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Abstract: The use of magnesium alloys in various industries and commerce is increasing due to their
properties such as high strength and casting properties, high vibration damping capability, good
shielding of electromagnetic radiation and high machinability. Conventional machining methods
can, however, pose a risk of ignition. AWJM is a safe alternative to conventional machining, but the
deflection and vibration of the water jet can affect surface quality. Therefore, the aim of this study
was to investigate the effects of selected AWJM parameters on the surface quality and vibration of
machined magnesium alloys. Jet deflection angle, surface roughness parameters and vibration during
AW]JM were investigated. The findings showed that higher skewness occurred at a lower abrasive
flow rate, while higher average values of the Sku roughness parameter were obtained at m, = 8 g/s in
the range of 60-140 mm/min. It was also observed that higher vibration values occurred at m, =8 g/s.
The input parameters for creating an artificial neural network (ANN) model used in this study were
the cutting speed v¢ and the mass flow rate m,. The results of this study provided valuable insights
into ways of ensuring a safe and efficient machining environment for magnesium alloys. The use of
ANN modeling for predicting the vibration and surface roughness of AZ91D magnesium alloy after
water-jet cutting could be an effective tool for optimizing AWJM parameters.

Keywords: water-jet cutting; magnesium alloys; vibration; roughness; simulations; artificial neural
networks ANN

1. Introduction

Among the different structural materials, magnesium alloys offer both energy effi-
ciency and environmental benefits, which makes them one of the most versatile choices.
Magnesium is characterized by high strength and casting properties, high vibration damp-
ing capacity, good electromagnetic radiation shielding [1] and high machinability, which
means that even very complicated parts can easily be machined with high dimensional accu-
racy [2]. Various industries and commercial sectors, such as automotive, aviation, defense,
biomedical, sporting equipment and consumer electronics, can benefit from magnesium-
based materials (alloys and composites) [3]. Magnesium is characterized by a hexagonal
crystal lattice, which results in its poor ductility, so most magnesium alloy parts are pro-
duced by casting processes. These parts often require machining [4]. Machining processes
for magnesium alloys include turning [5], drilling [6], threading [7], milling [8] and water-jet
cutting [9].

The conventional machining of magnesium-based materials poses ignition problems.
In turning and milling processes where the machining temperature reaches about 450 °C,
the risk of ignition increases. To ensure the safest possible machining environment, abrasive
water jet machining (AW]JM) can be used for magnesium alloys [10]. The surface after
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AW]M is very smooth, so finishing is not required. In addition, the AWJM process has no
effect on the condition of workpiece material (apart from plastic deformation), as there is
no heat-affected zone (contrary to laser and plasma cutting), which maintains the integrity
of the alloy structure [11]. The input parameters of AW]JM, such as hydraulic parameters
(orifice diameter, water pressure), abrasive parameters (abrasive flow rate AFL, abrasive
material and size) and cutting parameters (traverse speed TS, stand-off distance SOD, angle
of attack) have been determined in numerous studies [9,12-15] to be the factors defining
surface quality after AWJM. Therefore, this study investigates the impact of specific AWJM
parameters on the surface quality and vibration of magnesium alloys to ensure a safe
machining environment.

Water jet deflection occurs at a certain thickness of material treated by AWJM. This
results from the fact that most water jet energy removes the upper layer of the machined
sample, and the remaining energy is unable to cut the material as effectively as at the
beginning of the process (on the upper side of the sample) [16]. Figure 1 shows the situation
when the depth of water jet impact in the material is increased, and the quality of the
machined surface becomes worse. There are visible machining marks and striations on the
deeper surface, which results from an uneven distribution of kinetic energy of the abrasive
material.

Upper area without visible
machining marks

Lower area with visible
machining marks and striations

Figure 1. Surface of an AZ91D specimen after AWJM.

One of the indicators analyzed in this paper is the deflection angle of the jet. This
aspect has not been investigated in many previous works, as most studies focus on the kerf
angle depending on the kerf depth and width [17]. Khan and Gupta [18] considered the
cutting angle for low alloy steel EN24 samples of different thicknesses. The results showed
that the angle increased with increasing sample thickness. Alsoufi et al. [19] studied the
influence of different technological parameters of water-jet machining on the water-jet
angle. It was found that the dimension of the area of visible machining marks and their
angle increased with increasing the cutting traverse rate and that there was a direct relation
between the technological parameters and the jet deflection angle.

Another indicator analyzed in this paper is vibration occurring during AWJM. In the
AW]JM process, the abrasive water-jet particles hit the machined surface of the workpiece
at high speed, which generates vibration in the workpiece and, additionally, acoustic sig-
nals [20]. Perzel et al. [21] investigated the vibration generated by abrasive water-jet (AW])
cutting of stainless steel with different abrasive mass flow rates of 250 and 400 g min~! and
a constant traverse speed. Based on the measured amplitudes and frequency spectrum, a
relation was established between the input factors of AWJM and the vibration and acoustic
emissions. Ty¢ et al. [22] analyzed the vibration signals generated in the AW] cutting of
hard-to-machine materials (RSt 37-2 steel) with five different sample thicknesses. In the
study, they used three accelerometers mounted on a special stand for monitoring vibration.
They found that the root mean square (RMS) value of a vibration signal was related to
traverse speed. The RMS increased with the increasing traverse speed and depended on the
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direction of vibration measurement by the accelerometer. Krenicky and Rimar [23] studied
vibrations to analyze the operational parameters of AW]J cutting. They divided vibration
into exogenous (workpiece vibrations caused by the jet interacting with the workpiece,
equipment and water in the tank) and endogenous (vibrations of the jet coming from the
cutting head). Vibrations generated during the tests were reduced by using nozzle stabiliza-
tion and isolation from the positioning system vibration, and for the exogenous vibration,
by the application of a specially designed fixing device for workpiece mounting. A study
conducted by Karminis-Obratariski et al. [24] aimed to determine whether vibration mea-
sures could be used for AW] effectiveness monitoring. The study found that even though
there was no direct correlation between process effectiveness and vibration amplitude, a
tendency was observed for average vibration amplitude to increase with depth and width.
This phenomenon was justified by the occurrence of higher kinetic energy and momentum
of the abrasive water stream.

The quality of a machined surface can be measured based on surface roughness, wavi-
ness and surface defects. Surface roughness is one of the machining process efficiency eval-
uation indicators and hence is the most widely used [25]. Roughness measurements may
relate to 2D surface profile parameters and stereometric characteristics of surface roughness
(8D) [26]. The parameters Ra (arithmetic mean profile deviation) and Rz (cusp height of the
profile) are most often analyzed; however, for a full description of the geometrical condition
of the surface, other roughness parameters should also be taken into account. The factors
directly influencing surface roughness are technological parameters such as traverse speed,
material grade and thickness, abrasive flow rate and abrasive size. Loschner et al. [27]
investigated the influence of cutting speed on surface roughness, its quality and the pres-
ence of machining marks. They found that cutting speed and distance from the upper
cut surface edge had the greatest impact on surface roughness. Skoczylas et al. [28] also
found that cutting speed had the greatest impact on surface roughness, regardless of the
type of material. The surface roughness in the entry and exit zones was examined, and it
was found that the entry zone was characterized by lower roughness (Ra parameter was
analyzed). However, when the cutting process was conducted with low cutting speeds, the
differences in surface roughness in the entry and exit zones were very small; nevertheless,
the differences would increase with increasing speed. Deaconescu et al. [29] conducted a
study aimed at optimizing the AW] process for stainless steel to obtain minimum roughness
parameters. Their study showed that increased water-jet pressure led to reduced surface
roughness. To ensure good surface quality, they recommended using low traverse speed
and stand-off distance values.

Artificial intelligence methods, including artificial neural networks, have been increas-
ingly used in research. Artificial neural networks are widely used in various predictive
applications. The ability of ANN models to predict non-linear systems and the ease of
their implementation contributed to their increased use for solving research problems con-
nected with aspects, such as the prediction of, e.g., hot flow stress [30] or high-temperature
deformation of steel [31], chemical composition modeling [32], industrial electrical tomogra-
phy [33], electrical impedance tomography [34]. Modeling has also been applied in studies
on abrasive water-jet machining. Ganovska et al. [35] analyzed a selection of roughness
parameters (Ra, Rq and Rz), technological parameters (traverse speed, abrasive mass flow
rate) and vibration in the AWJC process for stainless steel. Furthermore, the equations
for predicting surface roughness parameters were derived. It was found that the surface
topography depended on the traverse speed of the cutting head. Ficko [36] also analyzed
the impact of machining stainless steel by AW] with selected technological parameters
(traverse speed, depth of cut and abrasive mass flow rate) on the surface roughness (Ra) of
this material. The obtained test results were used for creating a predictive model of the Ra
parameter with the use of an artificial neural network (ANN). It was found that the pro-
posed model could be applied to optimizing AW] process parameters. Zagorski et al. [11]
investigated the surface condition of alloy AZ91D by predicting roughness parameters
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Ra, Rz and RSm after AWJM conducted with variable technological parameters, notably a
cutting speed v¢ and an abrasive flow rate m,.

A review of the literature showed that the majority of previous studies on water-jet
cutting address the problem of surface quality based on the evaluation of 2D roughness
parameters. However, it is also worth considering 3D roughness parameters for a more
accurate assessment of surface quality. Rku, Rsk, Sku and Ssk are important from the point
of view of operating parameters, as they affect the tribological properties of a surface, such
as friction, wear and wear resistance. In fact, 3D roughness parameters can better reflect the
actual properties of the surface and their impact on downstream processes such as adhesion
and corrosion. The quality of the surface after water jet cutting depends on many factors,
including the applied technological parameters of the process. Therefore, it is important
that these parameters should be selected correctly to obtain the desired surface quality and
to ensure a safe and efficient machining environment for magnesium alloys.

2. Materials and Methods

The main aim of this study was to determine the influence of variable technological
parameters of AWJM, such as cutting speed and abrasive mass flow rate, on the vibration
and surface quality of magnesium alloy AZ91D. Results of the study will make it possible
to define optimum technological parameters of AWJM, ensuring high surface quality and
machining safety. A research plan is presented in Figure 2.

CONSTANT
PARAMETERS
e
2 z
=8 P
INPUT DATA ; E = OUTPUT DATA
CUTTING SPEED OBJECT OF T IREIOGHNESS
> STUDY: >
ABRASIVE MASS _— VIBRATIONS .
FLOWRATE pe—
r magnesium alloy ANGLE

Figure 2. Scheme of the research plan.

2.1. Materials and Machining Method

Alloy AZ91D, which is the most widely used magnesium cast alloy, was the subject of
this research. AZ91D bars were machined on a WaterJet Combo abrasive water jet cutter
(Legnica, Poland) equipped with a CNC ECS 872 controller. This machine allows cutting
various types of materials with an abrasive water jet and a plasma jet. As a result of the
AW]JM process, the following sample dimensions were obtained: 100 x 56 x 20 mm, where
the height of the sample was equal to the cutting height and was 56 mm. The abrasive
medium was GARNET 80 (almandine garnet). The diameter of the nozzle was 0.7 mm,
the distance between the nozzle and the material was 3 mm, the length of the nozzle was
100 mm, the jet impact angle was 90° and the water pressure was 350 MPa.

Variable technological parameters of the AWJM process included a cutting speed v of
5-180 mm/min and an abrasive flow rate m, of 4 and 8 g/s. The values of these parameters
were determined experimentally based on previous studies and literature reviews, and
they are listed in Table 1.
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Table 1. Technological parameters of the tests.
Constant Technological Parameters
Abrasive Garnet 80 mesh
Nozzle length 100 mm
Nozzle width 60 mm
Stand-off distance 3 mm
Pressure 350 MPa
Variable Technological Parameters
Cutting speed v 5,20, 40, 60, 80, 100, 120, 140, 160, 180 mm /min

Abrasive flow rate m, 4and 8g/s

2.2. Measurement Methods
2.2.1. Vibration

During the AWJM of AZ91D magnesium alloy samples, vibration was measured on a
test stand (Figure 3) for each of the variable parameters. A Sequoia sensor used in the tests
was located in the central part of the sample, at a distance of 100 mm from the edge of the
sample. The distance of the sensor from the cut surface was maintained constant for every
tested parameter. The vibration measurements were made for all technological parameters
applied in the study.

vibration
Sensor

cutting
head

workpiece

Figure 3. Test stand for vibration measurement.

2.2.2. Surface Roughness

The AWJM process was followed by measurement of 2D and 3D surface roughness.
The measurements of the 2D surface roughness of the samples after the AWJM process
conducted with variable technological parameters were made on the Hommel T1000 (Jena,
Germany) contact profilometer in five repetitions at two measuring points. The first mea-
surement point was located in the middle of the sample height, and the other in the area
of water jet entry. The roughness measurements were made with the following techno-
logical parameters: ISO 11562 filter (M1), sampling length Lc = 0.8 mm, measuring length
Lt = 4.8 mm, traverse feed velocity v after AWJM = 0.5 mm/s. The sample surface scan
area was 1.6 x 1.6 mm with 100 scan steps. In the tests, the following 2D surface rough-
ness parameters were measured: Rku and Rsk. Rku and Rsk are roughness parameters
describing surface properties. They are widely used to determine surface quality and its
degree of roughness. Rku describes roughness along the main direction of motion, while
Rsk describes roughness perpendicular to the main direction of motion. These parameters
are important because they affect tribological properties of a surface, such as friction as
well as wear and tear resistance. In addition, Rku and Rsk are often used to determine
manufacturing quality and surface quality control. The 3D surface roughness of the sam-
ples after AWJM was conducted with variable parameters was measured with the Hommel



Materials 2023, 16, 3384

60of 18

T8000 RC120-400 device. The measurements included the determination of Sku and Ssk
and were carried out perpendicular to the machining marks. These parameters also affect
tribological properties of surfaces, such as friction as well as resistance to wear and tear. In
addition, Sku and Ssk are often used to compare the surface quality of different materials
and to determine their suitability for specific applications.

2.2.3. Deflection Angle of the Jet Vibration

An analysis of jet deflection angle was performed on the Keyence VHX-5000 (Osaka,
Japan) microscope, with a magnification of x100. Figure 4 presents the surface of an AZ91D
sample cut with a cutting speed v¢ of 80 mm/min and an abrasive flow rate of 8 g/s. One
can notice visible marks of the machining process and of the employed deflection angle
measurement method. The surface of the machine sample was divided into three areas
marked with letters A, B, C. The first area was marked with letter A. The surface of this area
extends from the bottom of the sample edge to a height of 15 mm. In this area, the deflection
angle of the jet was marked as «;. The «; angle is between section a-b and straight line ],
perpendicular to the cutting direction. In area B, the «; angle was marked between section
b—c and straight line 1, perpendicular to the cutting direction. The dotted line marks the
course of the jet of the cut material. Point a is the starting point of measurement. Point
b denotes the intersection of a deflection curve with a straight line at a height of 15 mm.
Point c is the point of intersection of the jet deflection curve’s end with a straight line at a
height of 30 mm. In area C, however, the deflection angle of the jet was not measured due
to a lack of visible characteristic marks. The deflection angle of the jet was measured in two
areas: A and B.

56

cutting speed v [mm/min] cutting direction

>

Figure 4. Method of measuring deflection angle.

2.3. Artificial Neural Network

To predict the non-linear AWJM process for AZ91D, models of selected roughness
parameters 2D (Rku) and 3D (Sku) were created. The predictive models were constructed
with artificial neural networks using Matlab R2021b (The MathWorks, Inc., Natick, MA,
USA). Given that the aim of modeling was to obtain the simplest network structure with
one hidden layer, a shallow neural network was used. The input layer consisted of two
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neurons (cutting speed v¢ and abrasive flow rate m,), while the output layer consisted
of one neuron (respective roughness parameters). A schematic structure of the neural
network is presented in Figure 5, where appropriate roughness parameters are obtained at
the output of the model.

Figure 5. Schematic structure of the modeled neutral network, where nn stands for a correctly
modeled parameter.

The Levenberg-Marquardt algorithm was used for network training. The number of
neurons in the hidden layer (2-10) was selected experimentally, and the maximum number
of training epochs was 1000. The hyperbolic tangent sigmoid transfer function was used as
an activation function. The training data accounted for 75% of the measurement results
and 25% of the validation data. Due to the small number of data sets, the test data [37]
were abandoned. The most important indicators of network selection correctness were
a regression value R (correlation coefficient), mean squared error (MSE) and root mean
square error (RMSE).

The regression value R was calculated in accordance with the formula:

) ey ov(y,y")
R(y,y ) o O‘Y/O‘y*

Re<0,1>

where:
oy’ —standard deviation of the roughness parameters value obtained experimentally;
oy*—standard deviation of the roughness parameters value obtained as a result of
prediction.
The MSE value and root mean square error (RMSE) were calculated in accordance

with the formulae:
n

1 .
MSE = n Z(Yi - Yi)z

n=1

n
RMSE = % Y (9 — Yi)z
n=1

where:

y;—Value of a specified roughness parameter for the i-th observation obtained experi-
mentally;

y,—value of a specified roughness parameter for the i-th observation obtained as a
result of prediction.

3. Results and Discussion
3.1. Vibration

Figure 6 shows examples of time courses of vibration acceleration in the AWJ cutting
of AZ91D magnesium alloy. The results are given for the following machining conditions:
v¢ =5 mm/min, m, = 8 g/s. The vibration versus time results are shown separately for
every component analyzed in the X-, Y- and Z-axis direction.
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Figure 6. Examples of graphs showing vibration signal in the X-, Y- and Z-axis.

In addition, time signals were used to investigate changes in the amplitude, maximum
value and effective value (rms) of vibration acceleration. Figures 7-9 present the effect of
different values of v¢ on the maximum value, amplitude and rms of vibration acceleration.
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Figure 7. Influence of different v¢ values on the maximum vibration acceleration for two abrasive
flow rates: my =8 g/sand m, =4 g/s.
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Figure 8. Influence of different v¢ values on the amplitude of vibration acceleration for two abrasive
flow rates: my =8 g/sand m, =4 g/s.
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Figure 9. Influence of different v¢ values on rms values of vibration acceleration for two abrasive
flow rates: my =8 g/sand m, =4 g/s.

An analysis of the data in Figures 7-9 reveals the presence of a characteristic area where
the vibration (its maximum value, amplitude and root mean square) rapidly decreases in
the speed range v¢ = 160-180 mm /min (the area is marked in red circles in Figures 7-9).
This is due to the fact that the workpiece did not undergo AWJ cutting with the applied
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machining parameters. Furthermore, magnesium alloys have good damping properties,
which could additionally affect the value and level of vibration. Regarding the remaining
v¢ range, it can roughly be stated that the parameters describing vibration (max values a, A,
rms) increase with the cutting speed v¢. Moreover, for most cases, higher vibration values
can be observed at m, = 8 g/s (100%). The red circles mean "trend breakdown" in the form
of stabilization or increase of a given vibration parameter. Such a situation takes place with
a lower expenditure of the water-abrasive stream for m, =4 g/s.

3.2. Surface Roughness

Figure 10 shows selected examples of the 3D surface topography of the AZ91D mag-
nesium alloy specimens after AW] cutting conducted with a constant cutting speed of
v¢ = 140 mm/min and variable abrasive flow rate.

@

pm
110

100

X =479 mm
Y =4 79mm
Z=935pm 0

Y . o
Figure 10. Surface topography maps for a constant cutting speed of v¢ = 140 mm/min and different
abrasive flow rates: (a) ma =4 g/s (50%), (b) m, = 8 g/s (100%).
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Sku

The above surface topographies demonstrate that the use of an abrasive flow rate of
4 g/s (which is 50% of the maximum obtainable flow rate) results in higher elevations
and depressions on the machined surface compared to a higher abrasive flow rate. The
machining marks became even more uniform when the process was conducted with
m, = 8 g/s (which is 100% of the abrasive output).

Figures 11-14 show the surface roughness results for 2D parameters (Rku, Rsk) and
3D parameters (Sku, Ssk). However, there is a lack of surface roughness data for the AWJM
process conducted with a cutting speed of 160 mm/min and 180 mm/min and with an abrasive
material flow rate of 4 g/s. This results from the fact that the samples were not cut with these
speeds, which made it impossible to analyze the surface roughness of these samples.

6

ma=4g/s ma =8g/s

20

40 60 80 100 120 140 160 180
v; [mm/min]

Figure 11. Cutting speed v¢ and abrasive flow rate ma versus 3D roughness parameter Sku.

Ssk

0.4

0.2

ma=4g/s ma=8g/s

-0.2 -

-0.4 -

40 60 80 100 120 140 160 180

v; [mm/min]

Figure 12. Cutting speed v¢ and abrasive flow rate ma versus 3D roughness parameter Ssk.
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Figure 13. Cutting speed v; and abrasive flow rate ma versus 2D roughness parameter Rku.

0.00

-0.10 +—

-0.20 +—
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-0.40 -

-0.50 +—

ima=4g/s ima=8g/s

-0.60
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Figure 14. Cutting speed v¢ and abrasive flow rate ma versus 2D roughness parameter Rsk.

Surface roughness parameters relating to profile height are important due to mating
the surfaces of two machine components. From the point of view of their interaction, it
is favorable that Sku takes positive values (Sku > 3 and Sku = 3), which is most clearly
seen when v; is 5 mm/min and 100 mm/min. Therefore, it can be concluded that for the
analyzed case, the obtained surface is characterized by a low coefficient of friction. Less
homogeneous results of the Sku kurtosis were obtained when m, =4 g/s.

However, when Ssk takes negative values, the friction becomes more intense, so, in
this case, the favorable machining conditions should be m, = 8 g/s and v¢ =60 mm/min
and 140 mm/min. Moreover, it is difficult to establish a clear trend for the Ssk parameter,
as even though some results take positive values, most are negative values, which may
indicate a plateau-like nature of the hills.

From the point of view of interaction (lower value of the friction coefficient) and
proper operation of the mating components, it is favorable that the Rku parameter takes
positive values. In an example given in Figure 11, for most cases, the kurtosis values
above 3 indicate sharper vertices, which leads to a reduced friction coefficient of the mating
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surfaces (which is typical of surfaces with many sharp vertices). A positive skewness value
means that the coefficient of friction is lower, whereas a negative skewness value (Rsk < 0)
indicates that the friction is more intense, as can be observed in Figure 14. Moreover, it is
difficult to establish a clear trend for the Rsk parameter based on its average values for a
given abrasive output. Negative values of the Rsk parameter indicate a plateau-like nature
of the hills.

3.3. Deflection Angle of Abrasive Water Jet

Figure 15 shows the abrasive water-jet deflection angle in the AW] cutting of the
AZ91D alloy. The results are shown for varying abrasive water-jet output and illustrate the
jet deflection angles in two characteristic areas of the sample (angles &; and ).

50
45 —o— ol (8g/s) —m—a2(8g/s) ol (4 g/s) a2 (4 g/s)
40
35
30

25

20

: // -— B —
10 , —

[o]

5 20 40 60 80 100 120 140 160 180
Vg [mm/min]

deflection angle of the jet

Figure 15. Abrasive water jet deflection angles «; and «, for different values of v¢ and m,.

The uneven distribution of kinetic energy results in the formation of visible machining
marks on the bottom surface of the sample. The jet deflection angle is strongly correlated
with the technological parameters of AWJM, as shown in Table 2.

Table 2. AWJM parameters applied in the study.

Sample Number v¢ (mm/min) m, (g/s) o o)
1 5 0 0
2 20 1 1
3 40 7 3
4 60 8 3
5 80 1 5
6 100 4 17 7
7 120 21 10
8 140 23 12
9 160 25 16
10 180 27 16
1 5 0 0
12 20 1 1
13 40 10 5
14 60 12 7
15 80 14 10
16 100 8 25 16
17 120 29 20
18 140 31 2
19 160 36 24

20 180 38 26
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An analysis of the data in Figure 15 demonstrates that as the abrasive flow rate
increases, the «; angle in the lower part of the sample surface (in the exit zone of the
abrasive water jet) decreases. A similar trend can be observed for the x; angle. This is
probably related to a smaller amount of the abrasive agent as well as an overall lower jet
intensity, and thus, its weaker impact on the cut surface of the sample. For the highest
cutting speed, these differences were 11° for o and 10° for x;, respectively. These values
are very close. However, when comparing the values of the angles for the same abrasive
flow rate, it can be observed that those obtained for the jet deflection angle «; were higher,
regardless of the v¢ value.

3.4. Numerical Modelling of Surface Roughness Parameters by Artificial Neural Networks

The best modeling results for the 2D parameter Rku were obtained with a network of
10 neurons, while for the 3D parameter Sku, it was the network containing 6 neurons in the
hidden layer. The training structure of the neural networks and their parameters are shown
in Figure 16 (Rku and Sku). Regarding the Rku parameter modeling, the best training
performance (1.6127 x 10~'Y) was obtained with 16 iterations, which can be observed in
Figure 17, while for the Sku parameter, it was achieved at 1.6292 x 102! with 55 iterations.

Neural Network

4\ Neural Metwork Training (nntraintool) == X 4\ Neural Network Training (nntraintool) =3 =

Neural Network

Calculations: MEX

Algorithms Algorithms

Data Division: Random (dividerand) Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim) Training: Levenberg-Marguardt (trainlm)
Performance: Mean Squared Error (mse) Performance: Mean Squared Error (mse)

Calculations: MEX

Progress Progress
Epoch: 0 I 16 iterations 1000 Epoch: 1] B 55 iterations 1000
Time: 0:00:00 Time: |— 0:00:00
Performance: 0.768 | 0.00 Performance: 221 | i | 0.00
Gradient: 132 9.70e-10 | 1.00e-07 Gradient: 422 651e-11 1.00e-07
Mu: 0.00100 1.00e-09 1.00e+10 Mu: 0.00100 1.00e-10 1.00e+10
(a) (b)
Figure 16. Neural network training structure and its parameters for analyzed roughness parameters:
(a) Rku; (b) Sku.
The quality of the obtained models was evaluated based on the regression value R as
well as the mean squared error (MSE) and root mean square error (RMSE). Obtained values
of the above parameters for the selected best models are listed in Table 3.
Table 3. R, MSE and RMSE regression values for modeled networks.
Model Roughness R Training R Validation R All
Number Parameter MSE RMSE Data Set Data Set Data Set
1 Rku 0.0252 0.1586 0.99999 0.88494 0.89539
2 Sku 0.0095 0.0975 0.99999 0.90932 0.97767
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Figure 17. Best training performance of a predictive model for analyzed roughness parameters:
(a) Rku; (b) Sku.

Correlation statistics for the experimental data and modeling results of the Rku rough-
ness parameter are given in Figure 18. The overall correlation was R = 0.89539, which
represents the degree of overlap between the measurement points and the fitting line with
an ideal prediction line Y = T. Regarding the model prediction of the roughness parameter
Sku, the overall correlation was R = 0.97767 (Figure 18). The use of modeling made it
possible to predict values of the 2D (Rku) and 3D (Sku) roughness parameters.

All: R=0.89539 All: R=0.97767

%.T 3.8 O Dgla g 4.2 O Data
q Fit o. 4
4+ 36 p
- + 38
o) 34 @
- o 3.6
= 5
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o
- ™ 32
E !
g 5°
% 2.8 ,S 28
') O 26! 4

2.6 0 & f

26 28 3 3.2 ::34:::3.6::3.8 25 3 35 4
Target Target

(a) (b)

Figure 18. Correlation statistics for analyzed roughness parameters: (a) Rku; (b) Sku.

The purpose of this part of the study was to model and predict selected 2D (Rku) and
3D (Sku) roughness parameters of the AZ91D magnesium alloy after AW] cutting using
artificial neural networks. The modeling results and the obtained regression values of
R, MSE and RMSE demonstrate that the obtained networks have a satisfactory ability to
predict these parameters.
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4. Conclusions

The results of this study investigating the use of ANN modeling to predict the vibration
and surface roughness of the AZ91D magnesium alloy after water-jet cutting led to the
following conclusions:

o  Greater skewness (jet deflection) was obtained at a lower abrasive flow rate of
m, = 4 g/s (50%), while higher values of the o; angle (in the stream exit area) were
also obtained for an abrasive flow rate of m, = 4 g/s (50%), which can be explained by
a weaker impact of the abrasive water jet on the machined surface.

e Intherange of 60-140 mm/min, higher average values of the Sku roughness parameter
were obtained at m, = 8 g/s (100%), which means that this range of technological
parameters should be applied to obtain low values of the friction coefficient.

e Itis difficult to establish a clear trend for the Ssk parameter—although some results
take positive values, most are negative, which may indicate a plateau-like nature of
the hills.

e  For most cases, higher average values of the Rku roughness parameter were obtained
for the surfaces machined with a higher abrasive flow rate of m,= 8 g/s (100%) in the
v¢ range of 40-140 mm/min, which means that this range of technological parameters
should be applied to reduce the coefficient of friction.

e  The Rku kurtosis values exceeding and around 3 indicate sharper vertices, which
reduces the coefficient of friction for the mating surfaces.

o Itisdifficult to establish a clear trend for the Rsk parameter (analysis of average values)
for a given abrasive output; however, negative values of the Rsk parameter indicate a
plateau-like nature of the hills.

e Regarding the range of vibration, it can be assumed, with simplification, that the
parameters describing vibration (a, Aa, rms) increase with cutting speed vy.

e  For most cases, higher vibration values were observed at m,= 8 g/s (100%), which can
be explained by a greater impact of the abrasive water jet and a greater intensity of the
cutting process.

e The input parameters for the modeling and prediction of selected 2D (Rku) and 3D
(Sku) roughness parameters using artificial neural networks were variable technologi-
cal parameters, i.e., the cutting speed v¢ and the mass flow rate m,.

e  Regarding the Rku parameter, the best parameters were obtained with the network
with 10 neurons in the hidden layer for which MSE was 0.0252 and R = 0.89539; as for
the 3D roughness parameter Sku, the best parameters were obtained with the network
with 6 neurons in the hidden layer for which MSE was 0.0095 and R = 0.97767.

e  The trained networks show a satisfactory ability to effectively model 2D and 3D
surface roughness parameters of the AZ91D magnesium alloy.

The authors plan to continue research on AWJM for aluminum alloys in terms of other
variable technological parameters and their impact on surface quality, as well as to develop
relevant prediction models.

Author Contributions: Conceptualization, K.B.-U., I.Z. and M.K.; methodology, K.B.-U., I.Z. and
M.K.; software, M.K,; validation, I.Z. and M.K.; formal analysis, K.B.-U., 1.Z., M.K. and M.L.; investi-
gation, M.L. and M.K.; resources, I.Z.; data curation, K.B.-U., I.Z.,, M.K. and M.L.; writing—original
draft preparation, K.B.-U., I.Z., M.K. and M.L.; writing—review and editing, K.B.-U., .Z.,, M.K. and
M.L.; visualization, K.B.-U., I.Z.,, M.K. and M.L.; supervision, I.Z.; project administration, K.B.-U.;
funding acquisition, K.B.-U., .Z.,, M.K. and M.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Lublin University of Technology with grant numbers
M/KPIP/FN-32 and FD-20/IM-5/061/2022.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Materials 2023, 16, 3384 17 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gziut, O.; Kuczmaszewski, J.; Zagorski, I. Analysis of Chip Fragmentation in AZ91HP Alloy Milling with Respect to Reducing
the Risk of Chip Ignition. Ekspolatacja Niezawodn. Maint. Reliab. 2016, 18, 73-79. [CrossRef]

2. Prasad, S.V.S.; Prasad, S.B.; Verma, K.; Mishra, R K.; Kumar, V.; Singh, S. The Role and Significance of Magnesium in Modern Day
Research-A Review. J. Magnes. Alloys 2022, 10, 1-61. [CrossRef]

3.  Sliwa, R.E. Metal Forming of Magnesium Alloys for Various Applications. In Magnesium Alloys Structure and Properties; IntechOpen:
London, UK, 2022. [CrossRef]

4. Friemuth, T.; Winkler, ]. Machining of Magnesium Workpieces. Adv. Eng. Mater. 1999, 1, 183-186. [CrossRef]

5. Yalcin, B,; Ozileri, E.D. Experimental Investigation on Turning of Casted Magnesium Alloy Used in Manufacturing Automotive
Parts. In Proceedings of the Advances in Material & Processing Technologies Conference, Madrid, Spain, 14-17 December 2015.

6.  Kayir, Y. Optimization of the Cutting Parameters for Drilling Magnesium Alloy AZ 91. Mater. Test. 2014, 56, 47-53. [CrossRef]

7. Dias, L.D.; Brandao, L.C.; Ribeiro Filho, S.L.M.; Coelho, R.T. Processing of Threads on a Magnesium Alloy Using a Special Process.
Mater. Manuf. Process. 2014, 29, 748-753. [CrossRef]

8. Kulisz, M.; Zagorski, L; Jézwik, J. 2D Geometric Surface Structure ANN Modeling after Milling of the AZ91D Magnesium Alloy.
Adv. Sci. Technol. Res. J. 2022, 16, 131-140. [CrossRef]

9.  Niranjan, C.A; Srinivas, S.M.R. An Experimental Study on Depth of Cut of AZ91 Magnesium Alloy in Abrasive Water Jet Cutting.
Mater. Today Proc. 2018, 5, 2884-2890. [CrossRef]

10. Gupta, M. Magnesium—The Wonder Element for Engineering/Biomedical Applications; IntechOpen: London, UK, 2020. [CrossRef]

11.  Zagorski, I.; Klonica, M.; Kulisz, M.; Loza, K. Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium
Alloy and Simulation of Roughness Parameters Using Neural Networks. Materials 2018, 11, 2111. [CrossRef]

12.  Kolli, M.; Ram Prasad, A.V.S.; Naresh, D.S. Multi-Objective Optimization of AAJM Process Parameters for Cutting of B4C/Gr
Particles Reinforced Al 7075 Composites Using RSM-TOPSIS Approach. SN Appl. Sci. 2021, 3, 711. [CrossRef]

13.  Khudhir, W.; Abbood, M.; Shukur, J. Multi-Criteria Decision Making of Abrasive Water Jet Machining Process for 2024-T3 Alloy
Using Hybrid Approach. Adv. Sci. Technol. Res. ]. 2022, 16, 155-162. [CrossRef]

14. Maneiah, D.; Shunmugasundaram, M.; Raji Reddy, A.; Begum, Z. Optimization of Machining Parameters for Surface Roughness
during Abrasive Water Jet Machining of Aluminium/Magnesium Hybrid Metal Matrix Composites. Mater. Today Proc. 2020, 27,
1293-1298. [CrossRef]

15.  Bere, P; Krolczyk, ].B. Determination of Mechanical Properties of Carbon/Epoxy Plates by Tensile Stress Test. E3S Web Conf. 2017,
19, 3018. [CrossRef]

16. Ozcan, Y.; Tunc, L.T.; Kopacka, J.; Cetin, B.; Sulitka, M. Modelling and Simulation of Controlled Depth Abrasive Water Jet
Machining (AW]JM) for Roughing Passes of Free-Form Surfaces. Int. ]. Adv. Manuf. Technol. 2021, 114, 3581-3596. [CrossRef]

17.  Li,M,; Lin, X;; Yang, X.; Wu, H.; Meng, X. Study on Kerf Characteristics and Surface Integrity Based on Physical Energy Model
during Abrasive Waterjet Cutting of Thick CFRP Laminates. Int. |. Adv. Manuf. Technol. 2021, 113, 73-85. [CrossRef]

18.  Khan, A.M.; Gupta, K. Machinability Studies on Abrasive Water Jet Machining of Low Alloy Steel for Different Thickness. IOP
Conf. Ser. Mater. Sci. Eng. 2020, 709, 044099. [CrossRef]

19. Alsoufi, M.S,; Suker, D.K.; Alhazmi, M.W.; Azam, S. Abrasive Water]Jet Machining of Thick Carrara Marble: Cutting Performance
vs. Profile, Lagging and WaterJet Angle Assessments. Mater. Sci. Appl. 2017, 8, 361-375. [CrossRef]

20. Hreha, P; Radvanskd, A.; Hloch, S.; Perzel, V.; Krélczyk, G.; Monkova, K. Determination of Vibration Frequency Depending on
Abrasive Mass Flow Rate during Abrasive Water Jet Cutting. Int. J. Adv. Manuf. Technol. 2015, 77, 763-774. [CrossRef]

21. Perzel, V,; Hreha, P,; Hloch, S.; Tozan, H.; Vali¢ek, J. Vibration Emission as a Potential Source of Information for Abrasive Waterjet
Quality Process Control. Int. J. Adv. Manuf. Technol. 2012, 61, 285-294. [CrossRef]

22. Ty¢ M,; Hlavacova, LM.; Bartak, P. Analyses of Vibration Signals Generated in W. Nr. 1.0038 Steel during Abrasive Water Jet
Cutting Aimed to Process Control. Materials 2022, 15, 345. [CrossRef]

23. Krenicky, T.; Rimar, M. Monitoring of Vibrations in the Technology of AW]. Key Eng. Mater. 2011, 496, 229-234. [CrossRef]

24. Karmiris-Obratanski, P.; Karkalos, N.E.; Kudelski, R.; Papazoglou, E.L.; Markopoulos, A.P. Experimental Study on the Correlation
of Cutting Head Vibrations and Kerf Characteristics during Abrasive Waterjet Cutting of Titanium Alloy. Procedia CIRP 2021, 101,
226-229. [CrossRef]

25. Zagorski, I.; Korpysa, J. Surface Quality Assessment after Milling AZ91D Magnesium Alloy Using PCD Tool. Materials 2020, 13, 617.
[CrossRef] [PubMed]

26. Grzesik, W. Effect of the Machine Parts Surface Topography Features on the Machine Service. Mechanik 2015, 94, 587-593.
[CrossRef]

27. Loschner, P; Jarosz, K.; Niestony, P. Investigation of the Effect of Cutting Speed on Surface Quality in Abrasive Water Jet Cutting
of 316L Stainless Steel. Procedia Eng. 2016, 149, 276-282. [CrossRef]

28. Skoczylas, A.; Zaleski, K.; Kowalczyk, H. Badania poréwnawcze chropowato$ci powierzchni stali, stopu aluminium i stopu

tytanu po cieciu strumieniem wodno-éciernym. In Innowacyjne Procesy Wytwdrcze; Politechnika Lubelska: Lublin, Poland, 2013.
(In Polish)


https://doi.org/10.17531/ein.2016.1.10
https://doi.org/10.1016/j.jma.2021.05.012
https://doi.org/10.5772/intechopen.101034
https://doi.org/10.1002/(SICI)1527-2648(199912)1:3/4&lt;183::AID-ADEM183&gt;3.0.CO;2-V
https://doi.org/10.3139/120.110523
https://doi.org/10.1080/10426914.2014.901533
https://doi.org/10.12913/22998624/146765
https://doi.org/10.1016/j.matpr.2018.01.082
https://doi.org/10.5772/intechopen.73398
https://doi.org/10.3390/ma11112111
https://doi.org/10.1007/s42452-021-04699-x
https://doi.org/10.12913/22998624/154040
https://doi.org/10.1016/j.matpr.2020.02.264
https://doi.org/10.1051/e3sconf/20171903018
https://doi.org/10.1007/s00170-021-07131-1
https://doi.org/10.1007/s00170-021-06590-w
https://doi.org/10.1088/1757-899X/709/4/044099
https://doi.org/10.4236/msa.2017.85025
https://doi.org/10.1007/s00170-014-6497-9
https://doi.org/10.1007/s00170-011-3715-6
https://doi.org/10.3390/ma15010345
https://doi.org/10.4028/www.scientific.net/KEM.496.229
https://doi.org/10.1016/j.procir.2020.11.011
https://doi.org/10.3390/ma13030617
https://www.ncbi.nlm.nih.gov/pubmed/32019163
https://doi.org/10.17814/mechanik.2015.8-9.493
https://doi.org/10.1016/j.proeng.2016.06.667

Materials 2023, 16, 3384 18 of 18

29.

30.

31.

32.

33.

34.

35.

36.

37.

Deaconescu, A.; Deaconescu, T. Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless
Steel X2 CrNiMo 17-12-2. Materials 2021, 14, 2475. [CrossRef]

Opela, P; Schindler, I.; Kawulok, P.; Kawulok, R.; Rusz, S.; Sauer, M. Shallow and deep learning of an artificial neural network
model describing a hot flow stress Evolution: A comparative study. Mater. Des. 2022, 220, 110880. [CrossRef]

Churyumoyv, A.; Kazakova, A.; Churyumova, T. Modelling of the Steel High-Temperature Deformation Behaviour Using Artificial
Neural Network. Metals 2022, 12, 447. [CrossRef]

Honysz, R. Modeling the Chemical Composition of Ferritic Stainless Steels with the Use of Artificial Neural Networks. Metals
2021, 11, 724. [CrossRef]

Klosowski, G.; Rymarczyk, T.; Niderla, K.; Rzemieniak, M.; Dmowski, A.; Maj, M. Comparison of machine learning methods for
image reconstruction using the LSTM classifier in industrial electrical tomography. Energies 2021, 14, 7269. [CrossRef]
Rymarczyk, T.; Koztowski, E.; Ktosowski, G. Electrical impedance tomography in 3D flood embankments testing—elastic net
approach. Trans. Inst. Meas. Control. 2020, 42, 680-690. [CrossRef]

Ganovska, B.; Molitoris, M.; Hosovsky, A.; Pitel, J.; Krolczyk, J.B. Design of the Model for the On-Line Controlof the AW]
Technology Based on Neural Networks. Indian |. Eng. Mater. Sci. 2016, 23, 279-287.

Ficko, M.; Begic-Hajdarevic, D.; Cohodar Husic, M.; Berus, L.; Cekic, A.; Klancnik, S. Prediction of Surface Roughness of an
Abrasive Water Jet Cut Using an Artificial Neural Network. Materials 2021, 14, 3108. [CrossRef] [PubMed]

Biruk-Urban, K,; Bere, P.; J6zwik, ].; Leleri, M. Experimental Study and Artificial Neural Network Simulation of Cutting Forces
and Delamination Analysis in GFRP Drilling. Materials 2022, 15, 8597. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/ma14102475
https://doi.org/10.1016/j.matdes.2022.110880
https://doi.org/10.3390/met12030447
https://doi.org/10.3390/met11050724
https://doi.org/10.3390/en14217269
https://doi.org/10.1177/0142331219857374
https://doi.org/10.3390/ma14113108
https://www.ncbi.nlm.nih.gov/pubmed/34198903
https://doi.org/10.3390/ma15238597
https://www.ncbi.nlm.nih.gov/pubmed/36500093

	Introduction 
	Materials and Methods 
	Materials and Machining Method 
	Measurement Methods 
	Vibration 
	Surface Roughness 
	Deflection Angle of the Jet Vibration 

	Artificial Neural Network 

	Results and Discussion 
	Vibration 
	Surface Roughness 
	Deflection Angle of Abrasive Water Jet 
	Numerical Modelling of Surface Roughness Parameters by Artificial Neural Networks 

	Conclusions 
	References

