can be detrimental to corrosion resistance and may have caused the
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poor performance in CPT tests, where a lower content of austenite in the FZ resulted in
lower CPT values of around 26 ◦C for LA and 27 ◦C for LN.
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In another way, when applying the hybrid process in the H20 and H40 conditions, the
heat input from GTAW provided more energy to the solid-state transformation of ferrite
to austenite, increasing the austenite %V in the FZ, as shown in Table 4 and Figure 10
(H20 and H40). In the H20N and H40N conditions, the N2 flow directed to the metal
molten pool resulted in a higher %V in the FZ (Figure 10) because the GTAW welding
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pool provided more time and a higher energy for the nitrogen to penetrate in the FZ [12],
while the laser shots allowed the nitrogen to penetrate deeper into the weld bead, as shown
in Figure 7, where each laser pulse in the H20N condition left one deeper austenite layer
in the section. This phenomenon is clear to see when comparing the H20N and H40N
conditions: increasing the GTAW current in the weld bead (Figure 10) produced a high
content of austenite, reaching around 50% of each phase.
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Figure 8. OM of LA weld bead showing (a) intergranular γ and (b) the effect of laser overlap on
γ dispersion.
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As in the LA and LN conditions, the microstructure morphology in the FZ of hybrid
weld beads showed epitaxial growth of the grains in the cooling direction (Figures 7–9). The
morphology of austenite present in the hybrid weld’s FZ (Figure 10) was also characteristic
of intergranular and intragranular nucleation, but it also had some regions with austenite
growth occurring in plates, known as Widmanstatten γ. The latter does not form at lower
heat inputs, such as those found in LA and LN weld beads, because it needs more energy, as
it results from the detachment of austenite plates previously formed in the grain boundaries
(intergranular γ) [13,28–30].

The results of the CPT tests were improved with the hybrid welding (Figure 11) due
to the increase in the %V of austenite in the FZ, reaching 37 ◦C (H20) and 45 ◦C (H40).
With the addition of N2 in hybrid welding, values of 67 ◦C (H20N) and 74 ◦C (H40N) were
obtained for the same reason. Thus, N2 and an increased thermal input promoted better
results in the CPT tests.
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reaching 100 µA.

In brief, when compared to the pulsed laser or GTAW processes [2,31,32], all hybrid
welds with nitrogen addition presented a higher volumetric fraction of austenite in the FZ,
resulting in a good corrosion resistance, reaching higher values (74 ◦C in the H40N) than
the pulsed laser welding (Figure 11). The hybrid welding with N2 addition proved to be
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effective to promote the interaction of the N2 with the fusion pool, increasing the austenite
%V in the fusion zone, reaching more than 50%, and improving the corrosion resistance of
the joint.

4. Conclusions

The low heat input of pulsed laser welding did not allow primary ferrite to transform
into austenite. Furthermore, the energy was not sufficient for nitrogen to interact with the
welding pool, meaning that its addition was not effective. Consequently, the pulsed laser
conditions analyzed produced weld beads with a low content of austenite, impairing the
corrosion resistance and achieving low values in the CPT tests.

In comparison to the pulsed laser welding process with the same parameters, the
greater heat input of the GTAW process, which keeps the metal temperature in the range
of austenite formation for longer, resulted in a higher volumetric percentage of austenite
when applying the GTAW pulsed laser welding in UNS S32750. Furthermore, the hybrid
joints corrosion resistance was improved through hybrid welding, as shown in the CPT
test results. The hybrid process allowed the nitrogen to interact with the welding pool and
proved that nitrogen addition can be beneficial to the fusion zone, increasing the austenite
volumetric fraction and corrosion resistance, and achieving a better performance in the CPT
tests. Moreover, the hybrid welding promoted deeper fusion zone penetration, producing
deeper weld beads when compared to using GTAW or pulsed laser only. The morphology
of austenite present in the FZ of all weld beads was characteristic of intergranular and
intragranular nucleation, but in the hybrid welding the presence of Widmanstatten γ was
noticed due the higher heat input.

The results showed an innovative manufacturing process with known parameters
providing excellent corrosion properties in the welded beads. The correct adjustment
of welding conditions can promote a high production rate in industry, as the welded
joints could be produced with the desired properties without the need for subsequent
heat treatments.

For future works, we suggest obtaining the elemental composition of the FZ. This
could be useful to verify the amount of nitrogen absorbed. Moreover, performing hybrid
welding beads with an increase in the heat input above that used in this work would allow
thicker plates to be welded.
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